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ABSTRACT

In this paper we provide a characterization for symmetric c-stable harmoniz-
able processes for 1 < c < 2. We also deal with the problem of obtaining a mov-
ing average representation for stable harmonizable processes discussed by Cam-
banis and Soltani [3], Makegan and Mandrekar [9], and Cambanis and Houdre
[2]. More precisely, we prove that if Z is an independently scattered countable
additive set function on the Borel field with values in a Banach space of jointly
symmetric c-stable random variables, 1 < c <2, then there is a function
k E L2($) (. is the Lebesgue measure) and a certain symmetric-a-stable random
measure Y for which

if and only if Z(A)- 0 whenever $(A)- 0. Our method is to view SS process-
es with parameter space R as SS processes whose parameter spaces are certain
L3 spaces.
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1. Introduction

It is well known that certain stationary Gaussian processes can be represented as the Fourier
transform of independently scattered Gaussian random measures and as moving averages of
Gaussian motions as well. The work of Schilder [16] enables one to define the Fourier transform
of certain stable random measures and the moving average of a stable motion separately. A
natural question that arises is to investigate the connection between these two types of stable pro-
cesses as the moving average representation has its special importance in time domain analysis.
It was demonstrated in [3] that the situation in the stable case is rather complicated. It is not
possible to obtain a result, in the stable case, similar to the one that is available in the Gaussian
case. It is proved in [9] and [2] that the moving averages of the stable motion are not Fourier
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transforms of stable random measures. In the summability sense, discussed in [2], Cambanis and
Houdre provided a connection between the Fourier transforms and moving averages of different
stable random measures.

In the present work, we deal with the same problem. We prove in Theorem 3.2 that every
strongly harmonizable symmetric c-stable (ScS) process, 1 < c <_ 2,

/ It,

has a moving average representation in the strong sense (not summability sense), in the case that
the random measure Z is absolutely continuous with respect to the Lebesgue measure. Our meth-
od is to associate to every harmonizable (or moving average) process a unique continuous linear
mapping on a certain L3 space with values in a Banach space of jointly stable random variables.
The notion of (c,/3) boundedness and some of the results given by Houdre in [6] will be. used in
our work.

Early results on moving average representation, in the Gaussian case, are due to [7]. For
more recent research in prediction theory of stable or Gaussian processes, see [10-13] and [15].

The paper is organized as follows. In Section 2, we present notations and preliminaries. In
Section 3, we characterize harmonizable SozS processes and present the main results of the article
which are Theorems 3.1, 3.2 and Remark 3.1. Theorem 3.2 brings into sight, an important class
of ScS processes in the time domain that, to the best of our knowledge, has not been treated
before.

2. Notations and Prehminaries

In this section we adopt some of the notions and results in [6]. Except for Theorem 2.2 which
is new, we do not give proofs for the rest of the material in this section. Readers can easily derive
the proofs by applying the corresponding techniques presented in [6]. In this work we only consid-
er the case for which 1 < c < 2.

The Schilder’s norm of a SoS random variable X is denoted by II x II. The space of all
jointly SoS random variables equipped with I1" II is a weakly complete Banach space which is
denoted by (50, I1" II )" The convergence in (50, I1" II)is equivalent to the convergence in probabili-
ty. A process {(I)(i): E I} is SoS if (I)(i) E 5 for each in the index set I. If an index set I is
equipped with a topology r, then we call the process (I) "continuous" if (I): (I,2-)(50, I1" II)is con-
tinuous. The Lebesgue measure is denoted by , and for f LP(1), p > 1, f and f stand for the
Fourier transform and the inverse Fourier transform of f respectively, whenever they are well de-
fined.

Let N0(R. denote those elements of the Borel field %([) that are bounded. Let # be a regular
measure on %(R). By Mf(#), 1 _< < ec, we mean the space of all random measures Z"
%0(It)--,50 such that for each Z, there is some constant C for which

n n

II aiZ(Ai) II <- C{ Z ailZ(Ai))1/ (2.1)
i=1 i=1

for any pairwise disjoint sets A1, A2,... in %0(R) and for any real numbers al, a2,

Note that every element of MZ(#) is a ScS-valued random measure on N0(R with continuity
property (2.1).

