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ABSTRACT

The present article is devoted to a proof of the existence and uniqueness of a
solution of a mixed problem with boundary integral conditions for a certain para-
bolic equation. The proof is based on an energy inequality and on the fact that
the range of the operator generated by the problem is dense.
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1. Introduction

In the rectangle @ = (0,b) x (0,T), we consider the equation

2m
tu=G0+ (- e = [0, (L.1)

where a(t) is bounded, 0 < ay < a(t) < ay, and a(t) has the bounded derivative such that 0 < ¢y <
a'(t) <ec, for t €[0,T].

We adhere to equation (1.1) the initial condition
lu = u(z,0) = p(z) (1.2)

and the boundary conditions
b
/ ek u(z,tyde =0, k=0,2m—1. (1.3)
0
The importance of problems with integral conditions has been pointed out by Samarskii [9].
Problems which combine local and integral condition for second order parabolic equations are

investigated by the potential method [2, 7], by Fourier’s method [4-6], and by the energy
inequalities method [1, 8, 10].

In this paper, the existence and uniqueness of a solution of problem (1.1)-(1.3) is proved. The
proof is based on the method of energy inequalities, presented in [1]. Such problems have not
been studied previously.
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2. Preliminaries

First, we introduce the appropriate function spaces which will be used in the paper. We de-
note B3'(0,b) by:

B0.b) L2(0,b) for m =0, 2.1)
2T qw/ 9™ € LX(0,b)) for m > 1, '

where 9™u: = L u(&,t)dé, m>1. For m > 1, the scalar product in B5*(0,b) is de-
fined b o (m-1) ’
ined by:

b
(u, U)BE"(O,b) = / I "I "vde.
0
The associated norm is:

m
= m > 1.
” U “ B;"(O,b) H Ty ” L2(O,b) for > 1
Lemma 1: For m € N, we have

el o < 5 11 210,y (2:2)

Proof: The Cauchy-Schwarz inequality gives

25( /xdg).( /x|°Im“1u(§,t)|2d£)
0 0

- b
s:c-/ |°Im—1u(£,t)|2d£sw'/ |~ 1u(e, 1) de.

| ™| ? <

[ ot
0

0 0
Therefore, we have
b b
_ 2
Il ul| %T(O,b)g / |°Im 1u(£,t)| d{-/ rdx
0 0

S A CIF. 0

Corollary: For m € N, we have

b2\

luldpon <) - Iultag, (23)
Remark: Inequalities (2.2) and (2.3) remain valid, if we replace the interval (0,5) by a bound-
ed region Q of R™. It suffices to replace b by meas(£2) (measure of 2) in (2.2) and (2.3). 0

The space Bg"’k(Q) is the space with the finite norm

T b

Vel k= [ 1O b e+ [ e )12 do
0

0
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The space B'°(Q) coincides with L%(Q).

We associate with problem (1.1)-(1.3), the operator L = (£,¢) with domain denoted by
D(L) = : E. The operator L is from E to F; E is Banach space of the functions u € L%(0,b) satis-
fying (1.3), with the finite norm

= 1%¥)2

1l = 1580 0y 1 S gyt ) 20 ()

where F' is the Hilbert space obtained by completing the space By" (@) x L2(O,b) equipped with
the norm

115 = 1 120, + 121220 1T = (1) (25)
Here, we assumed that the function ¢ satisfies the conditions in the form (1.3), i.e.,

b

/mk~<pdm:0, k=0,2m—1. (2.7)
0

3. Two-Sided A Prior1 Estimates

Theorem 1: The following a priori estimate

[ Lull p<cllull g (3.1)

holds for any function u € E, where constant ¢ is independent of u.

Proof: Equation (1.1) implies that

|| €ull?

2 2
2oy <2 1581 2oy + 41 S5 o) (3:2)
and initial condition (1.2) yields
120l S50 Huen) 122, (5:3)
Combining inequality (3.2) with (3.3), we obtaln (3.1) for u € E, with ¢: = max(21/2,21/2a1). O
Theorem 2: For any function u € E, we have the inequality
lullg<cll Lull (3.4)

where constant ¢ > 0 does not depend on u.

