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ABSTRACT

At time ¢ = 0 we have a Poisson random field on R?. Each particle executes
a critical branching Wiener process starting from its position at time ¢t = 0. Let
Ry be the radius of the largest ball around the origin of R? which does not
contain any particle at time 7. Our goal is to characterize the properties of the
stochastic process {Rp,T > 0}.
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1. Imtroduction

Consider the following

Model 1:
() a particle starts from the position 0 € R? and executes a Wiener process W(t) € Rd;
(7¢)  arriving at time ¢ = 1 to the new location W (1), it dies;
(¢17)  at death, it is replaced by Y offspring, where

P{Y =0} =P{Y =2} =1/2

(fv)  each offspring, starting from where its ancestor dies, executes a Wiener process (from its
starting point) and repeats the above given steps and so on. All Wiener processes and
offspring numbers are assumed independent of each other.

A more formal definition is given in Chapter 6 of [1], p. 91.

Let A C R? be a Borel set and let A(A,t) (t =0,1,2,...) be the number of particles located in
A at time ¢t. Then

B(t) = A\(R%, 1)
is the number of particles living at ¢ and {B(¢),t =0,1,2,...} is a branching process.
We also consider the following

Model 2: At time ¢t = 0 we have a Poisson random field of parameter y, i.e., in a Borel set
AC Rd, we have k particles with probability
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k
W(A,k):('ul;jl) e—u|A|’

where | A| is the Lebesgue measure of A. It is also assumed that the numbers of particles in
disjoint Borel sets are independent r.v.’s. Each particle executes a critical branching Wiener
process (starting from its position at time ¢t = 0) according to Model 1.

A more formal definition is given in Chapter 8 of [1], p. 129. Let A(A,t) be the number of
particles located in A at time t. Then clearly

P{A(A4,0) =k} = n(A,k).
Let

C(e,r)={y: [ly—=|| <r}cR?
and

Ry =sup{R:A(C(0,R),T) =0} (T =0,1,2,...),

i.e., Rp is the radius of the largest ball around the origin of R? which does not contain any
particle at time T'.

We are interested in the limit behavior of Ry as T—oo0.

In the case d = 1, this problem is very simple. In fact we have,

Theorem A: (Theorem 8.2 p. 129 in [1]). Let d = 1. Then for any € > 0 we have
A(C(0,T(logT) "1 =), T) =0 a.s.

for all but finitely many T,
A(C(0,€eT), T) > 1 i.0. a.s.,

A(C(0,e ~1T), T) =0 i.0. a.s.,
and
A(C(0, T(logT)! +€),T) > 1 a.s.

for all but finitely many T.

We note that Theorem 8.2 of [1] is formulated in a slightly different way, but the above
Theorem A can be obtained directly by the method presented there.

Now we formulate our main result.

Theorem 1: We have
A(C(0,R((T,d)),T) > 1 a.s.
for all but finitely many T,
A(C(0,R,(T,d)), T) =0 i.o0. a.s.,

A(C(0,R4(T,d)), T)>1 i.0. a.s.

and

A(C(0,R,(T,d)), T) =0 a.s.
for all but finitely many T, where

T(log T)' +¢€ ifd=1,
R(T,d)={ K(TlogT)"/? ifd =2,
K(logT)/(4-2) ifd >3,
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e~ 1T ifd=1,

Ry(T,d) =1 T'3(g(1)) 7 ifd=2,
| K = (log log log T)/(d=2) ifd >3,

' T ifd=1,
Ry(T,d)={  (logT)~'/**¢ ifd=2,
K ~(logT)~1/4 ifd>3,
T(logT)~1~¢ ifd=1,

R (T,d)={ T Y*(logT) /2~¢ ifd =2,
T~ d(logT) " 1/d=¢ ifd >3,

K is large enough, g(T) is an arbitrary function with g(T)oo and € is an arbitrary positive num-
ber.

Remark: Intuitively it is clear that if R (T) (T =1,2,...) is a function going to infinity fast
enough, then the ball around the origin, of radius R,(T') will contain at least one living particle
at time T for any T large enough. Theorem 1 claims that in R? we might choose R(T) =
K(Tlog T)l/z, while in R® it is enough to choose R,(T)= KlogT. We are also interested to
characterize those functions R5(T) for which it is still true that the ball, around the origin, of
radius R4(T') contains particles at time T for infinitely many T. Theorem 1 claims that in R? we
might choose R4(T) = (logT)~ 12+ while in R3 we might have Ry(T)= K ~'(logT)~ 173,
The results on R, and R, tell us how exact are the results on R, and R;. Unfortunately, it turns
out that we have a very big gap.