Let # be a regular measure and let (I): Lf(#)-+50 be a continuous linear mapping.
{q(f), f L3(#)} is a continuous Sets process for which

Clearly (I)-
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for any f E L(#), where C is a constant not depending on f.
denoted by tt3(#).

For Z e M3(#) and f e L(#), f fdZ is well defined.

/ fdZ ]1 <- C ]1 f 11 L(UII
If we let

f J" fdZ, f e

The space of such processes is

It is a SaS random variable for which

f e L3(#).

then, .Ag3(#) and in this case we denote by tz and Z by Z respectively.

An element Z e M3(#) is said to be independently scattered, I.S. in short, if Z(A1),...,Z(An)
are independent random variables whenever A1,...,An are pairwise disjoint elements of N0(R).
In this case, we have

II JgdZll IlgllL ( ),
where u is the control measure of Z; i.e.,

,(A)- ]l Z(A)II ", A e N0(R).
An element 2tt3(#) has independent values at each point of L3(#) if (fl), (f2) are inde-

pendent random variables whenever fl,f2 e L(#) and flf2- 0 a.e. #; see [5] part 4.

Theorem 2.1: Let be a SaS process in Jtl[3(#), 1 < fl < cx3. Then there is a unique Z in

M(#) for which f
(f)- /IdZ, f G L(#).

In the following, we present an elementary but very useful lernma.

Lemma 2.1: (i) Every element of Me(#)is a countable additive -valued measure on the
ring %u(R)- {A G %(R)" #(A)< cx}.

(ii) Let # be a finite measure on (it). Then M3(#)C M(#) and .AI(#)C ’(#) when-
ever l <_fl <_7 <

(iii) Suppose that Z is I.S. and Z e M3(#). Then for ome consan c > o
u(A) < c(#(A))/z, A e %u(R), (2.2)

where is the control measure of Z. Moreover, if the function f G LZ(#), then f
(iv) Let l <_ < c and Z G JZ(#). If Z is I.S., then Z-O.

The following theorem is the new result of this section. It has significant applications in the
subsequent section, where we show that certain harmonizable processes are moving averages.

Theorem 2.2: Suppose # is a regular measure for which # << A. /f G t3(#), then there is

some M G MZ() such that
(/)- [ fgdM, f G L(#), (2.3)

dpwhere 1 < < cx3 and-d-X- gl In addition, M is Leo. whenever has independent values at
each point of L(#).

Proof: From Theorem 2.1, (f) f fdZ, f L(#). We define M(A) f g- lI[g # 0]
A

dZ,, A N0(tt). Clearly, M is a well defined random measure on N0(it which belongs to

Mf(,). It follows that

l
[ kdM

J
[ kg iI[g :/: 0]dZ, k E L3(.). (2.4)
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Now fg E L()) whenever f E Lf(#) and it follows from (2.4) that

/fgdM- JfI[g#o]dZ- /fdZv-2(f)
for all f G Lf(#), since Z([g 0]) 0. The proof is complete.

The following spectral type theorem also has useful applications.

Threm 2.3: Le (). Then has independen values a each point if and only if
Z is I.S. In this case, there is a unique h 0 and an I.S. random measure W Ma(#) with
control measure m- I[h 0] for which

(f)- ] fh/adW, f n(). (2.4)

Moreover, h Lz/(z -)() ff < < , h n()
We now introduce the following subspaces of (, ]] ]] ). For e (p), let- closure {(/), /

and for a classical SaS process X- {X(t), t R}, let

x spn osu {x(,), e a}.
For a process on L2(A), i.e., 2(A), the Fourier transform of is defined by

$(f)- (7), f e L:().
Clearly, 2(), beuse II ] I n()- (2)/2 II n()

3. Haxmonizables are Moving Averages

In this section, we show that a rather wide class of SaS-harmonizable processes are contained
in a certain class of moving average processes. Let us first introduce the notions of harmonizabili-
ty and moving averageness in detail. By a classical SaS process X- {X(t)’t It}, we mean a
continuous function X:

