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ABSTRACT

We consider a system of finite number of particles that are moving in Rd un-

der mutual interaction. It is assumed that the particles are subjected to some
additional random forces which cause diffusion motion of the particles. The lat-
ter is described by a system of stochastic differential equations of the first order
for noninertia particles and the second order for inertial particles. The coeffi-
cient of the system are unbounded because the interaction force tends to infinity
if the distance between two particles tends to zero. The system is called regular
if no particle can hit the other. We investigate conditions of regularity.

This article is dedicated to the memory of Roland L. Dobrushin.
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1. Introduction

It is impossible to survey all aspects of the theory of randomly perturbed dynamical systems.
I would like to mention the article of N.M. Krylov and N.N. Bogolubov [6] and the work of I.I.
Gikhman [1], where the notion of stochastic differential equation was introduced to prove a well-
known statement of Krylov and Bogolubov. Stochastic differential equations became the main
tool for the investigation of randomly perturbed dynamical systems. A variety of the results of
such kind are collected in the book of R. Khasminskii [5]. I also use the results from the mono-

graphs by I.I. Gikhman and A.V. Skorokhod [2] and A.V. Skorokhod [9].
In monograph [8], the system of randomly interacting particles was considered under the

assumption that random perturbations are generated by some Poisson random measures. The
coefficients of corresponding stochastic equations are supposed to be smooth.

1Supported in part by ONR Grant NOOO14-96-0306.
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At that time, I discussed some of the results of this monograph with Roland Dobrushin and
he asked me whether all the particles of the system could stick together. Trying to answer his
question, I accomplished this article.

The description of nonperturbed several particle mechanical systems can be found in the book
of Watson [10].

We consider the system of N particles that are moving in the space /id and mutually
interacting. It is supposed that the interaction force of two particles depends only on the distance
between them; this force is directed from one particle to another (in the case of attraction) or it
has the opposite direction (in the case of repulsion). Besides, the particles are subjected to some
random forces which cause additional diffusion motion of the particles.

Let xl(t),...,xN(t be the positions of the particles at time t. We assume that
xl(t),...,xN(t are stochastic processes satisfying some system of stochastic differential equations.
The form of the equations depends on some additional assumptions

Noninertia particles

In this case, forces and random perturbations are acting directly on particles; the velocities of
particles are not defined. The system of the stochastic differential equations is of the form

N

dxk(t) N-1E Fikdt + rdwk(t), k 1,...,N, (1)
,=1

where Fik is the force that is caused by ith particle at the kth one, a > 0 is a parameter, and
{wi(t), 1,..., N} is a system of independent Wiener processes in Rd.

We assume that Ewi(t -O, E(wi(t),z)2-t(z,z), where z e Rd, (’,’) is the scalar product
in Rd.

Inertia particles

In this case, particles have velocities. We denote the velocity of the ith particle by 5ci(t ).
The system of stochastic differential equations is of the form

N

dJXk(t N -1 E rikdt -- TdWk(t)’ ] 1,...,N. (2)
i=1

The assumptions on Fik

(F1) We assume that there exists a function F" (0, o)---R that has continuous derivative and

Fik F’( xi(t xk(t) xi(t xk(t) (3)

It is supposed that the function F satisfies one of the following conditions:
(AF) F(u) > 0, F’(u) < 0, F"(u) > 0, u E (0, oe), limu_ + cF(u) > 0, and limu_0F’(u

(RF) -F(u) satisfies condition (AF).
In the case (AF) particles are attracting and in the case (RF) they are repulsing.

Because of conditions (AF) and (RF) and formula (3) the coefficients of equations (1) and
(2) are unbounded and undefined if xk(t xi(t for some k,i, t.

We can consider the solutions of equations (1) and (2) only on the interval [0,), where is a

stopping time for which A(t)- 1-Ii#klxi(t)-xk(t)l >0 for t< and A(-)-0 if <cx.
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The existence and uniqueness of the solution for any initial condition such that A(0)> 0 is the
consequence of general theorems on local existence and uniqueness of the solution for stochastic
differential equations (see, for example [2], p. 506).

A system is called regular if P{ < c} -0 for any initial condition.
to the investigation of the conditions under which the system is regular.

This article is devoted

2. Noninertia Particles

Two-particle systems

We consider equation (1) for N 2 with Fik given the formula (3).
following equation for xl(t -x2(t z(t):

z(t))dz(t) F’( z(t) z( t
dt + X/rdw(t),

where w(t) Wl(t)-w2(t) is also a Wiener process distributed as wl(t). Set

x(t) (z(t),z(t)).

