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Several problems for the differential equation
Lyu=g(r,u) with Lju= Pl (ad T LY

are considered. For @ = N —1, the operator L7 is the radially symmetric p-Laplacian in R". For
the initial value problem with given data u(ro) = uo, u'(ro) = u various uniqueness conditions
and counterexamples to uniqueness are given. For the case where g is increasing in u, a sharp
comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness
results, among others. Using these results, a strong comparison principle for the boundary value
problem and a number of properties of blow-up solutions are proved under weak assumptions
on the nonlinearity g(r, u).
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1 INTRODUCTION
This work is devoted to the study of the nonlinear second order operator
- _ _ o
Lou == = W12 (- Du’+ =) @
and to initial and boundary value problems for equations of the form

Lgu = f(u) and LZu =g(r, u).

It is always assumed that p > 1 and o > 0. For a function 4 depending
only on r = |x|, x € R, the operator L;,V ~1 is the p-Laplacian Apu =
div(|Vu|?~2Vu) in RY; in particular, LY ~'u = u” + (N — 1)u'/r is the
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48 W. REICHEL and W. WALTER

radial Laplacian (we use the same letter u as a function of x € IRY and as a
function of r = |x| € R). In the linear case p = 2 we simply write L% in
place of LS. With this notation,

Lou = (p—DW|P2L%u, where o =a/(p—1).

A description of the contents of the paper follows. In the theorems the
nonlinearity is always of the form g(r, u), but in this overview we formulate
some of the results only for the special case f(u).

The first significant new result is given in Theorem 2. It states that the
initial value problem

Lyu = f(u), u(ro) = uo, u'(ro) = ug €))

is uniquely solvable if f is merely continuous, at least in the case u; # 0,
ro > 0 and also in some cases where ro = 0, u6 = 0. The consequences
can be summed up in the statement that the usual assumption that f
belongs to C! can often be replaced by continuity of f. Uniqueness for the
general initial value problem (3) is a subtle problem. This becomes already
manifest in the simple “p-linear” equation L&u + k(r)u®~D = h(r). In
the homogeneous case & = 0 the initial value problem is always uniquely
solvable (cf. [13]), whereas in the inhomogeneous case this is not true, see
Section 2. An extensive list of uniqueness conditions is given in Section 2,
together with examples of non-uniqueness. Theorem 3 is a refined version
of a comparison theorem for problem (3), where g(r, u) is increasing in
u. It gives rise to maximal and minimal solutions, equipped with classical
properties. Section 3 contains a strong comparison theorem for the boundary
value problem without the usual hypothesis of non-vanishing gradients; e.g.,
if 1 < p <2 and g(r, u) is locally Lipschitzian and (weakly) increasing in
u, then strong comparison holds. In Section 4 blow-up problems of the form

Lgu =g(r,u), u@)—> o0 asr—> R

are discussed. Using Corollary (e) of Theorem 3, it can be shown that the
asymptote of a blow-up solution of (3) depends continuously and strictly
monotone on ug and u,. This has immediate consequences on the uniqueness
of radial blow-up solutions of A,u = f(u) inaball in RY. These results are
obtained under weak assumptions on f and g; in particular, differentiability
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is not required. Both for the strong comparison theorem and the blow-up
problem extensive use is made of earlier results on the initial value problem.

Our results apply also to radial and convex C2-solutions of Monge-Ampere
equations det D?u = g(|x|, u), since they satisfy u” (' /r)V~! = g(r, u),
ie.,

L?V =g(ru), u'(0) =0 with g(r,s) =r""13@, ).

Notation  For simplicity, we write the odd power function in the form
s@ = |59~ 15 = |s|9sign: s (¢ real); it has the properties

DD — (st)(q), l/s(q) — (l/s)(q), (__s)(Q) = 5@,

|s|q‘s(‘h) = s@te) is(q) = qlslq_l,
ds
The inverse function of s@ is s(1/9).
Monotonicity is used in the weak sense, i.e., f is increasing if u < v
implies f(u) < f(v), and strictly increasing if # < v implies f(u) < f(v).
For a solution u in an interval J C [0, 0o) we require that u and »*u'(P~D
belong to C!(J); this implies that «” is continuous as long as u’ # 0.

d _
;i_s_|s|q — qs(q n

2 EXISTENCE, UNIQUENESS, CONTINUOUS DEPENDENCE

For the reader’s convenience we state and prove an existence theorem of
Peano type for the initial value problem

Lu = g(r,u), u(ro) = uo, u'(ro) = uy. ©)

TureoreM 1 (Existence). Assume that g(r, s) is continuous and bounded in
the strip S = J x IR, where J = [0, b] in the case ro = 0and J = [a, b] in
the case 0 < a < ro < b. Then the initial value problem (3) has — under the
provision that uy = 0 in the case ro = 0 — a solution existing in J.

