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ABSTRACT

The present article is devoted to a proof of the existence and uniqueness of a
solution of a mixed problem with boundary integral conditions for a certain para-
bolic equation. The proof is based on an energy inequality and on the fact that
the range of the operator generated by the problem is dense.
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1. Introduction

In the rectangle Q (0, b)x (0, T), we consider the equation

.u (u 02mu--+ (- 1)ma(t)-x-= f(x,t), (1.1)

where a(t) is bounded, 0 < ao <_ a(t) <_ al, and a(t) has the bounded derivative such that 0 < co _<
a’(t) <_ c1 for t E [0, T].

We adhere to equation (1.1) the initial condition

u= u(x,O) 99(x) (1.2)

and the boundary conditions

b

xk.u(x,t)dx
o

=0, k 0,2m- 1. (1.3)

The importance of problems with integral conditions has been pointed out by Samarskii [9].
Problems which combine local and integral condition for second order parabolic equations are
investigated by the potential method [2, 7], by Fourier’s method [4-6], and by the energy
inequalities method [1, 8, 10].

In this paper, the existence and uniqueness of a solution of problem (1.1)-(1.3) is proved. The
proof is based on the method of energy inequalities, presented in [1]. Such problems have not
been studied previously.
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2. Preliminaries

First, we introduce the appropriate function spaces which will be used in the paper. We de-
note Br(O,b) by:

L2(0, b
Br(0, b).

{/r e L(0, )}
X

where zJ’mu" f (x )m 1

fined by" o (m-l)!

The associated norm is:

(2.1)
for m>_ 1,

u(,t)d, m >_ 1. For m_> 1, the scalar product in B(O,b) is de-

b

(u, V)B(O,b) i zJ’mumvdx"
0

I[ tt II Br(O,b) [I mtt [[ L2(O,b)for m > 1.

Lemmal" Form@N, we have

i111 = b=
B(o, b) < W II II =

Bn 1(0, b)" (2.)

Proof: The Cauchy-Schwarz inequality gives

Imul2< 6-Jm-ltt(,t)d
_

d cJ"m-

0 0 0

x b

0 0

Therefore, we have
b

II < II F(0,) -< i r’-
0

b

lt(,t) 12d i x dx

0

52

Bn 1(0, b)"

Corollary: For m E N, we have
m

I1112 (2.3)L2(0, b)"

Remark: Inequalities (2.2) and (2.3)remain valid, if we replace the interval (0, b) by a bound-
ed region a of Nn. It suffices to replace b by meas(a) (measure of a) in (2.2) and (2.3).

The space B’k(Q)is the space with the finite norm

T b

.F,(Q) .F(o,b)dt + II (x, ll (o,T)d"
0 0
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The space B’(Q) coincides with L2(Q).
We associate with problem (1.1)-(1.3), the operator L-(,t) with domain denoted by

D(L) E. The operator L is from E to F; E is Banach space of the functions u E L2(0, b) satis-
fying (1.3), with the finite norm

02mu0 2 / II o2m II /sup II u(,)I[II II II II B,O(Q) B’(Q)o < < T L2(0, S), (2.4)

where F is the Hilbert space obtained by completing the space B’(Q)x L(O,b) equipped with
the norm

II II [[ f II n,0(Q) + ]1 [[2L2(0, b) ’ff (f,).

Here, we assumed that the function satisfies the conditions in the form (1.3), i.e.,

(2.5)

b

xk 9 dx O,
o

k 0, 2rn- 1. (2.7)

3. Two-Sided A Priori Estimates

Theorem 1: The following a priori estimate

(3.1)

holds for any function u G E, where constant c is independent of u.

Proof: Equation (1.1) implies that

,I u II , < 2( II Ou 2 02mu )O(Q) - [I + a I[ x2 [[2B,O(Q) B’O(Q)
and initial condition (1.2) yields

(a.2)

II z II 2 < sup ]1 u(, )II 2 (3.3)L2(0, b) 0"-< r < T L2(0, b)"

Combining inequality (3.2) with (3.3), we obtain (3.1) for u G E, with c: max(21/2, 21/2aa ).
Theorem 2: For any function u E, we have the inequality

II II E c II L II F, (3.4)

where constant c > 0 does not depend on u.