We also prove two theorems describing some properties of A(-, -) of Model 1, which will be
used in the proof of Theorem 1 and which seem to be interesting in themselves.

Let f(t) (t=1,2,...) be a positive, real valued function with f(t)—oo (as t—oo), let a € R?
and let

¢ = e 2, TV f(T))~Y).
Then we have,

Theorem 2: In case d =1 we have

1+(1- e)(l -+ 0(2“) }% < E(\(C,T)| A€, T) > 0)
<1+(1 +e)c(a)ﬁﬂ+KP%ﬂ

for any K >0, ¢ >0 if T is large enough, where
w/2
1/2 2 .
2 1—
0 =(3)" [ ew(-5i58m2) e
0
If we also assume that f(T) < TY? and K > 2 then

1+(1—¢) (1—%)6(7"){—11)

f
<SEQGT)[AMET)>0)<1+(1+ f)f(—;l (1+%) T(%* KfZ?T)'
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In case d = 2 we have

1+(1-¢ (1 K)4f2(T)logf(T)

<SEMCT) [ MCT)>0) <1+3(1+€) —log f(T) + K

2(T) f2(T)

for any K > 0 of T s large enough.
If we also assume that f(T) < TY? and K > 2, then

14 (1—¢) ( ‘Llfz(T) log f(T)

<E(ACT) | AC,T) > 0)

§1+11-f (1+I2{)f2(T)logf( )+Kf2(T)

In case d > 3 for any K >0 if T 1s large enough, we have

_ 1 1 wq T —(d-2)/2

< EO(C,T) | A€, T) > 0)

ot T -—(d—2)/2 > T
<14 (1 +€)2 d +Kk—L
=2 (am)?/? FA(T) (T
where
2 ifd=1,
wy = T if d =2,
/2
7r .
raz+n Y423

is the volume of a ball in R4 of radius 1.

Consequences: In case d = 1,

C()

< llmmff(T) E(XC,T)| XC,T) > 0)

< limsup f(jf{') EMC,T) | MC,T) > 0) < ¢(a),
T—o0

provided that

T _
ATy =
Ifd =1 and T
lim =0, 0< 8 < o0,
then T—oof(T) b o

C("‘)ﬂ < lim infE(\(€, T) | A€, T) > 0)

< limsupE(A(C,T) | MC,T) > 0) < 1+ ¢(a)B.

T—o0

Ifd =1and f(T)< T2, then
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Jim_ ! (T)E(/\(C T)| XC,T) > 0) = "'("‘)

Note that (0} = (12[)1/2.

In case d = 2 we have

F4T)
i— 1111;1_)101(1)le f(T)E(/\(C’ T)|MC,T) > 0)

, FA(T) |
< lljlfljgop WE(A(C,T) | A€, T)>0) <5,

provided that

. T _
Jim fz(T)log f(T) =
If d =2 and T
li 1 T) =
then Tg’nwfz(T) &fT)=8

1+5 < liminfE(\(€, 7) | A€, T) > 0)
T —00

< limsupE(M(C,T) | A(C,T)>0)< 1 +§.
T—o00

Ifd=2and f(T) < T1/2, then

F4T)

A Tea F FANE T IAE,T) > 0) =

In case d > 3, 9 2(T)
<
T3 (87r)d/2 < hmmf E(XC,T) | XC,T) > 0)
A, oy
< limsu C,T)|IMCT)>0) <+
<lmeup g B D) XET) > 0) S 7y 442
provided that
If d >3 and T
'llgbnoof2(T) =8
then 5
e o )d/z'B < hmme(/\(C T)| X(C,T) > 0)

< limsupE(A(C,T) | A(C,T) > 0)
T—o0

4 “d
Sl+2ﬂ+d———2_-(—8—7:53/—2—ﬂ'

Theorem 3: Consider the case where

T
d=1, llm = 00.
Then, _’oof( )