COROLLARY  Assume that g is continuous in G, where G is a relatively open
subset of [0, 00) x IR, and that (ro, ug) € G. Then problem (3) has a local
solution u(r) in some interval. It can be extended (as a solution) to a maximal
interval of existence [0, B4) or (B—, B+) with0 < B_ < B4+ < 0o, where
the second case applies only if ro > O, the extended solution tends to the
boundary of G asr — B_ andr — B.
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Proof It follows from (3) that

.
ru ()P —rgugh ) = f P8, u(0)) dp. @)

ro

Hence problem (3) is equivalent to the fixed point equation # = Su, where

1
t =1
[(-rf) w4 [ (£) e uton dp}(" ) g,
ro

3"
We apply Schauder’s fixed point theorem in the Banach space X = C°(J).
Obviously, S maps X into itself and is continuous in the maximum norm, i.e.,
ur — u uniformly in J implies Su; — Su uniformly in J. Furthermore,
since g and the functions (ro/¢)® and (p/t)* are bounded, |(Su)’'| < K for
u € X andr € J. Hence S(X) is a relatively compact subset of X, and
Schauder’s theorem shows that a fixed point exists. The corollary is derived
in a standard way from Theorem 1. |

r

(Su)(r) = uo + f

ro

THEOREM 2 (Uniqueness). Assume that G C S = [0, 00) x IR is relatively
openin S and g(r, s) is continuous in G and locally Lipschitzian with respect
tos orr. If (ro,up) € Gandrg > 0, u6 # 0, then problem (3) has a unique
local solution. The extension u(r) remains unique as long as u’(r) # 0.

Proof If g(r, s) is locally Lipschitzian in s, notice that as long as u’ # 0
the differential equation can be written in the form u” = g(r, u, u’) where
g(r,s,s’) is locally Lipschitzian in 5,5’ in G x (IR \ {0}). Uniqueness
then follows form a well known classical theorem. Now let g be locally
Lipschitzian in r. A solution u satisfies u’(ro) # 0; therefore it has an inverse
function 7 (u) of class C? in a neighborhood of ug. It follows from

"2 I/

ur =1, ur“+ur =0 and r >0,

where r’ = dr(u)/du, u’ = u'(r(u)), ..., thatr(u) is a solution of the initial
value problem

(p—l)r”=%‘r'z—r’@“)g(r(u), W), r(uo)=ro, r'(uo)=1/ul.

Since the right hand side of the differential equation is locally Lipschitzian
in r as long as |r’| > 0, the theorem follows. ]

It is well known that existence and uniqueness imply continuous depen-
dence on the initial data. We formulate this result for problem (3), using the
notation u(r; ro, ug, u6) for a solution of (3).
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CoOROLLARY  Let g be as in Theorem 2 and let u(r) = u(r; ro, uog, u()) be a
solution in a compact interval I = [a, b], where0 <a <ro <bandu #0
in I. Then, given € > 0, there exists § > O such that for |ro —7g| < 8, Fp € I,
luo — dio| < 8, lug — iyl < 8 the solution i (r) = u(r; Fo, do, iiy) exists in I
and is uniquely determined, and |u(r) — a(r)| <€, |w'(r) — i4'(r)| < € and
W #£0inl.

For proof, one changes g(r, s) outside a neighbourhood N of the solution
u in such a way that g becomes bounded and continuous in I x IR; one may
take N = {(r,s) :r € I, |s — u(r)| < y} C G. Then the set of all solutions
u(r; ro, o, ii{)), where the parameters satisfy the above inequalities with
6 = 1,is arelatively compact subset of X = C(I) (every solution exists in ).
For every sequence (r(’)c , u’é, ug‘) —> (ro, uo, ug) the corresponding sequence
(ux) of solutions has a uniformly convergent subsequence with limit «, and
it follows from (3’) that the sequence of derivatives converges uniformly to
u'. Let & = (Fo, fio, iiy) and A = (ro, uo, up). Then (u(r; X)), u'(r; X)) —
(u(r), u/'(r)) uniformly in I as & — A. The rest is easy. [ ]

In the next theorem we use the notation v(a+) < w(a+) (or v < w at
a+) if there exists € > 0 such that v < w in (a, a + €). For v, w € C1, this
relation holds if v(a) < w(a) orif v(a) = w(a) and v'(a) < w'(a).

THEOREM 3 (Comparison). Let I = [a,b] and Iy = (a,b] (0 < a < b).
Assume v, w € C'(I) with vV®~D ' ®P=D e Cl(ly) satisfy
v(a+) < w(a+), v(a) < w'(a), Lov—g(r,v) < Lyw—g(r,w) in I,

where g(r, s) is increasing in s. Then
v <w' in I, whichimplies v <w in I.

If () g is strictly increasing in s or (il) v < w’ at a+ or (iii) the differential
inequality is strict at a+, then v’ < w' in Iy.

The theorem remains true in the case I = [b,a]l (0 < b < a) is an
interval to the left of a if the inequalities involving v', w' are reversed and
Ip is the interval [b, a): The differential inequality and v(a—) < w(a—),
v'(a) > w'(a) imply v > w' and v < w in Iy, and the cases (ii), (iii) have
to be changed accordingly.

Proof Letv <winl’ = [a, c], where ¢ is maximal. Then

WP — PN > e, w) — g(r,v)] =0 in I'. (%)
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It follows that w’ — v’ > 0 in I’ which implies that w — v is positive and
increasing in (a, c]. This shows that ¢ = b. In each of the cases (i)—(iii) the
first term in () is positive at a+, which gives w’ > v’ in Io. n

Remark 1t is clear that in the case of nonuniqueness of problem (3) the
Comparison Theorem cannot hold if in all inequalities of the assumption
equality is permitted. But it is remarkable that a strict inequality in one place
(v < w at a+) suffices without any conditions on g except monotonicity.

CoroLLARIES  In the following propositions (a)—(h) it is always assumed
that g(r, s) is continuous and increasingin sonaset G C S = I xR
which is relatively open in S, and that u, v, w (with graphs belonging to G)
satisfy the smoothness assumptions of the theorem,; as before, I = [a, b] and
Iy = (a, b]. The initial value problem (3,) is the problem (3) with ro = a.