Definition 3.1: A classical SaS process X- {X(t):t R} is called harmonizable (strongly
harmonizable) if

X(t)- / eitdZ(x), t e R, (3.1)

where Z is a countable additive (an I.S. countable additive) set function of %(R) into

Definition 3.2: A classical SaS process {X(t):t R,} is called a moving average of a count-
able additive set function Y, of %0(1) into f, if

X(t)- / k(t-s)dY(s), t e R., (3.2)

with a function k for which the integral in (3.2) makes sense in (Y, I1" [[ )" If Y in (3.2) is the sta-
ble motion, then we say that X(t) is a strongly moving average process.

The question whether a stable harmonizable process is a moving average of a certain stable
measure has inspired some deep results in the literature. In Theorem 3.1 in [3] the following three
assertions are considered.

1. Two classes of strongly harmonizable processes and strongly moving average processes are
disjoint.
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2. Strongly moving average processes are harmonizable (not necessarily strongly).

3. Strongly harmonizable processes are moving average.

Assertion 1 and its proof as presented in [3] are correct. Assertion 2 is not correct, see [9] and
[2]. Also the proof presented in [3] for assertion 3 is not correct and this brought some doubt on
the validity of assertion 3, see [2]. In Theorem 3.2 we prove that assertion 3 is correct.

The following theorem gives a characterization for harmonizable processes.

Theorem 3.1: Let {X(t):t E R} be a harmonizable process. Then here is a finite Borel mea-
sure # and a generalized process 2(,) for which X(t) (eit" ), t .

Proof: Note that if Z is a countable additive set function of (R)into , i.e., Z(U Ai)-
n

E Z(di) llO as n, for every sequence of disjoint sets in (R), then the integral
i=1

itdZ(A) is well defined in (, [[ ); see [4] part I, IV.10. Moreover,

f fdZ ] C f ] , f L(), (3.3)

where C is a constant number and , is a finite measure on (R) (see [4] part I, I.V.10.5, lemma
5) satisfying (A) 0 if and only if Z(A) is degenerate at zero. Now, by Theorem 5.1 in [6] there
is a finite Borel measure h such that

II IdZ II C1{ fldh}, f e

Clearly, Z << h (we can replace h by + h). Thus by Lusin’s Theorem [14] and Theorem 10,
page a2a [4] we infer that

II IdZ II el{ fdh}, f e (h).
Now let f aiAAi be a simple function. Then,

i=1
n n 1

II aiZ(Ai) ll C’( ail2h(Ai)),
i=1 i=1

i.e, Z M2(h). Thus, X(t)-(eit’), t R, for some 2(h) (precisely" (f)- f fdZ,
f L2(h)). The proof is complete.

We call the measure given in Theorem 3.1 a Grothendieck measure of the process X(t).
The following theorem is the main result of this article.

Theorem 3.2: Let {X(t):t R} be a classical SaS process. Then

(i) ff {X(t):t } is a srongly harmonizable process for which its control measure
then

X(t)- ] k(t-s)dY(s), t R,

where Y M2(A) with being independently scattered and k L2(A) with
Moreover, AX Ay if k 0 a.e., ;

(ii) if {X(t):t e } is a harmonizable process given)y (3.1) and has a Grohendieck measure
then the conclusion of part (i) holds excep ha Y may not be independently scattered and

Parts (i) and (ii) of Theorem 3.2 follow immediately from the propositions 3.1 and 3.2, given
below, respectively. Only define by (eit" X(t).

Prosition 3.1: Let a generalized SaS process belong to Z(#), where is a finite Borel
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measure # << , and 1 <_ < cx. Suppose that has independent values at each point of LO(#).
Then there is a process in alg2(/) and a function k L2(A) for which:

(i) has independent values at each point of L2(A),
(if) (eit (p(k(t- .)), t G R,

(iii) if’ 7 O, a.e., ,, then ,,4 AX AO, where X(t) (eit" ), t G R.

Proof: Let E lf(#), where # is a finite Borel measure. By Theorem 2.3, there is an I.S.