(27r1)1/2 exp(c(a‘; P < iminfP{AC,T) > 0| B(T) > 0}

535
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< limsupP{X(C,T) > 0| B(T) > 0}
T—o0

s(%)l/z%%@- (L)

Ifd=1 and

lim —=—=0, 0<pf<o0,
then T—*wf(T)

B exp(—a?/2)

(27r)1/2 1< o(a)p < hm 1nff( )P{)\(C T)>0|B(T)> 0}

< limsup#P{)\(C, T)>0|B(T) >0}
T—o0

B 2exp(-— a2/2)

If
d=1 and f(T) < T2,

then 1/2 _qa?/2
[4

Jim P{NC,T)> 0| B(T) > 0} = (2) e

Now consider the case

. T
d=2, lim logf(T) =
Then, Tb—'oofz(T)

%e —o?/2 lim inf(log f(T))P{X(C,T) > 0| B(T) > 0}

< li:lxp sup(log f(T))P{\C,T) > 0| B(T) > 0}
2

<em /2 (1.3)
If
d=2 and hm lo =g,
o 2(T) gf(T)=2
exp( — a? YT
-"—"74(1—5—5422517@ et )P{A(CT)>0|B(T)>0}
< li;‘nsupf (T )P{)\(C T)>0|B(T) >0}
o exp( — a?/2)
< p4 > (1.4)
¥ d=2, log f(T) = oo and f(T) < T*/?,
then f (T) )
Jim (log f(T))P{,\(c, TY>0|B(T)>0]| = exp( - %) (15)

Now consider the case
d>3, lim L—=
Then, T—oof4(T)

940, (d — 2)e =" /2
8w, + 4(87)4/%(d - 2)
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< liminf(f(7))? ~*P{X(C,T) > 0| B(T) > 0}
<lim sup(f(T))? = *P{\(C,T) > 0| B(T) > 0}

—00 2
<(d-2)2¢- 2exp( - 9—‘2—)

If
d>3 and ) =8,
then an 1m f2(T)
29w,(d —2)e ™ 22
88wy + 2(d — 2)(8m)*/%(1 + B)

< liminfg—gT—))—‘iP{)\(C,T) > 0| B(T) > 0}

< limsup ~—~— (f( ) P{XC,T)>0|B(T) > 0}

T —o00
(d — 2)2dwde ~a’/2
= 2(d —2)(87)%/? + 4w B

2. Lemmas

Let
W1(t) = {W11(8), Wia(t)s- . Wia(t)},

Wo(t) = {Way (1), Woy(2),.. s Woy(t)}s
W3(t) = {W5(2), Wsa(2), ..., W3y(t)}
be independent Wiener processes and let

L\(t,5,T) W, (t) ifo0<t<s,
t,s, =
! W(s)+Wy(t—s) ifs<t<T,

Pt T) W, (1) ifo<t<s,
t,s, =
2 W, (s)+Wy(t—s) ifs<t<T.

Let
v(z) = 7T,s(x) = P{r2(Ta 5,T)=z| Fl(T»S,T) =z}

be the conditional density function of I, given I'; = 2.

Lemma 1: (z — u)2
z) = (2r0%) " Pexp ( =)
where 20
=Ely(T,s,T)|Ty(T,s,T)=2) = .}_z
and

Proof is trivial.

Lemma 2: Let AC R? be a Borel set. Then

0% = B((Dy(T,5,T) - v) | Ty(T,s,T) = 2) =T ( 1 _i),

537
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f( f—y(];)d:l:)l,b(z)dz
PTy(T,T) € AITy(T,,T) € A4} = A
A

where )
W(z) = () = (27T) ™ 2exp ( _2z_T)
is the density function of T'y(T,s,T).
Proof: Since
[P(Ty € AT, = 2)o()dz
P{I,eA|I;€A}= ,
{fy e AT € 4} £¢(z)dz

Lemma 2 follows.

Lemma 3: Let T
and f (T)
KT
P(T)= Y P{r,ec|T, €C}.

s=1

Then in the case d = 1, for any € > 0, there exists a Ty = Ty(e) > 0 such that

(1 -o(1= % (@) < LRP(T) < (14 )e(@)

1/2 w/2
(2 o’ 1—sinz
c(a)_(f) / exp <_7 1+sin:1:) dz.
0

In the case d =2, for any € > 0, there exists a Ty = T(€) > 0 such that

(1-9) (1-gf ==

if T > T, where

L _log £(T) < P(T) < (1+ )} L log f(T)
FUT) 2 2(T)
ifT>T,.