Similar propositions hold also to the left of @ > 0, where I = [b, a] and
Iy = [b, a); an explicit formulation is only given in those cases where the
necessary changes are not obvious.

(a) Upper and lower solutions. If w satisfies the inequality Lyw > g(r, w)
in Iy, then w is called an upper solution (or supersolution) to the differential
equation L7u = g(r, u); it is an upper solution to the initial value problem
(3) if, in addition, w(a+) > ug, w'(a) > ué). These inequalities imply that
w > uand w > u’ in Iy, where u = u(r; a, uo, up). A lower solution
(subsolution) v is defined similarly, with inequalities reversed.

(b) Maximal and minimal solutions. Problem (3,) has a maximal solution
u = u(r;a,ug,ur) in a maximal interval of existence [a,c) (¢ < b) or
[a, b] and a minimal solution u = u(r; a, uo, u()) in a maximal interval
[a, ¢) (¢ < b) or [a, b]. For every other solution u of (3,) the inequalities
u <u < i, u <u < i holdintheinterval of existence of both z and u. The
maximal solution i can be obtained as the limit of the sequence of solutions
up(r) = u(r;a,uo+1/k, uf)), which is strictly decreasing (this follows from
Theorem 3). A similar proposition holds for the minimal solution.

(c) Comparison with maximal and minimal solutions. If w satisfies

Lyw > g(r,w), w(a) 2uo, w'(a) = up,

thenw > uand w' > u', where u = u(r; a, uo, ug). In particular, if problem
(34) has a unique solution u = u(r; a, uo, ug), then w > u, w' > u’. In this
case w (with the above properties) is also called an upper solution for the
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initial value problem. There are again corresponding statements for lower
solutions v of (3;) and “to the left”.

This follows from (b) and Theorem 3, applied to w and u(r; a, uo F
1/k, ug).

We now describe two techniques which generate upper and lower solutions
from a solution. The first one applies in the case where g(r, s) is increasing
in r, while the second one requires some kind of Lipschitz continuity in r.
(d) Shift of solutions. Assume that u satisfies the smoothness assumptions in
an interval I = [a, b] (a > 0) and u’ > 0 in Iy = (a, b]. Then the function
us(r) :=u(r +6) is defined in Iy = I — 6, and

(LSus)(r) > (Lou)(r +8) for 8 >0 and
(Lous)(r) < (Ly)u(r +8) for § <0 (r € IhN ;). @)
If u is a solution of Lgu = g(r,u) and ¥’ > 01in I, where g is increasing in

(s and) r, then u; is a super- or subsolution to the differential equation in the
case § > Qord < 0, resp.

(e) Supersolutions by substitution. Let ¢ (r) be of class C* and w(r) =
u(p)). Then
w = u/¢/ and w' = u//¢/2 +u/¢//
with¢' = ¢'(r), u' = u' (p(r)), .... This implies
a/
Lyw = (p = Dlu'¢'|"™ (u”¢’2 +u'¢" + —u’¢’) , ®)
r

witho' =a/(p — 1) and

Dw := Lyw — (Lyw)($(r)) = (p — DI'|P>x

/(p—1) 1
(vaor - +uwrer o (P - o)) ©

This formula will be used in the generation of a supersolution from a solution
u of Lgu = g(r, u):

Lyw > g(r,w) & Dw > g(r, w) — g(¢(r), w). )
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The same equivalence holds for < (in both places) and for strict
inequalities.
() Uniqueness under the condition uj = u’(a) = 0 (a > 0). The solution
u(r; a, uo, 0) of (3,) is unique in a neighbourhood of a if g(a, ug) > 0, and,
in addition,

(i) g € Lip~ (r) for uniqueness to the right,
(i) g € Lip™(r) for uniqueness to the left (a > 0).

A function v (r) belongs to Lipt or Lip~ if the difference quotient
[¥(r2) — ¥ (r1)1/(r2 — r1) is bounded above or below, resp. Obviously,
increasing or decreasing functions belong to Lip~ or Lip™, resp., and
Lip = LipT N Lip~.

(g) Uniqueness of solutions with one sign. We consider a solution
u(r; a, uo, ug) of (3z) with ug, uy > 0(< 0) and, in case both initial values
vanish, g(a, 0) > 0(< 0). The solution is unique in a neighbourhood of a if
furthermore g(r, s)/sP~\ is decreasing (increasing) in s for s > 0 (s < 0) if
u > 0(u <0)in(a,a+ €. For uniqueness in an interval to the left of a the
proposition remains valid if the inequality for uy is reversed.

(h) Maximal solutions in the case u, = 0. Assume that g(r, s) is increasing
inr (e.g., g(r,s) = f(s))and that g(r,up) = 0fora <r <b. Thenu = ug
is a solution. Assume that there exists a subsolution which is > ug in (a, b].
Then, for a < ro < b, the maximal solution u(r; ro, uo, 0) and no other
solution is > ug for r > ro. Under these assumptions, all solutions of (3,)
are given by

u@) =uo in [a,rol, u(@) =u(r;ro,up,0) in [ro,b] (a <ro <b).

They fill the area between the curves s = ug and s = u(r;a, ug,0) in
the r, s-space. When I is an interval [b, a] to the left of a, then g must be
decreasing in r, and ro satisfies b < ry < a.