X(t) is a real-valued stochastic process that satisfies the relation

1 1

dX(t) [2F’(X-(t))X(t) + (2(r2d)]dt + 2V/Cr(z(t),dw(t)).

We can write the

(4)

(We use Ito’s formula.) Set 2r2d- p (here d is the dimension of the phase space Rd). Let

l{s < } z(s) l(z(s),dw(s)) + / l{s > }1 z l(z, dw(s)),
0

where is a stopping for which z(t) > 0 if t < and z(-) 0 if < oe, z C= Rd, z =/: 0 is a fixed
vector. (t) is a Wiener process and X(t) satisfies the stochastic differential equation:

1 1 1

dX(t) -[2r’(x-(t))X-(t)+ p]dt + 2v/-r(X(t))-d(t)). (6)

We consider the solution of this equation with a positive initial value X(0), (- sup{t: X(t) > 0).
Set d 1

H(u)-u 2 exp{
r2 (ug)}

Theorem 1: a) P{- + oc}- 1 for any initial condition if and only if
1 1 1

] /-/(’)d---l- / /-/(t)/ .-l(v)dvdtt-
0 0 u

1 1

b) Assume that f H(u) f H-l(v)dvau < o. Then
o 0

e{C < + Xo)- 1.
XoO +

Proofi The generator of the diffusion process satisfying equation (6) is of the form

Lf(x) 2F’(v/)y/f’(x) + 8,2xf"(x)
1

on the interval (0, o). It is easy to check that the function (x)- f H(u)du satisfies the equa-
x
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1 1
tion LO(x)- 0 and the function q(x)- f H(u) f H-l(v)dvdt satisfies the equation Lt(x)-

1. X It

Now the proof of the theorem is the consequence of the results of W. Feller [4] (see also [9], p.
42).

Remarks: 1) The result of Theorem 1 holds true if F’(u)is bounded on any interval [5, c),
5 > 0 nnd F"(u)is locMly bounded on (0, ).

2) If F(u) 0 and d 3 then the system is regular because
1

H(u)du u 2 du + .
0 0

3) Let F(u) cu- , > 0, c > 0, then the system is regular.

4) Let F(u) clog I c,c > 0, then the system is regular if < -1 and the system is
irregular c d 1 2a2f 2 > y-

The system of many noninertia partiel

We use expression (3) for Fik and set Fii- O. Then

d(xi(t xj(t)) N 1 E (rik Fjk)dt + r(dwi(t) dwj(t))
k

and
d(xi(t xj(t),xi(t xj(t)) 2N- 1E (Elk rjk’xi(t) xj(t))dt + (2da2)dt

k

+ ((t) .(t), (t) (t)).
Introduce the function

(t) ((t)- .(t), (t)- .(t)).
Then

dR(t) 2N 1 (Fik Fjk, xi(t xj(t))dt + 2N(N 1)da2dt
k,i,j

(7)

+ ((t)- (t), (t) (t)).
It is easy to see that for Zl,... zN E Rd we have that

(z zj, (Fik Fjk)) NE (zi- zj’Fij)"
i,j k i,j

dR(t) (2E r’( xi(t) xj(t) xi(t)- xj(t) + 2N(N- 1)d2)dt

+ ,((t)- (t), (t)- (t)).
Note that the process

is a martingale.
characteristic"

,3 0

(8)

(9)

After some calculations we can obtain the following expression for its square

(, )t 8cr2N / R(s)ds.
0
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Therefore,
w(t) -(s) E(xi(s)-xj(s),dwi(s)-dwj(s)). (10)

0 ,3

is a Wiener process.

Theorem 2: a) Let F satisfy condition (AF) and let there exist the limit

limt_o(-tF’(t))--c, c>O, (it is possible that c-- +cx3), if O<c< +cx3, then c-4-tF’(t) is
bounded on the interval (0,5) for some 5 > O.

c c__2_ <

__
1.The system is regular if -2 > -- 1 and the system is irregular if

22

b) Let F satisfy condition (RF). Then the system is regular.

Proof: We will use the following statement: if the system is irregular for N NO then it is
irregular for N > N0. To prove this statement we only have to note that for the system of
NO + 1 particles we can choose the initial value ZN0 + 1(0) so far from z0(0 ),..., XNo(O that the

influence of ZNo + l(t) on the Zo(t),...,ZNo(t is negligibly small.