In the case d >3, for any € > 0, there exists a Ty = Ty(€) > 0 such that

_ 1\ Y 2 T —(d-2)/2
(1 6)( A}(4 )iz d— 2f(T)R

SPT)<(1+ ( w) /2(122]&%w )K_(d_2)/2

if T > T,

Proof: By Lemma 2, kT

Let

Then,
u € C(0,1) and v € C(0,1)
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if
z€Cand z€C.

Hence,
e (4 (85
= exp ( —%%) (1 + 0(%))
éw(z)dz = 27T)~ 42| ¢ exp ( o (1 + o(ﬁ))
and

P(T):(1+0(f—(1:r—)))|1ﬁ(27r)*d/2§10-d / / exp ( (’”"”)z)dmdz.
°= ce

Observe that

r—v_ (IT—=s 1/2 U—1 T of L =s 1/2 4
T = (T+s) +( )f(T)((T—s)(T+s))1/2+ (T+5) f(ry

(B%) =o'fs + ‘”)2f2(T)(T;2—s2)+O<f(1T>)

T _ T2 <l
2fT)  (T?-$*)fA(T)~ K

and

provided that
. 1<s < kp.
ince

we have (T

(1 + O(f(T))) (f(fill:(;)“ exp ( —%2 %_Tj)/c / exp ( _ (”_2”)2 azf%"(T)>dudv
(0,1) C(0,1)

SEE) (fgj)l)?ﬂ‘“’3 o (-5 753)

é éeXp ( _ ($2—012/)2)d:cdz > (1 + 0( (T)» (1 -+) (f(’;;# w? exp< -9‘2—2 %‘;—;)
Hence

(1+0(7<%~'>)><1—%>15P<T>S (+e{tm))

K

_ o (om—d/2_ T2 & T—s
I= d(2 ) (f T))d Z ( 2 T+S>

s=1

and
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iyt $4 (1-5) o (-4 1520)
— K(f(1)) ™2

~esen ™ | (=)~ e (-

In the case d =1, 2 1/2 2
a“l—u
I~ 7 f(T)/ 1- Pexp <—_2— 1+u)du

_(_ 1/2 / exp ( o? l—smx)dm.
T/  f(T) 2 T+sinz

Hence, for d = 1 and for any K > 0, we have

(1 + O(f(T)))( Le (a)f(T) < P(T) < (1 + O(f(T)>)c(a,f(T)

Hence, Lemma 3 is proved for d = 1.

In the case d > 2,
1

I~ wd(2w)_d/2m/ (v(2—v))_d/2exp (—%2 23v>dv
K(#(1)~*

1
~wd(47r)_d/2——r——d/ v~ 42y,
(7)) B
K(£(T))
Hence, in the case d = 2, . T
I ~ 5 ——log f(T)
2 (1)
and we have Lemma 3 for d = 2.

In the case d > 3,

2wy . —dj2_ T 1
U0 Gy g
Lemma 4: Let X,Y be i.i.d.7r.v.’s with

P{X >0} =P{Y >0} =1,
P{X>0}=P{Y>0}=p (0<p<]l).

Then
EX+Y|X+Y>0)= —EY+E(X|X>O)
Proof:
E(X+Y|X+Y>0)=—2-/ Xdp= 2 Ex =P S| X >0)
{X+Y >0}

:(1+.2__1§;)E(X|X>0) (X|X>0)+————EY

Lemma 4 is proved.

Lemma 5:

E(XC,T) | B(T) >0) ~ % |C|(2nT)~ d/%xP( - 9})
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2
=T(em) =4/ (f(1) - dwdexp( - %-)
Proof: Clearly,
E(A\(C,T)| B(T)) = B(T)(2«T) "~ d/z/exp ( —T?@—;:)d:c ~B(T)|C|(2xT)"~ 4/2exp ( —-%2).
C

Since

EB(T) = 1 and P{B(T) > 0} ~ 2,

we have )
EXC,T) = EE(A(C,T) | B(T)) ~ (2rT) ~4/%| ¢ | exp ( _92_>
and
E(MC,T) | B(T) > 0) = W / N T)IP = prpri—pv (]{) SoPNET)
{B(T) >0}

and consequently we have Lemma 5.
Lemma 6: P{XC,T) > 0} < P{B(T) > 0} ~ 2.

