
Journal of Applied Mathematics and Stochastic Analysis
9, Number 2, 1996, 159-170

GIX/MY/1 SYSTEMS WITH RESIDENT SERVER AND
GENERALLY DISTRIBUTED ARRIVAL AND

SERVICE GROUPS

ALEXANDER DUKHOVNY
an Francisco State University
Department of Mathematics

San Francisco, CA 9132 USA

(Received December, 1995; Revised March, 1996)

ABSTRACT

Considered are bulk systems of GI/M/1 type in which the server stands by
when it is idle, waits for the first group to arrive if the queue is empty, takes cus-

tomers up to its capacity and is not available when busy. Distributions of arrival
group size and server’s capacity are not restricted. The queueing process is analy-
zed via an augmented imbedded Markov chain. In the general case, the generat-
ing function of the steady-state probabilities of the chain is found as a solution of
a Riemann boundary value problem. This function is proven to be rational when
the generating function of the arrival group size is rational, in which case the solu-
tion is given in terms of roots of a characteristic equation. A necessary and suffi-
cient condition of ergodicity is proven in the general case. Several special cases

are studied in detail: single arrivals, geometric arrivals, bounded arrivals, and an

arrival group with a geometric tail.
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1. Introduction

Bulk GI/M/1 systems have been studied by many authors using many methods, with the
stationary queue-length probabilities and ergodicity conditions often being subjects of main
interest. The results obtained usually depend on two major factors" the nature of distributions of
arrival and service group sizes and the service discipline. Three types of service discipline appear
most often in the literature. The first is a never idle transportation-type ("visiting") server. This
server begins a new service act immediately upon completion of the previous act, regardless of the
current number in the queue; the server becomes unavailable (leaves) once the group is formed.
The second type of service discipline is the "open" server. It stands by if the queue is empty and
arrivals are allowed to join the service act in progress until the server’s capacity is met. Thirdly,
there is the "closed" resident server. It stands by if the queue is empty, waits for arrivals, and
takes arriving customers up to its capacity, but it is unavailable when busy. In all three cases, at
the beginning of a new service act, the server takes in the minimum of the current queue-size and
the server’s capacity. A common feature of the first two disciplines is that in both cases there is
an imbedded Markov chain {Qk} such that
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Qk -t- 1 max{0, Qk + X}. (i)

(Q/ is the pre-arrival queue in the visiting server case or the pre-arrival number in the system in
the "open" server case.) It is easy to see that in the resident server case neither of these sequences
is a Markov chain (unless the server’s capacity is exactly 1).

The first two cases have been studied by several authors and methods. Under the assumption
of bounded arrival groups, the chain {Qk} defined by (1) can be efficiently studied by the matrix-
geometric technique (see, e.g., Neuts [7]). In Bhat [1], the open server case was studied by
methods of fluctuation theory. For generally distributed arrival groups, the results for the steady-
state probabilities were given in terms of probabilistic factorization components of 1- E[zX]. For
bounded arrival groups, these components were expressed explicitly in terms of roots of
characteristic equations. In Dukhovny [4], using methods of the theory of Riemann boundary
value problems (RBVPs), similar results for the visiting server case were obtained in terms of
complex-analytic factorization components of the regularized function [1- E[zX]](1- z-1)- 1.
The methods used allowed us to obtain explicit results for arrival groups with rational generating
functions.

The resident server case was studied in Cohen [2] under assumptions of single arrivals and a

special distribution of the service group via a standard pre-arrival imbedded Markov chain aug-
mented by an additional state for the idle server. The stationary probabilities for the busy-server
states of the chain were shown to form a geometric sequence, the ratio of which was a root of a
characteristic equation.

In the present paper, we follow the approach of Cohen [2] and study the augmented chain.
Its steady-state probabilities are analyzed by the method of RBVP, which allows us to avoid any
restrictions on the distributions of the arrival group size and the server’s capacity. In Sections 2
and 3, in order to make this paper self-contained, along with basic definitions and assumptions we

provide some information on RBVPs, related operators, and ways to find complex-analytic factori-
zation components. (This information can be found in greater detail in Dukhovny [3, 5]). In Sec-
tion 4, we introduce the augmented Markov chain and derive its transition probabilities and their
generating functions. In Section 5, we prove that the chain is ergodic if and only if the familiar
condition of ergodicity holds, that is, if the expected arrival group size is less then the expected
number of customers served during an inter-arrival period. The generating function of the steady-
state probabilities of the chain in the general case is found in Section 6 as a solution of a special
RBVP. In Section 7, under the assumption that the generating function of the arrival group size
is rational, we provide an explicit expression for the solution in terms of roots of a certain charac-
teristic equation. Several important special cases are completely solved in this section: single arri-
vals, geometric arrivals, bounded arrivals, and the arrival group with a geometric tail.