Proof: We consider the scalar product in L*(QT), where Q7: = (0,b) x (0,7) and 0 < 7 < 7.
Observe that

b
2
2/\?"‘%% dzdt+ / a(t) | u(z,7) | 24z
Q" 0
b
- 2Re(£u (- 1ymg2mdL ) / a(0) | ¢ | 2dz + / a(t) | u | 2dz dt (3.5)

0 Q"‘
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We estimate the first term on the right-hand side of (3.5). By applying an elementary inequa-
lity we have

2Re (Lu (=" G or < 8l 0 gry + 15 Wm0 0r (3.6)

From equation (1.1) we obtain
1 <1

Therefore, by formulas (3.5)—(3.7),

<3
<32 20y + a1 2 el 2

Applying Lemma 7.1 from [3] to the above inequality we get

II T || m+ lu(z ) |1

L?(0,b)

scz(nzuuBmo( +neu||L20b))

_ max(3/2,a,)
" min(1/2,1/4 a2, ag)

where

exp(c,T').

Since the right-hand side of the above inequality does not depend on 7, we can take the least

upper k}ound of the left side with respect to 7 from 0 to T. Thus, inequality (3.4) holds, where
1/2

c: =cyl "L 0

4. Solvability of the Problem

From inequality (3.1), it follows that operator L: E—F is continuous, while from inequality
(3.4) it follows that the range of operator L is closed in F' and, therefore, there is the continuous
inverse operator L ™! yielding the solution. In other words, this means that operator L is a linear
homeomorphism from the space E on the closed set R(L) C F. To prove that problem (1.1)-(1.3)
has a unique solution, it remains to show that R(L) = F.

Theorem 3: Let the conditions of Theorem 2 hold, and let the coeffzczent a(t) have bounded
derivatives up to the second order. Then, for any functions f € Bm’ (Q) and o € L*(0,b), there
is a unique solution u = L~ 'F of problem (1. 1)-(1.3), where &F = (f,(,o), and

lullm e (151 oy 121 2 )
where constant ¢ is independent of u.

Proof: To prove Theorem 3, we need the following proposition.

Proposition: Let Dy(L) = {u/u € D(L),lu =0} and let the conditions of Theorem 3 hold. If
for v e BQ) and for all u € Dy(L),
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(Lu,v) =0, (4.1)

BF"0(Q)
then v vanishes almost everywhere on Q.

Proof of the Proposition: Assume that relation (4.1) holds for any function u € Dy(L). Using
this fact we can express (4.1) in a special form. First define h by the formula

T
e
t

Let %’—'t‘ be a solution of
a(t )a“ =h (4.2)

and let

D (L): ={u/u€ D(L):u=0 for t <s}. (4.3)

= -2 a(2y), (44)

Relations (4.2) and (4.3) imply that u is in Dy(L). It possesses, in fact, a higher order of
smoothness, and we have the following result:

We, now, have

Lemma 2: If the conditions of the proposition are met, then the function u defined by (4.2)
and (4.3) has derivatives with respect to t up to the second order belonging to the space

B;"’O(Qs), where Q, = (0,b) x (s, T).

Proof of Lemma 2: To prove Lemma 2, we will use the following t-averaging operators: Let
w€ C*®R), w>0; w=0 in a neighborhood of t =0 and t =T, and outside the interval (0,T),
and let [w(t)dt = 1. We consider the operators p, defined by the formula

R

T
(pew)(z,t) = %/ w((sT_t)) w(z, s)ds for w € By °(Q).

0

The above operators have the following properties:

P1: The function p.w € C°°(Q) and it vanishes in a neighborhood of t =T if we B?’O(Q),
and p.u € D(L)if u€ D, (L).

P2:  If we BP9%Q), then | pw—w
P3: dkpﬁu—pc y fork=1,2if ue Dy(L).
P4 If we By O(Q) then,

—0 when €—0, and || p.w ||

<
BT 9(Q) B OQ) =

Il % (a(t)Pew - pea(t)w) Il Bg“vO(Q)_'O’ when e—0.

Proofs of properties P1-P4 are similar to the proofs of the corresponding properties obtained
in [3] (see Lemma 9.1). g

Applying the operators p_ and 7 to equation (4.2), we obtain

a(tyZp Bt =2 (a(t)p. B2 - pa(t)T) - (0o J2 + Lp b
ot edt ot ot ot = ot
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It follows that

i G By <o (10551 2

G oy + 15 (a0 G = ra®F) 120 Q))
where ¢3 = max(3cy,3).