Exampie  Ifg(r,s) > Ks?fors > 0and0 < g < p—1, then the statement
in (h) applies for ug = uy =0anda > 0.Foru > (¢ +1)/(p —q—1)
the function (r — a)**! is a subsolution to the right of a and the function
(a —r)**1 is a subsolution to the left of a (in case a > 0) for the initial value
problem LYu = Ku?, up = uy = 0 in a small one-sided neighbourhood of
a. The functions are positive to the right or left of a, resp.
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Remarks 1. The statement (f)(i) fails to be true under the weaker assump-
tion that g(r, uo) is positive only in Iy = (a, b]. The initial value problem

1 (1/2)
U = 12\/5 (u + 57'4) ,u(0) = u’(O) =0

with the solutions u = —r* and u = (1 4+ +/2)r* is a counterexample.

2. It is not clear whether the statement in (h) about the characterization of
the maximal solution as the unique positive solution remains true if the
monotonicity of g(r, s) in r is replaced by a local Lipschitz condition in
r. A simple counterexample to the assertion in (h) is

6r for s > r3
u" =g(r,u), where g(r, s)= {6s/r2 for 0<s<r3
0 fors < 0.

Solutions are u(r) = ar3, 0 < A < 1; the function g is continuous in
[0, 00) x IR, but not Lipschitzian in r.

3. The example u” = 12u(1/? with the three solutions u(r) = r*, 0 and
—r* shows that under the assumptions in (h) the solutions u(r) = uo is in
general not the minimal solution.

Proof (a)-(e) are simple. (f)(i) We consider the case a = 0 and use
the notation vi(r) = vp(r) if vi/v; — 1 asr — 0. We use (e) with
¢(r)=r+€(@+r),wheree,§ > 0.Let g(0, up) = y > 0. Then, for every
solution u, (r*u’®=DY =~ r®y, hence %u’(l”l) ~ 3% Since Lju ~ v, it
follows from (1) that (p — 1)|u/|P~2u” =~ &3_;_—1; hence there is ¢ > 0 such
that

-1 /p——2//>__):__:___ : 0, .
(p— D" u” = 2@+ 1) 71 in [0, c]
The expression Dw in (6) consists of three terms, D;, D,, D3 where D, =0
because ¢” = 0, and D3 > O because ¢’ = 1+ ¢ > 1 and ¢(r) > r. The
first term allows now the estimate

Dw > Diw > y1[(1+€)? — 1] > y1pe aslongas ¢(r) <c.

Let —L < 0 be a lower bound for the difference quotients of g(r, s) in a
neighborhood of (0, up). Then the right side of (7) is bounded above by
L(¢p(r)—r) = Le(+r) <2eL$ifrisrestricted to 0 < r < 4. This shows
that for 0 < € < 1 the function w is an upper solution in [0, 8] if the constant
& > 0 satisfies

y1p>2L8 and 38 <c;
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furthermore, w satisfies w(0) = u(€8) > u(0) and w’(0) = u’'(e8)(1 +¢€) >
0 =u/(0).

If v is another solution, then w > v and, by letting € — 0, u > v in [0, §].
As before, it follows by a symmetric argument that ¥ = v in an interval
[0, 81].

In the case where a > 0 we have (p — 1)|u/|P~1u” ~ y, and we may use
¢(r) =r + €8 + (r — a)) for the proof which is similar.

(f)(ii) For uniqueness to the left one uses the same technique with ¢ (r) =
r —e(l+8(a —r)+ B(a— r)?). One chooses first § > 0 so large that
D1 > 2Le (L = 01is now an upper bound for the difference quotients of g),
then B so large that D, + D3 > 0 in a small left neighbourhood of a where
r—o¢(r) < 2e.

(@ Ifuy#0or u6 # 0 then u has one sign in (a, a + €]. If both uo, u;,
vanish, it follows from g(a, 0) # 0 and (3’) that u has one sign in (g, a + €].
Let u, v be two solutions on I = [a, a + €] for sufficiently small €. If ug, uj,
do not both vanish, then u/v is bounded below on I by a positive constant.

If up = ug = 0 then it follows from (3”) and the mean value theorem for
integrals that

u(r) g(p1, u(p) @Y [T J()V/P=D gs
v(r)  g(p2, v(2))/P=D [T J(s)/P=D ds

—1 asr —a,

where J(s) = fas(p/s)"‘ dp and p1, p2 € [a, r]. In case u, v are positive in
(a, a + €], there exists a large Ag > 1 with Au > v in I for all A > XAg. Let
A*=1inf{A > 1:Au > v in I} and suppose for contradiction that A* > 1.
Then, by assumption, g(r, A*u) < A*?~lg(r, u) on I and hence

LYWV u) —g(r, A"u) > A" p_l(Lgu —gr,u) =0=Ljv—g(r,v) in I

Since g(r, s) is increasing in s and A*u > v at a+, the comparison theorem
shows that A*u > v in (a, a + €], contradicting the minimality of A*. Hence
A* = 1and u > v for any two solutions u, v of (3,). In case u, v are negative
in (a, a + €], the proof is similar with A* = inf{A > 1:Au <v in I}
Notice that now by assumption g(r, A*u) > A*P~lg(r, u) on I.