2. Definitions, Assumptions and Notations

We assume that customers arrive at the service station in groups of random size a, with
E(zc*) a(z), and E(a)= a. The inter-arrival times are i.i.d, random variables (RV’s), each dis-
tributed as a RV 7 with the density function g(t) and the Laplace-Stieltjes Transform (LST)
G(s), where E(7 g. The server is always at the station and it becomes available immediately
upon completion of the previous service act or, if the system is empty, upon the next arrival. The
service group size is the minimum of the queue-size at the beginning of the service and the
server’s capacity /3, where E(z) -b(z) and E(/3)- b. The service time is exponentially
distributed with parameter #. To avoid unnecessary complications (that can be studied by the
same method), we additionally assume that a and /3 are mutually prime (that is, they may
assume mutually prime values with a nonzero probability). This assumption holds most often in
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applications; it is guar-anteed, for example, if either c or /3 may assume 1 with positive
probability.

Following Dukhovny [5], we introduce projections T + and T- on the Wiener algebra W of
the Laurent series of the complex variable z with absolutely summable coefficients: if f(z)-

fizi, then
oo 0

T + f(z) E Dif(z)’ T f(z) E Dif(z)’ where Dif(z fi" (2)
1 --cx:

Denote W + T +(W) and I + W + (R){const}. While f(z) converges absolutely on I’:
]z 1, T + f(z) 6 W + converges absolutely in +" z _< 1 and T- I(z) W- converges ab-
solutely in r-’1 z >_ 1. The substitution z- 1, where possible, will be indicated by the opera-
tor S. By definition

T+T -T-T + -0, T+T + -T +, T-T- -T-,

T-S-S, T+S-O. (4)

The following relations show the probabilistic meaning of these operators. Suppose X is an inte-

ger random variable with H(z)- _cxhjzJ- E(zX). Then,

T + H(z) E{zx A (X > 0)}, (5)

T- H(z)- E{zX ^ (X < 0)}, (6)

SE hJzj P{X e M}. (7)
jEM

Let {ri} be a sequence of i.i.d, exponential random variables with parameter #. We define an

integer random variable u- 0, 1,2,... by the inequality
u ,+1

E Ti <__9/< E Ti
i:1 :1

In the visiting server system, u is the number of service completions during the inter-arrival time.
Its generating function is known to be

E(w’) K(w) E ksws G(#- #w).

Let {/3j} be a sequence of i.i.d, random variables, each distributed as /3, and let Bu

/31 +"" + C/u" In the visiting server system, Bu is the total number of customers that can be
potentially withdrawn from the queue between successive arrivals. It follows that

E(z a(,-

If we define X- o- Bu and H(z) E(zX), then

H(z) E{z
c- Bu} a(z)K(b(1/z)) a(z)G(#- #b(1/z)). (s)
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3. Calculating Complex-Analytic Factorization Components

Let f(z) [1 H(z)](1 z
assumption that a,b and g are finite, f(z) E W. Also, if and only if a < #bg do we have

By (9), functions

satisfy the factorization identity

It was proven in Dukhovny [3] that, under the

Indpf(z)-0. (9)

.R 4- (z) exp{ T 4-In f(z)} (10)

and the normalizing condition

f(z)- 1 _/ + (Z)t- (Z), (11)

R+(0)- 1. (12)
Functions given by (10) are the only functions that satisfy (11) and (12) such that R + (z) and
[R + (z)]- 1 belong to I +, while R- (z) and [R- (z)]- 1 belong to W-.

Remark: It was proven in Dukhovny [3] that the GF P(z) of the stationary queue-length
probabilities in the visiting server case is given by

P(z)-R+(z) (13)R+(1)"

Lemma 1: Suppose a(z)- E(z) is a rational function. Denote by -1 iS r-th pole irt F-,
with multiplicity mr, where mr N. Then

r

R + H (1 rz)mrH (1 Asz) -Us, (14)
r 8

where As is the s-th root in F +, with multiplicity Us, ns N, of the characteristic equation
8

1 -a(1/z)G(#- #b(z)) O. (15)
Proof: By (9), the total number of roots of f(z)inside F- (counting with multiplicities)

should be equal to the total number of its poles, which are the poles of a(z). At the same time,
the roots of f(z) in F- are reciprocals of the roots of (15) in F +. Set

R + (z) n (1 grZ)mrH (1 AsZ as, (16)
r 8- (z) [ + (z)f(z)]- . (1)

By construction, the function given by (16) and its reciprocal belong to +, while the function
given by (17) and its reciprocal belong to W-. Furthermore, (11) and (12) are also satisfied.
Therefore, the functions given by (16) and (17) must be equal to those given by (10).