Proof is trivial.

3. Proofs of Theorems 2 and 3

Having the condition {A(C,T) > 0} we have two particles at time ¢t =1 and we know that at
least one of them has at least one living offspring located in C at time 7. Let A{{(C,T —1),
respectively A;,(C,T — 1) be the number of those offspring of the first respectively, second particle

which are located in C at time T'. Clearly,
MC,T)=A1(C, T —1)+ A o(C, T —1).
Then by Lemma 4,
E(MAC,T)| A(C,T) > 0)

=B\ (C,T —1)| A1(C,T —1) > 0) + -2—_-1711%12(@, T -1), (3.1)

p1 = P{A (€, T —1) > 0} = P{A,(C,T — 1) > 0}.

Consider that particle at time ¢t = 1 which has at least one offspring living at time T and
located in €. (In the case both particles have such an offspring, consider one of them.) This
particle has at time ¢ = 2 two offspring and we know that at least one of them has at least one
offspring located in € at time T. Let Ay (C,T —2) respectively, Ay5(C,T' —2) be the number of
those offspring of the first respectively, second particle which are located in € at time 7. Clearly,

A (C T —1) = Mgy (€, T — 2) + (G, T — 2).

where

Then by Lemma 4,
E(A;(C, T —-1)|A1(C,T-1)>0)

E(1(C,T = 2)| X5y(C, T —2) > 0) +3 __1p2EA22(C, T -2), (3.2)

where
Py = P{23;(C, T —2) > 0} = P{)y,(C, T~ 2) > 0}.
(3.1) and (3.2), combined, imply
E(AC,T) [ MC,T) > 0) = E(Ay;(C, T —2) | A1 (€, T —2) > 0)

1 1
+ rz—)IE/\lz(C, T — 1) -+ 2—:;;]3)\22(6, T — 2)
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Continuing this procedure we obtain

E(C,T) | MC,T) > 0) = Z———E/\sZ(C,T— 5)

s = 1
T
Z EAz(CT s)+}: EA2(CT—-3)+1_I+II+1 (3.3)
= s=Kp + 1
where
P, =P{A;(C, T —5)>0} =P{),(C,T—-5s)>0}
and T
kp=T—-K .
! ()
Clearly,
EX,(C, T —s) =P{I'y(T,s,T) € C|Iy(T,s,T) € C}, (3.4)
T-1 T-1
0<KIT< Y. EMy(C,T-s)=)», P{l,ec|T,ecC}
s=Kp +1 s = KT +1
<T-kp=K (3.5)
and T fz(T)
T cT
%Z A€ T=5) ST 3 BACT -o) (36)
= s =
Then by Lemma 3, (3.4) and (3.6) if d = 1, we have
c
(1—6)(1—7{— (2)7%—)515(1“)4(1)7(%—). (3.7)
(3.3), (3.5) and (3.7) imply
c(a
1+(1—c)(1 K)%%qg(,\(c T)| A€, T) > 0)
T T
<1+ (1 +€)c(a)s7mm + K—— (3.8)
for any K > 0. (1) FAT)
Note that if
F(T)<T'? and s < &,
then by Lemma 6,
9 2UAT)_ o
PsST5S"KRT <K
and
1 2 &
. 1<i(14+2) D Er,ET-5) (3.9)
if K> 2. s=1

If we assume that d = 1, f(T) < T*/? and K > 2, then by (3.3), (3.4), (3.5), (3.6) and (3.9),
we have

14 (1—¢) (1 —%) (;) f(’—f_r) <E\C,T) | MC,T) > 0)

<1+(+ob(1+2) (a,f(T) +K ’-(FT). (3.10)

Hence, we have Theorem 2 in the case d = 1.

In the case d = 2, Lemma 3, (3.4) and (3.6) imply
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(1—¢) (I'F)% L oog f(T)<1<3 (146~ 2(T)logf(T). (3.11)

FX(T)
(3.3), (3.5) and (3.11) imply
1+(1-¢) (1 ——)- f2:(rT)1og £(T)

<EQAET)[MET)>0) <1+11+¢) 2(T)logf( )+Kf2—5(T—)

for any K > 0.

