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ABSTRACT

Methods for integral equations are used to derive pointwise bounds for the
solution of a boundary value problem for the nonlinear Liouville partial differen-
tial equation over a rectangle. Several test calculations are performed and the
resulting solutions are more accurate than those obtained previously by other
methods.
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1. Introduction

The boundary value problem involving the two-dimensional Liouville equation

02 02
in %, (1.1)Ox--- +

OY2 e

where % denotes the rectangle

%-{O<_x<_a, O<_y<_b}, (1.2)

and with the boundary condition

-0 on 0%, (1.3)

arises in hydrodynamics (cf. [2]) where a is the stream function.
ter, little is known about the solution of equations (1.1) and (1.3).

Because of its nonlinear charac-

Approximate solutions of this problem have been obtained by means of two different ap-
proaches. One of these [3] used a quasilinearization technique to arrive at a numerical solution of

The other approach [1] employed complementary variationalthe particular case a- 1/2, b 3"
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principles to obtain a variational solution of the two cases a- 1, b- 1 and a- 1/2, b- 1/4. Neither
of these methods provides a pointwise error for their approximate solutions. The
quasilinearization technique is an iterative method and is considered to have converged when the
two latest iterates differ by less than a preassigned small quantity, whereas in the variational
approach, an average error estimate over the whole region % is provided. In the present paper,
we adopt a quite different approach which provides pointwise bounds for the solution. Our
method uses an integral equation formulation and some simple bounding results. This approach
proves to be relatively straightforward to implement and in the test cases considered leads to close
pointwise bounds for the solution.

Our first step is to find out as much as possible about the function 9 from the equation (1.1)
with boundary condition (1.3). Suppose the function 9 has a local minimum at an interior point
P of %. Then from elementary calculus, it follows that

029 > 0, 029
Ox2 > 0 at P.

Now this contradicts the fact that from (1.1), the inequality

(029 029

holds at every point in the region . We can therefore deduce that cannot attain its minimum
at any interior point of and so its minimum value is reached on the boundary 0% of . This
is an example of a result proved in [4, 7]. Since 0 on 0% we therefore arrive at the following
property of the solution function

(1.4)

A simple upper bounding function for the solution 9(x,y) can be found as follows.
write

L O O
Ox2 Oy2, (x,y) E %

equation (1.1) takes the form

If we

L9 e- in %.

Now consider the problem

L-I in% (1.7)

0 on (0%. (1.8)

Then we have

L(-9)-l-e ->0 in% (1.9)

-9-0 on (0%. (1.10)

Hence, by the maximum principle (of. [7]),

for all (x, y) E % + cOB, (1.11)
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that is, (x,y) is an upper bounding function for
(1.7) and (1.8) that the function is given by

For each rectangle % we find from

(x, y) L 1.1

b a

,y,s,t)dsdt. (1.12)

where the kernel k0 is the Green’s function for (1.7), (1.8) given by expression (2.3) with #n
replaced by -.

The boundary value problem in (1.1) to (1.3) can be reformulated as an integral equation

(1.13)

but the method we wish to use does not apply to this formulation because L-le- is not a con-

traction operator for all rectangles z)o. To find a suitable contraction we need to reduce the norm

of L- 1 and we do this by introducing the operator

A L + a2I, (1.14)

where r is an arbitrary real parameter at this stage and I is the identity operator.
consider the problem

We therefore

find 99 99(x, y)"

A99- 0299 0299 - (1 15)
Ox2 y2 - (r299 299 + e f(99) in ,

subject to

99 0 on cO-Jt. (1.16)
Now we let be the ttilbert space of all real-valued functions of two variables defined on

which are square-integrable. The inner product on :tt; is given by

b a

(u(x,y),v(x,y))- / ] u(x,y)v(x,y)dxdy, (1.17)
0 0

and the norm is defined by 1

I[ u I] (u, u) u(x, y)2dxdy (1.18)
0 o

The operator A in (1.14) with boundary condition (1.16) is both positive and self-adjoint in the
Hilbert space , and its lowest eigenvalue is