Proof: We consider the scalar product in L2(Qr), where Qr._ (O,b)x (O,r) and 0 _< r <_ T.
Observe that

b

2/[TrnOu2-1 dxdt-t- / a(’) u(x,r) 2dx
Qr 0

b

2Re(u, l)2m0 l a(o)Ot ]o, Qr + (t) u 2dxdt
o
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We estimate the first term on the right-hand side of (3.5). By applying an elementary inequa-
lity we have

-bY 0, ..,O(Q.)
0u :2 (3.6)+ II II 0(QBn, )"

From equation (1.1), we obtain

1 2 02mu-ao [I bx2m II ,0(Q) o + I1 z II (3.7)

Therefore, by formulas (3.5)-(3.7),

1 Ou 2 + 1/4a [[ II 2 + ao II u(x "r)I[ I[ ,0(Q) a. ,0(Q) (0, )

L(0,) -[-Cl I[ Ul]2L2(QV)"

Applying Lemma 7.1 from [3] to the above inequality we get

0:2mu2 + [I o2 II 2 + II (,-)II 2II [I s,O(QV) s,o(Qv) L2(0, b)

where
\ B’O(Q) L2 (0, b) j

max(3/2, aI
c2. exp(clT).min(1/2,1/4a,ao)

Since the right-hand side of the above inequality does not depend on v, we can take the least
upper bound of the left side with respect to from 0 to T. Thus, inequality (3.4) holds, where
c: c/2.

4. Solvabihty of the Problem

From inequality (3.1), it follows that operator L:E-F is continuous, while from inequality
(3.4) it follows that the range of operator L is closed in F and, therefore, there is the continuous
inverse operator L-1 yielding the solution. In other words, this means that operator L is a linear
homeomorphism from the space E on the closed set R(L) C F. To prove that problem (1.1)-(1.3)
has a unique solution, it remains to show that R(L) F.

Theorem 3: Let the conditions of Theorem 2 hold, and let the coefficient a(t) have bounded
derivatives up to the second order. Then, for any functions f E B’(Q) and L2(O,b), there
is a unique solution u- L-lff of problem (1.1)-(1.3), where if-(f,), and

where constant c is independent of u.

Proof: To prove Theorem 3, we need the following proposition.

Proposition: Let Do(L {u/u D(L), gu O} and let the conditions of Theorem 3 hold. If
for v B’(Q) and for all u Do(L),
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(u,v)B,O(Q)=O (4.1)

then v vanishes almost everywhere on Q.

Proof of the Proposition: Assume that relation (4.1) holds for any function u E Do(L). Using
this fact we can express (4.1) in a special form. First define h by the formula

ou be a solution ofLet

and let

T

a(t)t h (4.2)

We, now, have
Ds(L): {1 D(L).u 0 for t _< s}. (4.3)

v -ff--ta(t)t). (4.4)

Relations (4.2) and (4.3) imply that u is in Do(L). It possesses, in fact, a higher order of
smoothness, and we have the following result:

Lemma 2: If the conditions of the proposition are met, then the function u defined by (4.2)
and (4.3) has derivatives with respect to t up to the second order belonging to the space
B’(Q), Q (0,) x (,T).

Proof of Lemma 2: To prove Lemma 2, we will use the following t-averaging operators: Let
w e C(R), w >_ 0; w 0 in a neighborhood of t 0 and t T, and outside the interval (0, T),
and let f w(t)dt 1. We consider the operators pC defined by the formula

T

, w(x,s)ds for w e B’(Q).
o

The above operators have the following properties:

Pl: The function pew C(Q) and it vanishes in a neighborhood of t T if w B’(Q),
na p n() if n().

P2: If w B 0(Q), then I pw-w B,O(Q)O when 0 and ] pw B,O(Q

dk dkupa: pCu- pt for k- 1,2 if u D(L).
P4: If w B’(Q) then,

I[ (a(t)p p(t)) II "’(Q) when 0.