If we assume that d =2, f(T) < T'/? and K > 2, then by (3.3), (3.4), (3.5), (3.6) and (3.9)
we have

1+(1-¢)(1- } fz(T)log F(T) < EQE,T) | XC,T) > 0)

<1 +$(1 +& fsz)log £(T) + Kfsz). (3.12)

Hence, we have Theorem 2 in the case d = 2.

In the case d > 3, Lemma 3, (3.4) and (3.6) imply

_ _1\1_%g 2 T —(d-2)/2
(1 c)(l K)2 (4r)i2 42 fZ(T)K

Wy 2 T - —(d-2)/2
<I<(1+ f)(4,,)d/2 T f2(T)A . (3.13)

(3.3), (3.5) and (3.13) imply

1+ (1 - E) (1 _%)d l 2 (4:;1/2 f2fT)K _(d_2)/2 S E(’\(Ca T) | ’\(C, T) > 0)

w
<1 1 ) d 2 T K_(d—2)/2 KL-.
<1+(1+e) 47r)d/2 d—2 fZ(T) + fz(T)

Hence, we have Theorem 2 in the case d > 3.

Theorem 3 is a simple outcome of the consequences of Theorem 2, Lemma 5 and the follow-
ing:
Lemma 7: E(\C,T)| B(T) > 0)

P{)C,T)>0|B(T)> 0} = EONC, T) [NC,T) > 0)

whose proof is trivial.

4. Proof of Theorem 1

Let B(A,T) be the number of those particles which are located in A C R at time ¢t = 0 and
which have at least one offspring living at time T'. The following lemma is trivial.

Lemma 8: k
P{B(A,T)=k}="7e"" (k=0,1,2,..)
and :
Eexp(—2zB(4,T)) = exp(v(e ™ * - 1)),
where
= V(AaT) ~ 2/“TA I )

as T—oo0.
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Introduce the following notations:

¢(R) = C(0, R),
e, = C;(A,T) = (0, (i + 1)AT?) — ¢(0,iAT/?),
B(R) = B(S(R),T),
B; = B,(A,T) = B(C,, T).

Then we have

|C(R)| = Rw,,
= dwy AT %4 =1 < (¢, | = AMT2((i + 1) — i%)wy < 20w AT/ 2 -1
BB(R) ~ 2 (4.1)
exp( (1+ )Mj) <P{B(R)=10} < exp( -(1- e)?-’ih—%ﬁ), (4.2)

W d
exp( —(1+e)2ﬂ”ja’i(e-z—1)>gEexp(—zB(R))gexp(—a—e) 2R —2—1)), (4.3)

2u €,
(1 — €)2pdw A%d ~ 174 =D/2 < g, ~ —’i—lT——l < (1 + €)2p2dw Adid =174 =2)/2) (4.4)

exp(— (1 4 €)2p2%weyAdi? ~ Lp(d= 2)/2) <P{B; =0}

~ exp ( = |TCi I ) < exp(— (1 - €)2udwatid 170D/ (4.5)
exp((1+ €)2u2dwdAdid —1p(d _2)/2(6_ #—1)) < Eexp( — zB;) ~ exp ( H1G| ——(e "% = ))

<exp((1-— 6)2udwdAdid —1p(d- 2)/2(6 —F-1)). (4.6)
Now we present the proof of Theorem 1 in eight steps.
Step 1: Let d =2 and

R, = R,(T) = K(Tlog T)"/.
Then by (4.2),

P{B(R,) = 0} < exp(— (1 —¢)2urKlogT). (4.7)

Consider a particle which is located in C(R,) at time ¢ =0 and which has a living offspring at
time T. Let V(0) be the location of the considered particle at t =0 and let V(T') be the location
of an arbitrary, fixed offspring of the considered particle at time 7. Then,

2
P{IV(T)=V(0)| > Ry} <exp ( —%logT).
Consequently,

P{A(C(2R,),T) = 0} < exp(— (1 — €)2unK?log T') + exp ( - %21ogT).
Hence, by Borel-Cantelli lemma,
A(C(2R,),T) >0, a.s.
for all but finitely many T provided that
K> max{21/2, (2pm)~ 1/2},

Step 2: Let d =2 and

T1/2
R, =R,(T) = ,
where : 2 (T)
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F(T)1oo, Ry(T)Too.