--/ / (1.19)



60 A.M. ARTHUR$, J. CLEGG and A.K. NAGAR

2. Integral Equation Form

If we introduce the inverse K of the operator A given in (1.15), subject to the boundary con-
dition (1.16), we find that satisfies the equivalent integral equation

F p- K{f()} 0, (2.1)

that is,
b a

o(x, y) Kf(o) / / k(x, y; s, t)f{p(s, t)}dsdt,
0 0

(2.2)

where f is defined by (1.15) and k(s, y; s, t)is the kernel of K, that is the Green’s function (cf. [5])

#nx sinh#n(a -s,
nu)sin_F=sinnsinh

2

n 1 tnS’n"t*na

oo sinh#ns sinh#n(a xsinn:Ysinng
2

n 1 #nsinh#na

xs,

(2.3)

where

2n n27r2
b--- + o2. (2.4)

By (1.4) and (1.11) we know that we are seeking the solution of (2.1) which belongs to the
subset Y of ]g given by

Y {ai(x,y):O <_ ai

_
O <_ x

_
a, 0_<y_b},

where, for example, max(x, y) over %.

Since the kernel k(x, y; s, t) in (2.3) is symmetric with respect to interchange of (x,y) and
(s,t), and is Hilbert-Schmidt, K is a bounded completely continuous operator (cf. [9]). Further-
more, since K is a positive operator, it follows that the norm II K II or K, defined by

II K II max(Kv, v} with II II 1, (2.6)

is equal to the largest eigenvalue of K, that is

II K II (lowest eigenvalue of A)-

_(71.271.2 )-1 (2.7)

on using (1.19).
We can now establish some useful inequalities involving f, Kf and F. For any functions

and P2 in the set Y of (2.5) we show that there are parameters c, / and 7 such that

II f(l)- f(2)II II fll-2 II, o > o, (2.8)

II Kf(l)- Kf(2)II II 1 -2 [[, 0 </3 < 1, (2.9)
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and

(2.10)

For the function f in (1.15), we have by the mean value theorem, that

[1 f(l)-- f()92)[[ II f’(0)(l --f12)II, o [1, 2],

[1 (0.2 e )()91 )92)II

max

which establishes (2.8) with

a max o---(’t) I.
s, -J

If we write

m exp(

then

0<m<_e-(s’t)<l, (s,t) E%.

Now choose the value of 0.2 to minimize the value of c in (2.11), that is, take

0.2 m 1 0.2,

giving

and
0.2=1+m

2

For the operator Kf of (2.2), we have

II Kf(l)- Kf()92)II _< II K II II f()91)- f(2)II

_< II K II II 1- )92 II
by (2.8). Thus the inequality in (2.9) holds with

7++-
1-m(rr2 rr2 l+m)

-1--- 7+7+ 2

by (2.7), (2.14) and (2.15). For any rectangle % it is clear that,

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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0</3<1. (2.17)

This means that the operator Kf in (2.2) is a contraction mapping on the set thereby ensuring
the uniqueness of the solution 99 of (2.1).

To establish (2.10) for the operator F defined by (2.1), we observe that

II F991 F992 II II 991 992 {Kf(991) Kf()) ]]

> II 991- 992 II II Kf(991) -/ff(992) II

II - II II 991 --992 II by (2.9)

"r II o- u II, (2.18)

where

7-1- (2.19)

and 7 > 0 by (2.17). This proves (2.10).
Finally, we note that if the parameter r is not introduced in (1.14) and (1.15), the analysis

leads to the parameter values

a2b21, r2(a2 -4- b2) 3/- 1 -/,

and since for Kf to be a contraction we require 0 < fl < 1, it follows that the values of a and b
that can be considered must not be too large. Since we wish to avoid any restriction on the size
of the rectangle, we have developed the formulation based on (1.15).

3. Pointwise Bounds for the Solution

By the formulation of Section 2, the function 99(x, y) satisfies the integral equation

b a

99(x, y) / / k(x, y; s, t)f(99(s, t))dsdt
0 0

(k, f(99)), (3.1)

where the kernel k and the function f are given in (2.3) and (1.15), and the inner product is that
defined in (1.17) with integration over the variables s and here.