Proofs of properties P1-P4 are similar to the proofs of the corresponding properties obtained
in [3] (see Lemma 9.1).

Applying the operators p and t to equation (4.2), we obtain

at’O Ou 0_0__ Ou_
)-Pe---Ot (a(t)Pe- Pea(t)t)--a’(t)Pet +-ffpeh"
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It follows that

)p II B,o(Q)
0u 2<% II 11 0, ()

where c3 max(3cl, 3).

+ II-t (a(t)Pc-t- Pca(t)-t) 112 )B,O(Q)

By virtue of properties P1-P4 of the t-averaging operators and by inequality (2.3), we have

where c4: -max(c3b2m/(a2m),l/a20). This yields the proof of Lemma 2.

Now, we will prove the proposition. Replace v in (4.1) by its representation (4.4). We have

2 Re(Ou--’ ff---(t a(t)-))(Qs)
((- 1) Ot

We write the remMning two terms of (4.5) in the form:

=0. (4.5)

-2Re((-1)ma(t)a2mu --t a(t)-tt ))Ox2m’ B,O(Qs)
2 + Re(a’(T)u(x,T) a(T)(x,T))L2(O b)

2 II a(t)t ]1L2(Qs

II a’(t)u II Re(a"(t)u, a(t) )L2L2(Qs (Qs)"

Elementary calculations, starting from (4.6) and (4.7), yield the inequalities

(au(x,s) 2 au 2 --2Re au a(t)-- B,O(ao II at II < Cl II II (,,) --,
%)F(o,) F,o

ott 22a02 II- II L(Q) + aOCo II (, T)II L2(0, b)

__--2Re (--1)ma(t)x2m, OO--t a(t)-t)B’O(Qs)
where c5" sup

O<t<T

Consequently,

+(1/2a + c21 + 1/2c)II II L2(Qs )’

(4.6)

(4.7)
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OU 2II II = 2+ II (, T) II :(0,) B(o,)

<c6(11112 +lieU 2

L2(Qs - [I
(Qs)Br, O

wh . mx<, 1/1 + + 1//mi(o,g, %%/.
Inequality (4.8) is the basic of our proof. To use (4.8), we note that constant c6 is indepen-

dent of s. However, function u in (4.8) depends on s. To avoid this difficulty we introduce a new
function 0 by the formula

T

0( t):- f Od
07"

Then, u(x, t) O(x, s) O(x, t), u(x, T) O(x, s), and we have

II II 2 < 2 ( II 0(, t)II 2

L2(Qs L2(Qs + (T- )II o( )II L2(O, b)

Hence, if so > 0 satisfies 0 < 2c6(T- So) _< 1/2, then (4.8) implies that

0(,)0 2 / II [12 L2(0, b)

o : +l[0(t) ll<-- 4c6 II- [I B,O(Qs) L2(Qs
for all s 6 IT- So, T].

We denote the sum of the two terms on the right of (4.9) by/3(s). Hence, we obtain

Ou 2 d3(s) < 4c6/3(s)[I - l[ L2(Qs) ds

and, consequently,

(z() (4c)) 0.

(4.9)

(4.10)

Integrating (4.10) over (s,T) and taking into account that/3(T) 0, we obtain

(s)exp(4c6s <_ O. (4.11)
It follows from (4.11), that v 0 almost everywhere on T Proceeding this way step by

step along the rectangle with side So, we prove that v 0 ,,,,sSt everywhere on Q. This com-

pletes the proof of the proposition. El

Now, we will prove Theorem 3. For this purpose it is sufficient to prove that the range R(L)
of L is dense in F.

Suppose that, for some V (v, Vo) +/- R(L),

(2.,u, V)Bp, O(Q) + (,u, vO)L2(O,b O. (4.12)

We must prove that V 0. Putting u e Do(L into (4.12) we obtain

(u,v)B,O(Q) O, u e D(L).
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Hence, the proposition implies that v 0. Thus, (4.12) takes the form

(u, vO)L2(O,b 0, u D(L).

Since the range of operator t is everywhere dense in L2(O,b), the above relation implies that
vo 0. Hence, V 0. This proves Theorem 3.
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