So the system is irregular for all N if it is irregular for N- 2. But there exists the possibility
that the system is regular for N 2, 3,..., NO and it is irregular for N NO + 1. In this case

where
P{ <

i,j<No+l
> 0).

In part a) of the theorem we consider first F’(t)-
form:

c Equation (9) can be rewritten in theP

1

dR(t) 2cN(N 1) + 2N(N 1)d. r2)dt + X/8a2NR-(t)d (t).

As it follows from Theorem 1, the solution of this equation is irregular if

and the solution is regular if

It is easy to see that if

then 012r2
Assume that F(t) satisfies condition a) with c (0, oo).

stochastic differential equation"
1

dY(t) cdt + V/8er2Ny-(t)dW (t)
and let y sup{t: Y(s) > 0 for s (0, t)}, c 2c + 2d. cr2)N(N 1).

Denote by Y(t) the solution of

(11)

Set
3(t) 2 IF’( xi(t)- xj(t) l)lxi(t)- xj(t) -t- c].

1
It follows from condition a) that fl(t)- R2(t)7(t), where 7(t)is a bounded measurable adapted
function. It follows from relation (9) that
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1 1

dR(t) adt + V/8r2NR(t)[dv (t) + (8r2N) 7(t)dt]. (12)
1

Since measures corresponding to the stochastic processes (t) and (t)+ f (82N) 27(s)ds are
0

equivalent due to Girsanov’s theorem (see [3]), the measures corresponding to Y(t) and R(t) are

equivalent if Y(0)= R(0).
Consequently, P{ < cx} > 0 if P{y < } > 0 and P{ < c} 0 if P{y < cx} 0. So,

part a) is proved for c G (0,). We also have to consider the case c 0 and the case c + x.
For this, we need the following statement.

Lemma 1: Let F and F* satisfy the conditions of part a) of the theorem. We denote by S
and * the corresponding systems of stochastic differential equations. Let F’(u)u <_ F*’(u)u.
Then, if S* is irregular then S is also irregular; hence if S is regular, then S* is regular.

The proof of the statement can be rendered in the same way as the comparison theorem (see
[7], p. 124).

To prove statement b) we note that Lemma 1 is true if F and F* satisfy condition
But if F 0 then the equation for R is of the form:

dR(t) 2. cr2N(N 1)dr + V/8r2Nv/R(t)dv (t). (13)
1

The function H(u) for this equation is H(u)-u (N-1)and f H(u)du- + c if N > 2 for
any d= 1,2 0

So the solution of equation (13) is regular. Therefore, it is regular for any F satisfying condi-
tion (RF).

3. Inertia Particles

Two-particle system

We consider equation (2) for N 2 with Fik given by formula (3).
Then z(t) is a solution of the equation

z( t +d(t) F’( z(t) ).l z(t
where w(t)is the same as in equation (4).

Set z(t) xl(t x2(t ).

(14)

Results for unperturbed systems

Let a 0. We introduce two functions:

and
H(t) 1/2((t), (t))- F( z(t) ),

M(t) (z(t),z(t))((t),(t)) (z(t),(t))2.

(15)

(16)
Hence, H(t)= Ho, M(t)= Mo, and H0, M0 are determined by the initial values z(0), (0).
follows from (15)and (16) that

(z(t),(t)) (z(t),z(t))[2Ho + 2F( z(t) )]- Mo.

It

Note that M0 >_ 0.

We consider the conditions under which there exist z(O) and (0) such that z(to) 0 for some

o > O. In this case we will say that the system is irregular. If z(t) =/: 0 for any initial condition
and > 0 then we say that the system is regular.
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I. Let F satisfy condition (RF). Then the system is regular. This follows from the relation:

F(Iz(t) l) < H(t) Ho.

So [z(t)[ > A if F(A) H0.

II. Let F satisfy condition (AF). Then
(i) if limuou2F(u) > 0 the system is irregular;
(ii) if limu_,ou2F(u)--0 the system is irregular but for any initial condition for which

io > O, z(t) satisfies the relation: Iz(t) > 0 for all t > O.