Corollary 1: If a(z) is a polynomial of degree N (the arrival group size is at most N), then

+ (z) H (1 z)-, (is)
where ns N.

Proof: In this case, the only pole of a(z) in F- is z--oo (t --0) with multiplicity N. So,
(16) yields (18).

Coo,l : f a(z) ( )z(1 qz)- (0.ti a..ia).
1 -qzR+(z)- l_Az, (19)
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where A is the only root in F + of the equation

z q +(1 -q)G(#- #b(z)). (20)

Proof: The only pole of a(z) is z- q -1

ly.

Corollary 3: If a(z) E aizi + aNzN( 1 qz) 1 (geometric tail), then
i-1

where
s

Proof: Here, the poles of a(z) in F- are z cx (;1 0) with multiplicity N- 1 and z q
(n2 q) with multiplicity 1. So, (21) follows from (16).

;so (15) and (16) reduce to (20) and (19), respective-

(21)

Remark: Using the geometric approximation for the tail of a(z) allows us to select N much
lower than the actual upper bound of the group size, so the number of roots involved in (21) will
be much smaller than the number of roots involved in (18), which is equal to the upper bound.

4. The Augmented Markov Chain and its Transition Probabilities

Let {Qk) be a sequence of random variables such that Qk is either the queue length
immediately before the moment of the kth arrival, if the server is busy, or "e" (empty), if the
server is idle. Clearly, {Qk} is a Markov chain. The set of its possible states is {e,0, 1,...}; its
stationary prgbabilities will be denoted by Pi, e,0,1,...; its transition probabilities will be
denoted by a.

Lemma 2: The transition probabilities of the chain {Qk} and their generating functions are

given by the following formulas"
aee- ST- H(z), (22)

o ST-[b(1/z) 1]H(z),ae (23)

Ae(z) E aJzj T + b(1/z)H(z), (24)
j=l

a ST-zia(z)K*(b(1/z)), i- O,c, (25)

o ST-za a(z)[b(1/z)- 1]K*(b(1/z)), O, oo, (26)

Ai(z) E aJizJ T + ziH(z), i- O,
j=l

where tI(z) is given by (8), and

I(*(W) E Itsws -1 [G(# #W) G(#)]/w.
sin1

(27)

(28)

Proof: If the queue length before an arrival is i, then immediately after the arrival, it
becomes + a, the GF of which is zia(z). Transitions after that occur by one of the following
scenarios.

1) Suppose at an arrival, the system is empty. For the system to become empty again before
the next arrival, there must be u > 0 service completions during the inter-arrival period and the
total offered withdrawal Bu from the queue during these service acts should be at least a. Using
(5) through (7), we obtain from (8)that
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a P{a- B _< 0 A > 0} ST-a(z)K(b(1/z))- ST-a(z)ko; (29)

and since, obviously, T- a(z)= 0, (29) reduces to (22).

2) The scenario for the transition (e)(0) is the following: there are + 1 withdrawals; the
first withdrawals do not exhaust the queue, but the ( + 1)-st (immediately following the -th
completion) does. Using (5) through (7), we obtain from (8) that

o P{a B, > 0 >_ a B fl + 1} ST- b(1/z)T + a(z)K(b(1/z)). (30)ae

Using projection properties (3) and (4), we transform (30)into (23).

3) The scenario for transitions (e)--(j), for any j > 0, is that u completions take place
during an inter-arrival period and the remainder of the queue-length after the corresponding
( + 1) withdrawals, is positive. Using (5), we obtain from (8) that

Ac(z E{z B,- + 1 A oz B fin + 1 > 0} T + a(z)b(1/z)K(b(1/z)), (31)

which yields (24).
While analyzing transitions from the busy-server states, note that there is no immediate with-

drawal upon an arrival. Now it takes completions to make withdrawals from the queue dur-
ing the inter-arrival period.