Z G M(#) for which f
(f)- ] fdZ, f LZ(#). (3.4)

Since # is a finite measure it follows from Lemma 2.1(iii) that u is a finite measure and
u << #. Also note that Z MC(p). Now let

G(g) j gdZ, g e L(u). (3.5)

Thus G G Age(u), and by Lemma 2.1(ii), G E Ag2(u). Hence by Theorem 2.2, there is some I.S.
random measure M G M2() for which

G(f) / fh*dM, f G L2(u), (3.6)

where ]h*l 2 du LI(,) and h*a-X G (x) h(- x) It follows from (3.4) (3 5) and (3 6) that

(eit" J eitsh*(s)dM(s)

/ (t- x)dl(x),

where the last equality is the Parseval’s type formula which is given by Theorem 4.1 in [6]; (see
also the prgraph after Theorem 4.3 in [6]).

Now let
() J da, L2(),

then has independent values at each point and

(J)-((t-.)), teR,

given (i)and (if). For (iii), note that it follows from (if)that

x {((t- )), e }.
But since k G L2(A) under the assumption that :/: 0, a.e., we obtain

fp{k(t- ), C R} L2(A),
see [8]. It also follows from the continuity of (I) that

sv{(k(t- )), t C R} g-fi{(I)(g), g C L2(,)}.
Thus, AX At- AO. The proof is complete.

Proposition 3.2: Let # be a finite measure and let 2 l(#) Suppose # is absolutely con-
tinuous with respect to the Lebesgue measure . Then there is a function k L2()) and a stable
process (P E 2(A) for which

(i) () ((t- .)), c
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(ii) if 7 O a.e. ,, then A Ax t, where X(t) (eit" ), tGR.
Prf: Let (), then (f)- f fdZ, for f LZ(), where Z MZ().
For 1 2, it follows that 3() by Lemma 2.1(ii), and therefore, as shown in the

proof of Proposition 3.1, the conclusions (i) and (ii) are satisfied.

For > 2 we use a version of Theorem 5.2 in [6] (see the discussion on page 183 in [6]) and
write 1,, (f)]]-,] ff fdZ ,, (f] f, 2hd#), f L(),

where hL/(-2)(u (put 7 in place of a, 1<7<a, in Theorem 5.1 [6]). Thus
where du- hd. Note that Hhlder’s inequality provides that u(a) K(u(A))2/, A (R),

Therefore, u is a finite measure and u << . Now again, we are in

a position to apply Theorem 2.2 and conclude the result. The proof is complete.

The following theorem provides sufficient conditions under which a moving average process is
harmonizable.

Theorem 3.3" t Z(), 2 < . Vpo h i a fnction e LZ() fo which
1 1 1. Then,9 foo L (), h +

(i) i a finit oau ,,, << , and a Voc Z’(,) fo ic

((t- )) ("’), t ,
(ii) there is a process G 2() and a k G L2($) with

((t- )) ((t- )), t e It.

Proof: For (i), let M ZO. Then

ap(k(t- )) / k(t- s)dM(s)

/7(t-s)dM(s)- /e
./**(.)d*(.)-/*dZ(.),

where the third equality is by Theorem 4.2 in [6] and Z(A)- f g*d/I* I*(B)- (-B), for
all B E %0(R), A G (R). Therefore, Z G M’(), where (A) A[g]d’dA, A e (R).

For (ii), apply Proposition 3.2. The proof is complete.

Remark 3.1: It is interesting to note that if

f eitdZ(s)- ] k(t-x)dY(x), t R, (3.7)

for a Y-valued Borel measure Z, k L2() and Y M2(), then Z << . To see this, let k ,
g- G L2(1). Then, by Theorem 4.2 in [6],

] k(t- x)dY(x)- ]" eitg*(s)d*(s)
for all tG. NowbylettingZa(A)- fAg*d*for AG(),and(B)- fBlg*2dforBG
(R), we obtain that

] eitsdZ(s) / eitsdZl(S), .



270 M. NIKFAR and A. REZA SOLTANI

Thus Z- Z1. But Z1
, because Z1 E M2(#) and # << .

dieck measure of Z.
Note that # is, indeed, a Grothen-
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