(h) If a solution u(r) is > ug in Io, then us (8 > 0) satisfies us(a) > uo,
us(@) > uy = 0. As before, this implies us > v for § > 0 and every
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solution v. Hence u > v, i.e., u is the maximal solution u(r; a, ug, 0) =: u.
This solution produces, according to (d), a subsolution v(r) = u(r —(ro—a)).
Hence u(r; ro, up, 0) > v(r) > ug for r > rg. According to the reasoning
at the beginning of the proof, applied to ro = a, every other solution > ug
equals the maximal solution. |

A Summary on Uniqueness

THEOREM 4  Under each of the following conditions, uniqueness for the
initial value problem (a > 0)

Lou=g(r,u), u(a)=uo, u'(@)=u;
is guaranteed in a neighbourhood of a.

Itis assumed that the functions g(r, s), A(r, s), defined in a neighbourhood
U(a, up) C [0, 00)xIR, and k(r), defined in a neigbourhood U (a) C [0, o0),
are continuous. We write g(r, s) € Lip(s) if g(r, s) is locally Lipschitzian
in s on U(a, up); g(r,s) € Lip(r) is defined analogously. The spaces of
locally g-Holder continuous functions are denoted by Lip?(s) (0 < g < 1).
For one-sided Lipschitz conditions we use the terms Lip* or Lip™ (see

Corollary (f)) if the difference quotients are (locally) bounded above or below,
resp.

Initial condition valid for Properties of g(r, s)
(@ uy#0 @ p>1 g € Lip (r)
(hence a > 0) (ii) p>1 g € Lip (s)
(iii) l<p<2 g(r,s) € Lipi(s),0<g <1
B) uy=0 @) p>1 gla,ug) >0, gincr. s, g € Lip ~(r)
(ii) p>1 g(a, up) <0, gincr. s, g € Lip *(r)
(iii) l<p=<2 g € Lip (s)
(iv) l<p=<2 g >0,g(r,s) e Lip?~l(s)
4] p=2 g(a,uo) #0, g € Lip (s)
(vi) p=2 g(r,5) = h(r, )P~ + k(r),
h,k>0,h € Lip (s)
)  uouyeR p>1 g(r,s) = k(r)s®P
uy=0ifa=0 (p-linear case)
@ uwy=uy=0 @) p>1 lg(r,$)| < K|s|#!
(i) p>1 g(r,s)s <Ofors #0, g(r,0) =0,

lgr(r, 5)| < K|g(r, s)|

In (B)(iv), (vi) the sign condition on g(r, s) and h(r, s), k(r) may be reversed.
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Reading guide. The properties of g as stated apply to the uniqueness to the
right; swap Lip~ and Lip™ in (8)(i), (ii) for uniqueness to the left (the other
cases remain unchanged).

Remark  The cases («)(ii) and (B8)(iii) and (v) have recently appeared in a
paper of Franchi, Lanconelli and Serrin [5]. For « = 0, DelPino, Manasevich
and Muriia [3] have given uniqueness conditions contained in the above list
under the overall growth condition |g(r, s)| < K|s|?~L.

In order to treat initial value problems where the right hand side vanishes
at r = a we need the following:

CoroLLARY  If g(r,s) = l(r)g(r, s), where g(r, s) satisfies (B)(i), (i) or
(v), then the corresponding initial value problem is uniquely solvable to the
right of a (to the left of a for a > 0), if | is continuous in a neighbourhood
ofa, I(r) > O forr > a (r < a) and if in the cases (B)(i), (ii) [ is increasing
(decreasing).

Remark  In all other cases a factor I(r) is already allowed in the above list.

Proof of Theorem 4. Since we only prove local uniqueness, we may
assume boundedness of g. The proofs are only given for uniqueness to the
right. The changes for uniqueness to the left in case a > 0 are obvious.

(o). Conditions (i), (ii) give uniqueness by Theorem 2. Case (iii) is easily
reduced to the case where ug = 0. The operator S in (3”) has then the form

(Su)(r) = [r At w7 dr

a

where A(t; u) = (a/t)*ug” ™" + [1(0/D)%8(p, u(p))dp — ug" ™V # 0 as
t — a. We proceed like in McKenna, Reichel, Walter [9] and investigate
the operator S on the complete metric space C([a, rg]) with the metric
d(u,v) = max [u‘? — v@|. W.lo.g. we may assume u{, > O and hence
A(t;u) > ug’“‘/z > 0 for ¢ close to a; otherwise we consider —S. By the
positivity of A(¢; u), we obtain the following estimate for ¢ close to a. We
write (Su)@ = ||U|| and (Sv)@ = ||V||, where | - | is the L;/4-norm on
[a,7], U = A(t: )7 and V = A(t; v) 71
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1(Sw)@ — (SVD|) = U= IVIII < IU = V|
q

.
f |AG: w) 7T — A(t; v) 7T | V9 dt
a

q
<KL(ro—a)

,
/ |u(t)(q) - v(t)(q)ll/q dt
a

< KL(ro — a)"™ d(u, v),

where L is the g-Holder constant of g(r, s) and K is a Lipschitz constant
for 77 near ugp ~Y_ Hence for ro sufficiently close to a, the operator S is a
contraction on (C([a, r¢]), d) and has a unique fixed point.

(B). Condition (8)(i) guarantees uniqueness by Corollary (f)(i) and (ii).
For (B)(ii) one needs to observe that the function u(r) = —u(r) satisfies
L‘;IZ = g(r, u) with g(r, s) = —g(r, —s); for g (8)(i) is applicable.

Uniqueness under (iii) follows from the observation that s(1/(P—1) g
differentiable on IR if 1 < p < 2. The proof is then similar to («)(iii)
by estimating

1 1

1A w)(7) — 46 v)(#)) < p—’f—lm(r; u) — A V),

where K = ((ro — a) max |g(r, 5)[)?~P/?P~D and using the Lipschitz
continuity of g(r, s) in 5. Conditions (iv) and (vi) are taken from McKenna,
Reichel and Walter [9] and are based on suitable contraction mapping
arguments.