4) Each transition (i)(e) takes > 0 completions during the inter-arrival period, and - 1
previous withdrawals must exhaust the queue of length + a. As

E{w-1 A p > 0} E Itsws-i K*(w),
s-1

using (5)through (7), we obtain that

P{i + a B 1 > 0} ST zia(z)K*(b(1/z)),
which proves (25).

(32)

(33)

5) Each transition (i)-(0)occurs with the following scenario. There have to be > 0 com-
pletions; the first - 1 withdrawals do not exhaust the queue, but the next one does. On the
strength of (32) and by use of (5) through (7), we have that

-P{i+a-B 1 >O>i+a-B -3}-ST-b(1/z)T+zia(z)K*(b(1/z)), (34)ai 1

which, on the strength of (3) and (4), yields (26).
6) The scenario for the transitions (i)(j), for any j > 0, is that , completions take place

during the inter-arrival period and the remainder of the queue-length, after the corresponding
withdrawals, is positive. Using (5), we obtain from (8) that

Ai(z E{z + a- B, A + a B, > 0} T + zia(z)K(b(1/z)), (35)

which proves (27).

5. The Necessary and Sufficient Condition of Ergodicity

Theorem 1: The Markov chain {Qk) is crgodic if and only if a < pbg.

Proof: Suppose a < #bg. Under the assumption that c and /3 are mutually prime, all states
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of {Qk} are obviously connected. Let xj- j, for j- 0, oo, and consider

Ai- EaJixj-xi-A(1)-i’ i-0,1,2, (36)
3=0

Under the assumption that the expectations a, b and g exist, we have jhjl < cx. So, by
differentiating (27), we obtain -lim A .lim [H’(1) i] 5 < 0.

By Foster’s theorem (Foster [6]), the chain {Qk) is ergodic.

Now suppose that the chain {Qk} is ergodic. The stationary probabilities Pi, i- e,O, 1,...,
comprise the only absolutely summable solution of the system of equilibrium equations"

Pj E aj (37)Pi i’

pi- 1.

Denote P(z)- E Pizi. From (24), (27), and (37)for j- 1,oo, we obtain that
i--0

P(z) Po T + P(z)H(z) + pet + b(1/z)H(z).

By the definitions of T + and T-, we can rewrite (39) as

P(z)[1 H(z)] Po T P(z)H(z) + PeT + b(1/z)H(z).

(38)

(39)

(40)

Applying the operator S to both sides of (40), we obtain (as H(1)- 1) that

0 Po ST- P(z)H(z) + peST + b(1/z)H(z).

On the strength of (41), we multiply (40) by (1- z- 1)- 1 and find that

(41)

where
P(z)f(z) (z), (42)

(z) {[ST T -]P(z)H(z) + PelT + ST + ]b(1/z)H(z)}(1 z 1) 1. (43)

Since P(z)f(z) G W, by (42), (z) 6 W as well. By (43), all Laurent coefficients of (z) have to
be nonnegative. If they were all zeros, then it would follow from (43) that all steady-state
probabilities are zeros, in contradiction to the assumption of ergodicity. Hence S(z) (1) > 0.
Also,

SP(z)f(z) P(1)f(1)= P(1)(#bg-a);

so, applying operator S to (42), we conclude that #bg- a > O.

6. Resident Server: Stationary Probabilities

Let us denote w b(1/z).
Theorem 2: If a < #bg, then
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where

1P(z) R + (z)
R +(1) Pe[T+ + ST- ]R---(z) },

1 ST-R+(z)a(z)K*(w)
Pe R + (1) {1 ST -[R + (z)a(z)K*(w)(T ST )R (zi]}"

Proof: Using the definitions of T + and T-, we rewrite (39) in the form

(44)

(45)

[P(z) + pew]J1 H(z)] Po / Pew T P(z)H(z) peT wH(z). (46)

By construction, the right-hand side of (46) belongs to W-. We multiply both sides of (46) by
(1- z)- 1, denote the result on the right-hand side by - (z), and obtain

P(z)f(z) + pewf(z) - (z). (47)

By construction and by (47), -(z)E W-. Thus, as P(z) IZV + by construction, (47)is a
Riemann boundary value problem on F for P(z) and -(z) in the class of functions from W.
Under the assumptions of the theorem, relations (9) through (12) hold. We multiply both sides
of (47) by R-(z), use (11), and apply T + to both sides. We find that

T + P(z)
R + (z------- + T

+ PeR w--w----+(z) T +- (z)R (z). (48)

The right-hand side of (48) is 0, as -(z)R-(z) W- by construction. On the left-hand side,

T + P(z) P(z)
P0’n + (z) n + (z)

as P(z)/R + (z) IZV + by construction and because of (12). Now (48) yields

P(z) R + (z)(po- peT +

We now apply S to (49), use the normalizing condition:

w }. (49)n+(z)

P(1) + Pe 1, (50)
which follows from (38), and find that

1 wpeST- (51)P=R+(1 R+(z)"
Using (51)in (49), we obtain (44).