Consider the difference

(3.2)

where (I) is any function in 3’. Then

AI I(k,f(y)-f((I)))

<_ II [[ II f()- f((I))II
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[I II II F- F< II by (2.10)

II II II F II C(O) say, (3.3)

where we have used the fact that F-0.
(k, I(P)}, that is, (x,y), which are

This result provides upper and lower bounds for

<It, f(O)> C(O) _< 99(x, y) _< <k, f((P)> + C((I)). (3.4)

These are the simple first order pointwise bounds for the solution p(x,y) of (1.1) with (1.3) which
provide the basis of our calculations. They are subject to the conditions

(i)

(ii)

belongs to :f,

(2.8), (2.9)and (2.10) hold

More elaborate second order bounds for integral equations have been derived by Robinson and
Yuen [8] but the bounds in (3.4) are sufficient for our purposes.

4. Calculations

To enable comparisons to be made with results obtained in previous work [1, 3], we shall
1include in our calculations two particular cases corresponding to (i) a- 1, b- 1, and (ii) a--,

1

We start the calculation by choosing the simple trial function

cu(x)v(y), u(x) x(a- x),v(y) y(b- y). (4.1)

The form of this trial function has been chosen so that it satisfies the boundary condition (1.3).
In order to calculate the bounds in (3.4), we require the value of

b a

{ O(s t) r2(I)( t)}dsdt. (4.2)y;s,t) e + s

This involves evaluating integrals such as

b x

j /sinh#nssin-e
0 0

((s’t)dsdt, (4.3)

which cannot be calculated analytically and yet numerical integration is not suitable because of
the oscillating function sin---g-. To overcome this problem, we have used the series expansion

e c c, 1 cuv / ca2--Tu2v2 C
3

3 a (4.4)
z: -uv +...,

so that
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c2... 2 2 c3-" : : (4.5)Ke Kl cKuv --l- -fff.. tt u v -. li u v +...,

and it is possible to integrate Kumvm analytically. It is found that these functions have the form

Kumvm E nry
sin---Jmn(X).

n=1,3,5,...

At each point (x, !/) of % the pointwise bounds in (a.4) will be functions of x and 1/and of the
parameter c appearing in the trial function (4.1).

For each rectangle, %, we minimize the norm I1 F(I)II with respect to the parameter c,

subject to the constraint 0 < c _< a--b2 in order to ensure that (I)E :f. Here is a known global

upper bound for the solution function o. Initially we can take

max(x, y) over (4.6)

where is given by (1.12). For instance, - 0.007117 when a-1/2, b- 1/4, and - 0.073671
when a- 1, b- 1. The parameters m, r2 and 7, that are required in the bounds (3.4), are given
by (2.12), (2.14)and (2.15).

These initial calculations based on (3.4) provide pointwise bounds for the solution function
(x,y) for a given rectangle, 1t,. Tables 1 and 2 display the results in the two cases (i) a-

b --1 and (ii) a- 1, b- 1.

_1Table 1: Initial bounds with (I)- cuv, a- b -y-0.1875

y=0.1250

y=0.0625

0.00460176 0.00533950 0.00460176
0.00460172 0.00533947 0.00460172

0.00603965 0.00707777 0.00603965
0.00603961 0.00707773 0.00603961

0.00460176
0.00460172

0.00460176 0.00533950
0.00460172 0.00533947
x=0.1250 x=0.2500 x=0.3750

Table 2: Initial bounds with q)- cuv, a- 1, b- 1

y=0.75

y=0.5

y-0.25

0.04330879 0.05461602 0.04330879
0.04329879 0.05560435 0.04329879

0.05461602 0.06992153 0.05461602
0.05460435 0.06990746 0.05460435

0.04330879 0.05461602 0.04330879
0.04329879 0.05460435 0.04329879
x=0.25 x=0.5 x=0.75
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For each rectangle considered, these calculations provide a new global upper bound for (x,y)
which we may call 2" The corresponding parameters m, r2 and 7 are

1 /
m2-exp (-2) r-- 2

1 m2, ’72- 2 (4.7)

A second set of calculations can then be carried out using these parameter values. The process is
then repeated until the bounds do not improve significantly.