Cons1der B; particles located in the ring C; at time ¢ = 0 having offspring living at time T'. Let

/\ (A T) ( j=1,2,...,B;) be the number of those offspring of the jth particle which are located
1n A at time T Then, by (1.3),

() exp ( - ‘22A2)

P{\(C(Ry), T) >0} < —————2 (4.8
and by (4.6) . I ? B.log f(T) )
P { T1 09ecry), 1) = 0}}= EP { I1 09ery), 1) = 0] B,-}

1=1 j=1
where
; =y, = el B 28 ITCi | < 8urA% (4.9)
2.2
—_—z T % exp(_l2A)

Hence € =€ = 1 ———I—W (410)

’ p( 2A2)

P{A(C(R,), T) =0} > H exp(v;(e” 1 —1)) > exp Z 8,u7rzA2—————————

1=0 1=0 (T)

> exp ( o gf(T)ZZA%Xp( J Az)) (4.11)

o0
=) 2A2 2
E iA2exp(—12A)~/ T exp<~£2—>d:c::1,
i=0 0

Since, as A—oo0,

we have

P{A(C(R,), T) =0} > 1 —ng_f‘?_ﬂ Y

Which, in turn, implies
A(C(R,), T) =0 i.o. as.
Step 3: Let d = 2,
Ry = Ry(T) =logT) " Y/2%€  (¢>0)
To=d, p=1V?,
Ry(k) = Ry(T},).
Then by Lemma 8,

PUB(C(px 1)~ o) T 1) =0} Sexp (= (1= h 1 =)

= exp ( (1—¢ )2’”(6"1))<1. (4.12)

Consider a particle which is located in C(py , 1) — C(py) at time ¢ = 0 and which has a living
offspring at time T} ,,. Note that by (4.12) with positive probability there exists such a
particle. Let Ag(k) be the number of those offspring of the considered particle which are located
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in C(Ry(k +1)) at time T ;. Then by (1.3),

P{\y(k) > 0} >;_’;_i e 112, (4.13)

Since the events {A3(k) > 0} are independent we have
A(C(R3),T)>0 i.0 as.

Step 4: Let d = 2,
R, =Ry (T)=T"*(logT)~1/2~¢
Then by (4.4),
EB; < (1 +¢€)8urAZi. (4.14)

Con51der the particles located in the ring C; at time ¢ = 0 having offspring living at time 7. Let

/\ (A T) (i =1,2,...,B,;) be the number of those offspring of the jth particle which are located
in A at time T. Then by (1.4),

. 2 .
PR, T) > 0) < Ty (- 242) (1.5
and
Bi - Bi .
P> ARy, T)>0) <EP { > A(e(r,),R) >0 Bi}
J=1 3=1
2 .
< EBi%exp ( - f_zé_Z) < 2,u7rR§A2i exp( - %) (4.16)
Hence,
e} B; .
P{A(C(R,),T)>0} < Y P ¢ Y 2e(r,),T)> 0
1=0 7=1
2; 2A2
< 2p7rR Z A“i exp (4.17)
1=0
Consequently,

A(C(R,),T)=0 aus.
for all but finitely many T.

Step 5: Let d > 3 and
R, = Ry(T) = K(logT)*/(4 =2),

Define )\g-i)( -, +) as in Step 2. Then by (1.6),
4 - 242 d-2
PRGNSR, T) > 0 2 240,(d — 2) ex <_(z+1) A )( R, )

8w, + 4(8m)%/%(d — 2) 2 T'/2
and 5, | 5, |
P { I1 0er,), 1) = 0}} = EP { [T O§er,), 1) =0} | Bi}
j=1 1=1
B.
i 2A2 d—-2 1
<E (1—Mexp <—( +;)A) (T}f}z) ) =exp(v(e™*—1)),
where
240 4(d - 2)

8wy +4(87)4*(d - 2)
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2u|C. 2uw 2ud

v=v,= H|T,| e dr( +1)4 —id)yd/2pd > I‘de jd = 17d/2pd
_ —z. l+12A2 R d—-2
e *f=e zi:l—Mexp (—( 2) )(T1}2) )

Hence,

P{A(C(R,),T) =0} < ﬁ exp(vye” “i—1))

1=0

2ud R -2 : 272
< exp (__ E 1% wde/z d—1pr (T172) Adexp (_(z+;) A ))
1=0

d— Sy e i41)%A?
< exp ( — 2uddede 2logT_Z:Ozd lAdexp ( _~£____.2.l_ .
Choose K such that t= -
o0 N
2uddeKd_2Zid_lAdexp < —M) > 1.