By virtue of properties P1-P4 of the t-averaging operators and by inequality (2.3), we have
Ou (2
(121200 <t 13217 200y + 101 2oy )

where c,: = max(c3b2m/(a(2)2m), 1/a3). This yields the proof of Lemma 2. O
Now, we will prove the proposition. Replace v in (4.1) by its representation (4.4). We have

-9 Re(%a aat a(t)%it))Bg"o(Qs)

—2Re<(—1 a(t)32m,——( (t )) =0. (4.5)

B0Q,)

We write the remaining two terms of (4.5) in the form:

—92Re (%—;‘,%(a(t)%_ﬁt))ggn»o(qzs)

= a2 egm ey 2, T2, (46)
— 2 (- e L7t O 9T
( S ))BE"YO(QS)
=2 a0 1 2 g )+ RAT ke, D) TN (7))
= @l e g ) = Bela (i) ) 2. (4.7)

Elementary calculations, starting from (4.6) and (4.7), yield the inequalities

; )
o1 571 B0, < 11981 2oy = 2R G B o05)) o
By t(Qy)
203 || || 12, )+aocol| u(z,T) || 2 L2(0,b)
= _2Re((_l) a(t)a 2’"’5( (t) >)B$0(Q) (1/2a1+c1+1/205)||u||L2(Q)

where cg: =sup | a(t)].
0<t<T

Consequently,
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0
e T) 120+ 17552 By

Ou
ks L*@Q,) L*(0,b)

<eo(ullag,+ 1581 Bpogg, ) (48)

where ¢g: = max(cy,1/2a2 + ¢? +1/2¢2) /min(ag, 242, agco)-

Inequality (4.8) is the basic of our proof. To use (4.8), we note that constant cg is indepen-
dent of s. However, function u in (4.8) depends on s. To avoid this difficulty we introduce a new

function 8 by the formula
T
O(z,t): = / %dr.
t

Then, u(z,t) = 0(z,s) — 0(z,t), u(z,T) = 6(x,s), and we have

lull g < (ne@c D132, T =9 1106, s)anOb))
Hence, if sy > 0 satisfies 0 < 2¢cg(T — s53) < 1/2, then (4.8) implies that
Bu(m Ou(z, s) 2
< 4c6( 151 poigy * 190132 )) (19)

for all s € [T — 54, T1].
We denote the sum of the two terms on the right of (4.9) by #(s). Hence, we obtain
dp(s
1280125, - 252

12q,  ds = 1eeB(s)
and, consequently, d
— (B(s)exp (degs)) < 0. (4.10)

Integrating (4.10) over (s,T") and taking into account that S(T) = 0, we obtain

B(s)exp (4cgs) < 0. (4.11)

It follows from (4.11), that v = 0 almost everywhere on Q7 _, . Proceeding this way step by
step along the rectangle with side s;, we prove that v =0 almost everywhere on Q. This com-
pletes the proof of the proposition. O

Now, we will prove Theorem 3. For this purpose it is sufficient to prove that the range R(L)
of L is dense in F'.

Suppose that, for some V = (v,9,) € L R(L),
=0. 4.12
(LU, v)BEn’O(Q) + (eu‘) vO)LZ(O,b) 0 ( )
We must prove that V = 0. Putting u € Dy(L) into (4.12) we obtain

(Lu,v) =0, ue€D(L).

ByO@)
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Hence, the proposition implies that v = 0. Thus, (4.12) takes the form

(Lu, UO)L2(0,b) =0, u€ D(L).

Since the range of operator £ is everywhere dense in L2(O,b), the above relation implies that
vy = 0. Hence, V =0. This proves Theorem 3. O

References

Benouar, N.E. and Yurchuk, Mixed problem with an integral condition for parabolic equa-
tions with an integral condition for parabolic equations with the Bessel operator,
Differents. Uravn. 27:12 (1991), 2094-2098.

Cannon, J.R., The solution of the heat equation subject to the specification of energy,
Quart. Appl. Math. 21:2 (1963), 155-160.

Garding, L., Cauchy’s Problem for Hyperbolic Equations, University of Chicago 1957.
Ionkin, N.I., Solution of boundary value problems in heat conduction theory with nonlocal
boundary conditions, Differents. Uravn. 13:2 (1977), 294-304.

Tonkin, N.I., Stability of a problem in heat conduction theory with nonlocal boundary con-
ditions, Differents. Uravn. 15:7 (1979), 1279-1283.

Ionkin, N.I. and Moiseev, E.I., A problem for the heat conduction equation with two-point
boundary condition, Differents. Uravn. 15:7 (179), 1284-1295.

Kamynin, N.I.,, A boundary value problem in the theory of the heat conduction with non-
classical boundary condition, Th., Vychisl., Mat., Fiz. 4:6 (1964), 1006-1024.

Kartynnik, A.V., Three point boundary value problem with an integral space variables con-
ditions for second order parabolic equations, Differents. Uravn. 26 (1990), 1568-1575.
Samarskii, A.A., Some problems in differential equations theory, Differents. Uravn. 16:11
(1980), 1925-1935.

Yurchuk, N.I.,, Mixed problem with an integral condition for certain parabolic equations,
Differents. Uravn. 22:12 (1986), 2117-2126.