To improve the bounds still further, we can take a new trial function

I) CIzv / C2U2V2, (4.8)

involving two independent parameters, c1 and c2, where u and v are the functions defined in
(4.1). Using the method of Hooke and Jeeves [6] and the procedure described above, we have
repeated our calculations and found the optimum values of the parameters c1 and c2 by
minimizing the norm II II subject to the condition that E Y. Tables 3 through 6 contain the
resulting pointwise bounds for (z,y) for the illustrative cases, (i) a- 1/2, b-1/4, (ii) a- 1,
b-l, (iii)a= 3, b=3, (iv) a=5, b=5.

u2v2 21_ 1Table 3: Bounds with Cluv / C2 a b

y=0.1875

y=0.1250

y=0.0625

0.00460175 0.00533950 0.00460175
0.00460173 0.00533947 0.00460173

0.00603965 0.00707777 0.00603965
0.00603962 0.00707774 0.00603962

0.00460175 0.00533950 0.00460175
0.00460173 0.00533947 0.00460173
x=0.1250 x=0.2500 x=0.3750

Table 4: Bounds with (I) Cluv / C2U2V2, a 1, b 1

y=0.75

y=0.5

y-0.25

0.04330437 0.05461043 0.04330437
0.04330107 0.05460658 0.04330107

0.05461043 0.06991351 0.05461043
0.05460658 0.06990887 0.05460658

0.04330437 0.05461043 0.04330437
0.04330107 0.05460658 0.04330107
x=0.25 x=0.5 x=0.75
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Table 5: Bounds with (I) Cluv + C2U2V2, a 3, b 3

y=2.25

y=0.75

0.30076727 0.37064776 0.30076727
0.29938460 0.36909138 0.29938460

0.37064776 0.46478145 0.37064776
0.36909138 0.46397918 0.36909138

0.30076727 0.37064776 0.30076727
0.29938460 0.36909138 0.29938460
x-0.75 x=l.5 x=2.25

Table 6: Bounds with (I) cluv -[--c2u2v2, a 5, b 5

y=3.75

y=2.5

y=1.25

0.58136541 0.67411656 0.58136541
0.56427161 0.65962746 0.56427161

0.67411656 0.80953283 0.67411656
0.65962746 0.79912514 0.65962746

0.58136541 0.67411656 0.58136541
0.56427161 0.65962746 0.56427161
x--1.25 x=2.5 x--3.75

From Tables 1, 2, 3 and 4, it can be seen, as expected, that the bounds obtained by using (4.8)
are closer together than the bounds obtained by using (4.1).

If we pick out the estimates for 7(x, y) at the midpoint, we find that

1.a 1/2, b -. 0.00707774

_
7:’(1/4,-)

_
0.00707777,

a 1, b 1" 0.06990887

_
(1/2, 1/2)

_
0.06991351.

(4.9)

For comparison, we note that in the case a- 1/2, b-1/4, Bellman and Kalaba [3] obtained the
approximate value

(41-,) 0.007071,

which is slightly too small according to our results.
gave

Also the earlier variation calculations [1]

a--1/2, b-1/4:7(1/4,)-0.00769
a-1,b-1" 7)(21-,21-)-0.1061

which both lie considerably above the upper bound results in (4.9).



On the Solution of the Liouville Equation over a Rectangle 67

5. Concluding Remarks

We have shown that, for the test cases considered, the first order pointwise bounds (3.4) are

very effective in providing good estimates of the solution of the boundary value problem in (1.1)
and (1.3). Much better results would be expected from the more elaborate second order bounds,
involving two independent trial functions and , given in equations (a.15) to (3.17) of [8], but
calculations based on these, with the form of as in (4.8) and the second function chosen to be

d and duv where d is a parameter that is optimized, lead only to a slight improvement
on the results presented here.
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