2
e
Then, we have '

A(C(R,), T)>0 as.
for all but finitely many T'.

Step 6: Let d > 3 and

Now follow the proof of Step 2, with the following modifications: instead of (4.8) by (1.6),
we have

j 2 A2
PR, T) > 0) < 2420 —2) exp - 240 g =27 = (=212
instead of (4.9), we have

2u|C,
V= 1/'Z#S2d+1pwdAdT(d—2)/2id—1;

K3

instead of (4.10), we have
-z 2 A2 —(d—
e~ F=e "i=1-29"2(d—2)exp (—’ 2 )R‘}”T (d=2)/2,
instead of (4.11), we have

. 2 A2
P{A(C(R,),T) = 0} > exp —22d—1/~twd(d-—2)Rg—2.201d_1Adexp <__~z 4 ))
1=

Hence, if K is small enough, then

. P{A(C(Ry(T)),Ty) =0} > k’

T} = exp(exp k?).

Observe that the probability that at least one particle among the ones who are located in C(T')
at time ¢ = 0 would live at time Ty , 4, is equal to

1—exp ( - 2wd;zTT(’g ) ~ 2(.ud,uTT¢’g = 2wgpexp (— 6k2(62k +1_q)).
k+1 k+1
Hence, there is no particle in €(T';) living up to time T’ | ;.
Consequently, by Borel-Cantelli lemma we have
A(C(R,), T) =0 i.o0. a.s.
Step 7: Let d > 3,
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Ry = Ry(T) = M(log T) ~ /4.
Now follow the proof of Step 3 with the following modifications: instead of (4.12), we have

P{B(C(py 4 1) — (o) Th 4 1) = 0} < ( —(1- )2““’d (Tg/jl _Tg/2))_,o.

Consider the By = B(C(py 4 1) —Clpp) Tk 1) partlcles located in C(pk+1) C(py) at time
t =0 having offspring living at time T ;. Let )\( (A,T)j=1,2,...,B;) be the number of
those offspring of the jth particle which are located i m A at time T. Then by (1.7) (with 8 = 0),
we have

-1/2

T
POBC(R,), T ;1) > 0} > (1 — )—2° k41

_ wde_l/z Rd(Tk+1)
and - 2(2 )d/ZMd Tscd—2)/2

P{A(C(Rs(Tk + 1)), Tk + 1) =0} = EP{A(C(Rs(Tk + 1)),Tk + 1) =0]| Bk}

< Eexp (—zB;) = exp(v(e™*—1)),

where
2
V=V = T—”—wd(piH — P
and k+1
e"F=e th=1_(1— wde_l/z B§(Ty 1 1)
- - d/2 d—
Hence, 2(2 ) 2y Tsc a2

P{A(C(R3(T 4+ 1)) Tk 41) > 0}

-1/2 pd
2 4 w e R3(Tey1) ). 1
>1—exp (——m—lwd(/)k.}_l pk)( 2(2 )d/sz ngd_2)/2 276-

if M is small enough. Consequently,

A(C(R3(T)), T) >0 i.0. aus.
Step 8: Let d > 3 and
Ry=Ry(T) =T~ Y41ogT) /4 ~¢
Now follow the proof of Step 4 with the following modifications: instead of (4.14) we have
EB, < od + luwdAdid ~1p(d - 2)/2,
instead of (4.15), by (1.7) we have

i2A2
Q) “a®Xp (_T) dr— (d = 2)/2.
P{N;"(C(Ry), T) >0} < 20n) T RYT ;

instead of (4.16), we have

)=1

B, d/2 .
P{ZAS”<C<R4>,T)>0} <w(2) i~ adexp (-—’23\2)1%:;‘;
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instead of (4.17), we have

d/2 o) 202
d ‘d—1ad
P{A(C(R,), T) > 0} < uw}(2) R",Z- ) 1A exp (_z__é.s_)_
Consequently,

A(C(R,),T)=0 aus.
for all but finitely many T'.
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