For the proof of (v) we assume g(a,up) > O and observe that the
expression

At 1) = f ()" sto.uto do

t
_ glo1,u(op) 12+ — !
T a4+l o

is positive for a < t < ¥ if rg is close to a by the assumption. Hence by
(t**+! —a**1)/t* > t — a and by the mean-value theorem we get

, a=<op=t

14 () — A w(#)) <

1 ((t—a) g(a,uo))ﬁ
p—1\a+1 2

N}

|A(t; u) — A(t; v)|
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which results in

ro —a)?’ PV max |u —v|
as<r=<ry

(a,u0) \ 7 L
gla,uo) \
[(Su)(r) — (Sv)(r)| < (m) —(
fora < r < rp and ry sufficiently close to a; here L is the Lipschitz constant
of g. Again S is a contraction operator on C([a, ro]), equipped with the
maximum-norm.

The invertability of the sign condition imposed on g in (iv), (vi) is evident,
since —S is a contraction if and only if S is a contraction.

(). This condition was found by Walter [13] and is proved in the context
of Sturm-Liouville problems by Priifer’s transformation.

(8). Under condition (i) it follows from (3") that a solution u satisfies

r
lu(r)| SKFL_'f (t —a)dt max |u]
a a<r=<ry

and hence u = O on a sufficiently small interval [a — €,a + €] (a > 0)
or [0, €] (a = 0). For the proof of (ii) we define G(r, s) = f(f gr,o)do,
which is non-positive by assumption, and find
W'Lu = u' PV ((p - u’ + Zu)
r
o
=y(u'?) + 7|u'l”
= (G(r,u)) — Gr(r,u),

with y = (p — 1)/p. Substituting v = |u’|? we obtain the linear first order
equation

y (' + ?v) =(G(rw) = G,(r,u), v(@ =0,

with @ = o/y. Solving this equation for v > 0 and integrating the first term
by parts, we get

yu(r) = fr (G(t, u(®) — G (t, ”(’))% a

t&—l

-_—G(r,u(r))—o'z/r G(t, u(t)— dt—/r G,(t,u(t))%dt.

a r
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If u # 0in a neighbourhood of a, we may choose the sequence r, — a such
that G(ry, u(rp)) = ming, ., G(¢, u(t)) < 0. Then we get

ry ga—1

yv(@ra) < |G(@rn, u(rn))|(—1+5£/ dt+(rn—a)K) <0 for n large,
a

ra
in contradiction to v > 0. Hence v = |u/|P = 0 in a neighbourhood of a. B

Proof of the corollary. We only indicate where the differences to the
original proofs are. Suppose g(r, s) satisfies (8)(i) and I(r) is increasing.
We prove uniqueness to the right for Lju = g(r, u), uy = 0 where
g(r,s) = 1(r)g(r, s). Let us go back to the proof of Corollary 3(f)(i) with
a = 0and g(a, ug) > 0. The estimate for Dw now becomes

Dw > ypel(¢(r)) aslongas ¢(r) <c.

If —L is a lower bound for the difference quotients of g(r,s) in a
neighbourhood of (0, ugp), then we have the estimate (notice ¢ (r) > r)

g(r,w) — g(p(r), w) < 1B (Er, w) — D), w)) < 1(P(r))2€L8.

In order to get Dw > g(r, w) — g(¢(r), w), the function I(¢ (r)) > 0 drops
out and the proof goes as before. For uniqueness to the left the estimate
Dw > g(r, w) — g(¢(r), w) is obtained by using the decreasing character of
I(r) together with ¢ (r) < r. If g(r, s) satisfies (8)(ii), the proof is obtained
by considering solutions v = —u of Lgv = —I(r)g(r, —v) where now
—g(r, —s) satisfies (8)(1).

Suppose now that g(r, s) satisfies (8)(v) with g(a, up) > 0. As in the
proof of (v) the positivity of A(¢; u) = fat (p/t)*g(p,u(p)dpfora <t <ro
follows from the positivity g(a, ug) and of /(p) for p > a. Hence the estimate

. oo
A(t;u)zg—(%@/ (?) 1(0) dp

holds for a < t < ro with rg close to a. Denoting I (¢) = [ at (p/t)*1(p)dp
we get by the mean-value theorem

- 2-p
JAG ) TP — At 0) P < ;lj (I(t)g(“’zu"))"' |AG; w)— A V).
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With the Lipschitz property of g(r, s) this results in

iy

[(Su)(r) — (Sv)(r)| < (é(a,zuo)) —

1
L(ro — a)max I (¢)> max |u — v|.
[a,ro] [a,ro]

This gives the contraction property for S on [a, ro] for rg close to a. ]

Remark  If, for given initial conditions, g(r, s) satisfies one of the above
uniqueness conditions and is furthermore increasing in s, then comparison
between an upper and a lower solution holds even if equality is permitted in
the initial values; cf. Corollary (c) to Theorem 3.

‘We furnish our results with two

Counterexamples. For g > 0 the problem

Lu=u? -1, u@=1 u©0)=0

has the trivial solution # = 1. For 1 < p < 2 this is the only solution
by (B)(iii). For p > 2 the function v(r) = 1 + ert? is a subsolution if
y > 2/(p —2) and € > 0 is sufficiently small. Hence the initial value
problem has at least two solutions, since the maximal solution #(r; 0, 1, 0)
is> 1forr > 0.