Perturbed two-particle system

We consider equation (14) for r > O. In this case the functions U(t) and i(t) are not con-
stant. We can obtain the following stochastic differential equations for these functions:

dH(t) pdt + v/2H(t) + 2F( z(t) )dv (t), (17)
where p- 2dr2 and

(t) / 1(8)[ -l((8),dw(8))
0

is a Wiener process. We use the relation (t) 2 2H(t)/ 2F(z(t))
1

dM(t) (p- 2(r2)(z(t), z(t))dt + X/-r[(z(t),z(t))M(t)]d(t), (18)

where
(t) / [(z(s), z(s))M(s)]

0

1

is also a Wiener process.

Lemma2:/fd>2 then P{infs6 p6, t^)M(s) > O) l for t > O, 5>0.

Proof: Let 7u be a solution of the equation
Tu

f
0

It is easy to check that
Tu

w*(u) J Iz(s) ld()
0

is a Wiener process on the interval [0, f (z(s),z(s))ds) and M(ru)satisfies the stochastic differen-
tial equation o

dM(vu) (p- 2a2)du + X/rv/M(vu)dw*(u).
Since

,P 2a2 d 1
8a2 2

the solution of the equation

is positive for t > O.
dM (p- 22)du + V/rvdw*(u)

1Lemma3" Leta>. Then for any e > 0 there exists a constant ca(e for which

P{ sup
> o 1 + (#,
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for any continuous real-valued martingale It(t) with the square characteristic (It, It)t"
To prove the statement we note that for the Wiener process w(t) we have

t>01+ Itl c<
--1.

Lemma 4: Let F satisfy condition (AF).

p uv
< t^F( z(s)

Proof: Denote H(t)-H(t)-pt. Then,

Then for any e (1/2, 1) and t > O,

(H,H)t [2H(s) + 2F( z(s) )]ds
0

2 1H(s) + 4F(Iz(s) l)]ds <_ pt2 + / 2l(s)[ds + ] 2F(lz(s)[)ds.
0 0

It follows from Lemma 3 that for all s < A (,

H(s)[

_
(1 + (H,H}s)O,

where 0 is a random variable. Using this relation we can accomplish the proof.

Remark: Let F satisfy condition (RF). Then,

0
Using Lemma 3 we can prove that for any t > O,

P{s<t^sup [H(s)[ <c}-l.
Theorem 3: 1) Let r satisfy condition (AF). Then the system is irregular if

a) ti._oF() + ,
) im_or() c > o.
The system is regular if

c) limuou2F(u) O, d > 2.

2) Let F satisfy condition (RF). Then the system is regular.

Proof: 1) For perturbed systems the following relation holds:

(z(t), (t))2 (z(t), z(t))[2H(t) + 4F( z(t) )] re(t).
Suppose that (z(0),(0)) < 0, and

(z(t), z(t))[2H(t) + 4F( z(t) )] M(t) > , . > O,

for [0,5 A (). Then (z(t),(t)) < 0 on the interval [0,5 A (). Since

(z(t),(t)) 1/2 tt z(t) 2,
Iz(t) decreases and r(Iz(t) l) increases on the interval [0, ( A 5). If ( > 5, then

(z(), z())< (z(0), z(0))- 1/2,,

(20)

(21)
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but this is impossible if (z(0), z(0))is small enough.

Let (0)= -Az(0), A > 0. Then M(0)= 0. It follows from equation (18) that there exists
such 5 > 0 that

P[ sup M(t)>e<eif Iz(t) _<l for tE[0, SA).
s<t^

Using Lemma 4 we can find Ix(0) I, u, and A for which (21)is true and (z(O),z(O))-u5 < O.
Thus statements a) and b) are proved.

To prove statement lc) note that for ( < , we hve

lim(z(t) z(t))[2H(t) + 4F( z(t) )] O.
t

But Lemma 2 implies that M(- > 0, so

(z(t), (t)) < 0.

Therefore + with probability 1.

2) Note that f(l()l)l (), he proof of statement 2) is the consequence of the
remark.

The system of many inertia particles

The corresponding system of stochastic differential equations is of the form
N xi(t)_xk(t

dwi(t)di(t N- 1 E r’( (t) xk(t) xitt xk(t) + (r

k=l

Set

Then,

H(t) E 1/21ici(t) 2 j(t) 2 F(lxi(t)- x(t) )).

dH(t) E[(&i(t)i,j &j(t),N-1Ek Fik Fjk) F’( xi(t)

(xi(t)-] xi(t)xj(t)’[ci(t)- : j(t)) ]xj(t)}
dt + d. r2N(N 1)dt

+ rE (&i(t) &j(t), dwi(t dwj(t)).
j

We introduce the real-valued Wiener process
1

(t) () (11 : : . ((1 (),d() d()).