Consider (37) for (i)- (e)and use (22) and (25). Then

Pe PeST H(z) + ST- P(z)a(z)g*(w).

Applying (44) here, after using some algebraic transformations based on identities (3) and (4),
and using formulas (8) and (28), we obtain (45).

Corollary 1: The GF of the stationary distribution of the pre-arrival number in the system
with a resident server, in the case of single service and generally distributed arrival group size, is

g()+ p R+(1)"
Proofi In this case, w 1/z. Since / + (Z)

its MacLaurin expansion. By (12),
its Laurent expansion is the same as
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Denote r1 DIR + (z)- 1

DoR + (z)- 1

We now have

--/+(0)-1-- 1.

and

By (28), (8), and (11),

T- w _1 (T--ST)R + (z) zR + (z) z t- r1,
w____F___ 1 1

W(T + +sT )R + (z
w_l_+l"+ (z) z (52)

z--1R + (z)a(z)K*(w)(lg- 1) R + (z) (z)
R + (z)a(z)[k0 + K*(w)].

So, (45) yields Pe R + (1)- 1, as CoT- 1 -t- (z) DoR + (z) 1. Now, the statement of the corol-
lary follows from (44) on the strength of (52).

7. Arrivals with a Rational Generating Function of the Group Size

Theorein 3: Suppose a(z) is a rational function. Denote by t-1 its r-th pole in F- with
multiplicity mr, mr N. Then

r
P0 I-[ (1 tcrz)mr pezNW(1/z)

P(z) r
n (53)

l-I (1- z)
8

where each As is a root of (15) in r + with multiplicity ns, such that E ns- N, and where W(z)
8

is the (N-1)st degree polynomial whose value and whose derivatives at each z- gr, up to the
order of mr --1, are equal to the value and respective derivatives of b(z) I-I (z- ;s)ns.

8

Proof: On the strength of Lemma 1, we use (16) to represent on F

[b(1/z) I-I (z ,s)ns w(1/z)]b(1/z) zNW(1/z) + s

R + (z) YI (1 arz)m l-I (z- 1 tr)mr
r r

(54)

By construction, the first part of the right-hand side is analytic in I’ + and continuous in I’. Also,
it vanishes at z-0. The reason for this is that the degree of W(z) is N-1 and that rEr+,
Vr. The second part is analytic in F- and continuous on r by the definition of W(z). By Liou-
ville’s theorem,

T + b(1/z) zNW(1/z) (55)
R + (z) 1-[ (1 rz)mr’

r

T b(1/z____) [b(1/z) (z 1 )s)ns W(1/z)]
(56)

t: + (Z) H (z-- l gr)mr
r

Applying (55)and (16)in (49), we obtain (53). [51

It follows from (53) that if a(z) is a rational function, the generating function of the steady-
state probabilities is also rational. To complete the formula for P(z) given in (53), one needs to
specify P0 and pC. From (51) and (56), it follows that, under the assumptions of Theorem 3,
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I-I (1- )’(1- p) + PW(1)
p0

[I(1-
r

The formulas that emerge when one finds Pe from (45) are generally very cumbersome. We shall
look at only some special cases below.

Case 1: If the arrival group size is bounded by N, then

I-I (1 As)"s(1 Pe)/ peW(l) PezNW(1/z)
P(z) s (58)

l-I(1-

Proof: Here the only pole of a(z) is z c (gl 0) of multiplicity g. Applying (57) in (53),
we obtain (58).

N-1
Case 2: If a(z) aizi - aNzN(1 qz) 1 (geometric tail), then

(1 -q)- 1[ l-I (1 As)nS(1 Pe)+ PeW(l)]- PezNW(1/z)
p(z)

1-I
8

Proof: Under the assumption of the case, the poles of a(z) are z c (gl 0) with multipli-
city N- 1 and z- q-1 (;2 q) with multiplicity 1. So (59) follows from (53) and (57). V1

In special cases 3, 4 and 5 discussed below, it is possible to utilize analytic properties of a(z)
and actually calculate Pe using (45). To facilitate these calculations we transform (45) into

1 ST + R + (z)a(z)K*(w)K*(1) R+(1 (60)Pe (1 1 ST / R -t" (z)a(z)K*(w) + ST / w T / R -t-- (z)a(z)K*(w)}+() +(z)

The proof of (60) is based on projection properties of operators T +, T- and S, and is similar to
the proof of (45).