This counterexample shows, that uniqueness may fail if in (8)(i), (ii) and
(v) only the condition g(a, up) > 0, < 0 and # O, resp., is violated and if
in (B)(vi) only the condition k(r) > O is dropped. Furthermore it shows that
the equivalent of (B8)(iii) does not hold for p > 2. Finally it shows, that in
(y) the homogeneity is essential.

If the Lipschitz continuity of g(r, s) in (8)(iii), of A (r, s) in (B)(vi) or the
p — 1-Holder continuity of g(r, s) in (8)(iv) is dropped, then uniqueness may
fail, as shown by the example following Corollary (h), where

Lou = u?, u@ =0, u'@=0

has nontrivial solutions for 0 < g < p — 1 to the right and left (if a > 0).
This example also shows that in (§)(i) the growth exponent p — 1 cannot be
decreased and in (8)(ii) uniqueness fails if the sign condition g(r, s)s < O
for s # 0 is reversed. Notice that (8)(ii) gives uniqueness for

Lju = —uD, u@ =0, u(@)=0.
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3 A STRONG COMPARISON PRINCIPLE

For an interval I = [a,b] (0 < a < b) we define I} = (a,b) ifa > 0
and I} = [0, b) if a = 0. We consider pairs of functions v, w € cl,
rey'®@=D pay/ (0= e Cl(1y), which satisfy

Lyv—g(r,v) 2 Lyw — g(r,w) in (a,b), ®

v(b) < wb) and v(a) < w(a) if a >0, vV(0) =w'(0) =0 if a =0.
(&)
If g(r, s) is (weakly) increasing in s, then the well known comparison
principle states that v < w in [a, b]; cf. Tolksdorf [11], Walter [12]. Here
we address the question, under what conditions the weak comparison v < w
(WCP) can be strengthened to the strong comparison v < w or v = w (SCP).

Remark  Fora > 0 we want the strong comparison v < w toholdon (a, b)
whereas for a = 0 it is required to hold on [0, b). Note that forao = N — 1 the
interval (a, b) represents an open annulus and [0, b) an open ball in N-space.

We formulate the corresponding Hopf version (H) of (SCP) at the boundary
points b and a (for a > 0):

v<w in I; and v(b) = w(b) implies v'(b) > w'(b). Hy)

v<w in I} and v(a) = w(a) implies v'(a) < w'(a). Hy)

In Walter [12], essentially the following counterexample for p > 2 is
given, which shows that (SCP) and (H) can fail, even if the increasing function
g(r, s) is Lipschitzian as a function of s?~1. Consider the equation

o, _ . (q) _
Lpu—u 1

for ¢ > 0. We have seen in the counterexamples in Section 2 that the initial
value problem for the above equation with ug = 1, u6 = 0 has two solutions
u = 1and i(r;0,1,0) > 1 for r > 0. By Corollary 3(h), the maximal
solution u(r;a,1,0)is > 1 forr > a (@ > 0). If we take v = 1 and
w = i(r; a, 1,0), this example shows that both (SCP) and (H,) fail. The
following condition from Tolksdorf [11] or Walter [12] is known to guarantee
(SCP) [and (H)]

Casea > 0: v #0orw’ #0in(a,b) [inla, bl), g, s) is increasing
and locally Lipschitzian in s.
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The main weakness of this result is the assumption on the non-vanishing
of the derivatives, which is in general not controllable. Our approach is based
on the following simple idea: Since we have the weak comparison w > v
in I, the strong comparison w > v in I fails only if there exists a touching
point ro € I with w(rg) = v(ro) and w'(rg) = v'(rp). If we furthermore
suppose for contradiction that w # v, then we may take ro to be a point of
a strict one-sided local zero-minimum of w — v. We determine a continuous
function g (r) which satisfies

Lyv —g(r,v) 2 q(r) > Lyw —g(r,w) in I 8

and consider the initial value problem

Liu = g(r,u) +q(r), u(ro) = v(ro) = w(ro), u'(ro) = v'(ro) = w'(ro).

10)

The function v is a supersolution and the function w is a subsolution to

this problem. Assuming that (10) has a unique solution in a neighbourhood

U of rp, we obtain from Theorem 3, Corollary (c) that w < u < v, which
leads to v = w in U, a contradiction. Summing up, we have

THEOREM 5 Suppose v, w satisfy (8)—(9) and g(r, s) is continuous in (r, s) €
[a, b] x IR and increasing in s € IR. Then (SCP) holds if all problems (10)
with rg € I} are uniquely solvable. In particular (SCP) holds if the function
&(r,s) = g(r, 5)+q(r) satisfies for initial values uy = v(ro) and ug = v'(ro)
a uniqueness condition of Theorem 4.

The assertions (H,), (Hp) are proved by the same argument where a strict
one-sided zero-minimum of w — v at rg = a or ro = b with v/(rg) = w'(rg)
is led to a contradiction. We need g to be defined and continuous in [a, a + €]
or [b — €, b], resp.

For illustration, we give some explicit assumptions which imply (SCP) and
(H). We use the notation Pu = Lgu — g(r, u); naturally, g(r, s) is increasing
ins.

(@) 1 < p<2,g € Lip(s) (no condition on g).