Note that the first sum in the right-hand side of equation (23) equals zero due to relation (8).
Set

Then,

G(t) E 2F( xi(t)- xJ(t) )"

12i(t)- j(t) : 2H(t) + C(t).

Therefore, H(t) satisfies the stochastic differential equation

dH(t) d r2N(N 1)dt + rv/2H(t + G(t)v/dv (t).

(23)

(24)

(25)

(26)
Let R(t)be determined by relation (7). Then,
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and

(t) 2E (xi(t)- xj(t),kj(t)- j(t))

d(t) 2E iei(t)- j(t) 12dt (27)

+ 2E (xi(t)- xJ(t)’N-1E Fik- Fy)dt + 2 (x(t)- xj(t),dwi(t -dwj(t))
i,j k i,j

(2H() + ( ()-() ))d + SNR()d (),

where
() F()+ F’() (r())’

u

and (t) is the Wiener process determined by formula (10). Note that in equalities (27) we used
relation (8).

Theorem 4: 1) Assume F satiCes condition (AF). If
(i) there exists the limit limuoU-2F(u) (0, + ], then the system is irregular;
(ii) limuoU-2F(u)- 0 and additionally the function satisfies the following conditions:

() limuo(O(u)/F(u)) > O,
() () i, a co ctio,
then the system is regular.

2) If F satisfies condition (F) then the system is regular.

Prf: The system is irregular in case 1(i) because it is irregular for N 2.

Consider case 1(ii). We can rewrite relation (27) in the form

d(t)-AN(N-i) (N(;-1)R(t))dtWV(t)dt+ 82NR(t)d (t),

where V(t) Vl(t + V2(t), 0 < I < 2, and

Vl(t)--2(lxi(t)-xj(t)l)-2N(N-l)O(iN ; )R(t))i,j
-1

Vl(t) 0 because of (),

V:(t)-(4-1)N(N-1)O(@N(_ 1)R(t)) + 4H(t).

Because of Lemma 4, V2(t is positive if R(t) is small enough. So we can compare R(t) with the
solution of the equation

( 1 ) a2NR* )d(t)d (t) aN(N- 1) N(N- 1)n*(t) dt+ + (t

Note that this is an equation for xl(t)- x2(t) 2.
It follows from Theorem 3 that P{R*(t) > 0, t e [0,)} 1. Since R(t) > R*(t) in a neigh-

borhood of , - + with probability 1.

The proof of part 2) is the same as in Theorem 3.

References

[1] Gikhman, I.I., On the theory of differential equations of random processes I, II, Ukrani.



On the Regularity of Many-Particle Dynamical Systems 437

[2]

[3]

[9]

[10]

Math. Zh. 2:4 (1950), 37-63, 3 (1951), 317-339; English trans, in Amer. Math. Soc. Transl.
1:2 (1955).
Gikhman, I.I. and Skorokhod, A.V., Stochastic Differential Equations and Their Applica-
tions, "Naukova Dumka", Kiev 1982 (Russian).
Girsanov, I.V., On the transformation of a certain class of stochastic processes by an
absolutely continuous substitution of a measure, Theory of Prob. and Its Applications 5
(1960), 285-301.
Feller, W., Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1-31.
Khasminskii, R.Z., Stochastic Stability of Differential Equations, Sijthoff and Noordoff,
Alphen aan den Rijn 1980.
Krylov, N.M. and Bogolubov, N.N. Surles quations de Fokker-Planck dduites darts la
thorie de perturbations l’aide d’une mthode base sur les properits spectrales de
l’hamiltonien perturbateur, Zap. Kafedr. Mat. Fiz. Inst. Budivel. Mat. Akad. Nauk Ukrain.
SSR 4 (1939), 81-157.
Skorokhod, A.V., Studies in the Theory of Random Processes, Addison-Wesley, Reading,
MA 1965.
Skorokhod, A.V., Stochastic Equations for Complex Systems, Reidel 1988.
Skorokhod, A.V., Asymptotic Methods in the Theory of Stochastic Differential Equations,
Am. Math. Soc. Trans. of Math. Monographs 1989.
Watson, K.M., Topics in Several Particle Dynamics, Holden-Day, San Francisco 1967.