Another tool needed for calculations in (60) is the following lemma.

Lemma3: Le (z) E W- and al < 1. Then

T + (z) (1/a)z (z) (z) (l/a)and T- 1 1z-l_a 1 -az z -a z -a
(61)

Proof: Consider the following partition:

(z) (1/a)z (z)- (1/a)
z -1 a 1-az + -1 (62)

z

The first part of the right-hand side of (62) is obviously analytic in F + and vanishes at z 0; the
second part is analytic in F- by construction. By Liouville’s theorem, (62) yields (61).

Case 3: If a(z) -(1- q)z(1- qz)- 1 (geometric arrivals), then

P(z)
p(1 qz) + pezb(q)($ q)

1 Az (63)

(1 A)(1 Pe)+ Peb(q)(q- A)
P0 (1 -q) (64)
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K*(1)- K*(b(,))
Pe 1 -[1 b(q)]K*(b(,))’ (65)

where , is the only root of (20) in I’ +.
Proof: In this case, a(z) has one simple pole, z- 1/q (t1 --q). So W(z)- b(q)(q-A), (63)

follows from (53), and (64) follows from (57). To derive (65) from (60), we use (19) and apply
Lemma 3 with (z)- (1- q)K(w)"

T + R + (z)a(z)K*(w) (1 q)zK*(b(A))
(66)1 ,z

On the strength of (66), we have

ST + w T + n + (z)a(z)K*(w) ST + w(1 q)K*(b(A))
b(q)K*(b(A)). (67)t-t- (Z) z- l q

The second equality in (67) was obtained by using Lemma 3 with (z)- w. Now we use (19) at
z- 1, apply S to (66), and obtain (65). [:]

Remark: By (28), K*(1)- l-G(#), K*(b(A)) 6(x)
-q

l-q"

Case 4: In the case of single arrivals,

Also, on the strength of

P(z)- 11_-2z(1- p), (68)

b(,)[1 G(#)]- + G(#)
P b(,)- + G(#) (69)

Proof: Set q- 0 in formulas (63) through (65). As b(0)- 0, (63) and (64) yield (68); (69)
follows from (65) as G(#- #b(,))- , (see the Remark above).

Formula (68) shows that in the case of single arrivals, regardless of the distribution of the ser-
ver’s capacity, the sequence {pi, i- 0, c} is geometric with the ratio A. In the case of geometric
arrivals, it follows from (63) that the same is true for the sequence {Pi, i- 1, c}.

In the following case we use partial fractions to show what is involved in finding Pe in more

complicated situations.

Case 5: Let a(z)--a z + a2z2(1- qz)-1 (geometric tail, N- 2). Here a(z) has two simple
poles: z (x and z- q- (1- 0 and 2- q, respectively). Accordingly, (15) has two roots in
P +, )1 and ,. (It can easily be shown that here the two roots have to be distinct.) As b(0) 0,
the polynomial W(z)of Theorem 3 is W(z)- zq-b(q)(q- "l)(q-")" Now, formulas (53) and
(57) yield

By (16),

(1 Pe)(l --/1)(1 ,)(1 qz) + pq(q )l)(q "2)( 1 z)
1 q)( 1 )1 z)(1 ,z)

1 qzR + (z) (1 lZ)(1 ,2z) (70)

R + (z)a(z) z[al(1 qz) + a2z r1

7"r

(1 ,lZ)(1 ,2z) z- 1 r’ (71)

where
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al(A1 q) + a2 aI(A2 q) + a2
’1 (A1 A2

and 7"2 (A2 A1
In the following equation, we use (71) and apply Lemma 3 with (z)-- K*(w) to find that

T + R + (z)a(z)K*(w) rl :] = A
As zb(1/z) W-, we also have

z (z-l-

With 4(z) so defined, we apply Lemma a to the following equation and use (Ta) to find that

b(q)(q- 1)(q- A2)- TrK*(b(Ar))
q(z- l q r=lZ- q )r

Finally, we obtain from (60) that

where 7"1 and r2 are given by (72).

(72)

(73)
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