(b) The p-linear case, g(r, s) = k(r)s?~D k > 0. Take q(r) = 0, i..,
Pv > 0> Pw (for g = —1, we have a counterexample)

(c) gryw(r))+q@)#0inl;, gand g € Lip(r).

d1<p<2g(r,wr)+q@r)=>00r<0in Iy, g(r,s) € Lipp_l(s).

(e p=2,8r,w(r))+q)#0in Iy, g € Lip(s).
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® p=2,8@,s)=h(r s)? 1+k@r),h € Lip(s), h and k+g non-negative
in / 1.

(g) If v/ £ 0o0rw # 0in I; (a > 0), then it suffices that g satisfies (c)
(note that («)(ii) is the condition of Tolksdorf and Walter stated above).

4 BLOW-UP SOLUTIONS
Our next theorem deals with blow-up solutions for the equation

L;",u =g(r,u), u(@r)—> 0o as r —> R, an

inparticular Lju = f(u). We introduce an assumption (A) consisting of five
parts:

(A1) f(s) is continuous, nonnegative and increasing in [so, 00).
(A2) The generalized Keller condition. The function F(s) = fsf) f@) dt
satisfies

®  ds

(A3) g(r,s) is continuous, nonnegative and increasing in s in the set
I x [s9,00), I = [a,b] witha > 0.

(A4) There exist f(s) satisfying (A1) (A2) and positive constants ci, ¢z
such that

c1f(s) < g(r,s) <caf(s) in I x (s1,00), where s1 > s0.
(AS) g satisfies a condition of Lipschitz type
1g(r1, s) — g(r2, )| < Lir1 —r2|g(r1,5) in I X [so, 00).

Remarks 1. Condition (A2) has been given by Keller [6] in the classical
case p = 2; it is a necessary condition for blow-up. Under more
restrictive assumptions, but for general N-dimensional domains, the blow-up
problem has recently been studied by Bandle and Marcus [1, 2], Lazer and
McKenna [7, 8] for p = 2 and by Diaz and Letelier (4] for general p > 1.
McKenna, Reichel and Walter [9] have treated the radial case for f(u) = |ul?
and general p > 1.

2. It follows from (A) that lim £ (s)/s?~! = oo and lim g(r, 5)/sP~! = oo
for s — oo uniformly in /. For proof one may adapt Lemma A and B in
Bandle, Marcus [2].
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3. The function g(r, s) = h(r) f (s) satisfies (A) if f satisfies (A1) (A2) and
h is continuous and positive and |a(r1) — h(r2)| < L|r; — r|.

4. Condition (A) is satisfied for f(s) = s? and, more general, for f(s) =
s9k(s), if k is continuous, positive and increasing and ¢ > p — 1. It also holds
for g(r, s) = As? + k(r, s) if k is such that (A) holds and k(r, s)s™4 — 0 as
s — oo uniformly in 7.

Lemma  If f satisfies (A1) (A2), then
f(s)

— 00 as s — 00.
=
F(s) v

Proof In an interval J = [s1, 00) the function ¥ (s) = F(s)!/? has the
following properties:

® ds

< 0
¥ (s)

We have to prove that ¥/(s) — 00 as s — oo. Assume first that ¥ € C2(J).
Then convexity of ¥? implies (¥?)” > 0 or Y¢” + (p — 1)y'2 > 0, which

implies
(_1_)’ _ ¥ _p-1
v’ y2T oy

By integration, one obtains

veCl(J), ¥>0, ¢ >0, ¥? convexand

1 1 b ds
—_—— — < ( _1)f— (s1 <a<b). *
ve) V@=L e

If ¥ were bounded, then ¢ would grow at most linearly with the effect
that f°°(1/1//)ds = 00. Hence sup ¢/ = 00. Let M be positive and leta € J
be such that

© ds 1 ,
j W(s)<ﬁ and ¢¥'(a) > M.

Then it follows from the inequality (*) that

1 1 p=1 1 p-1
Ve S V@ M
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This inequality shows that lim_, oo ¥'(s) = 00. Now assume that v is only
of class C!. We approximate F = ¥ by smooth functions F, using the
mollifier technique:

Fy(s) =/ F(s + at)p(t) dt,
R

where ¢ > 0, supp ¢ =[—1,1],¢ € C*°(R) and f]R ¢@)dt = 1.Since F
belongs to C!, differentiation gives

F.(s) =/ F'(s + at)p(t) dt.
R

Due to convexity, F'(s) is increasing, and this property is inherited by F,.
Hence the inequality (x) holds for the functions ¥, (s) := Fy(s)!/?. In
the limit as « — 0+, we get Fy, — F, F, — f, hence ¥ — ¢ and
&Y — (¥P), which leads easily to ¥, — v'. This shows that (*) holds
under the assumption of the Lemma, which now follows as before. |

The first part of the proof was contributed by Prof. M. Plum, which is
gratefully acknowledged.

THEOREM 6  Suppose that, fori = 1,2, u; is a solution of (11) in [a, b;) C
I (a > 0) and u; (b;) = oo. If (A) holds and

ui(a+) < uz(a+) and uj(a) < uy(a),
then by > bs.

Proof 1If follows from the comparison theorem that the inequalities u; <
uz, )y < ujholdin (a, by) and that by > by; furthermore, since uy = u1 +c¢
would imply that g is constant in s, we have u} < u) at a point ro and then
also in [rg, by).

For the proof by contradiction, we assume thata < b; = by < b, and that
a > b/p and that strict inequalities u; < uz, | < u}, hold in [a, b1). The
proof is based on the following idea. We consider the function

v(r) = u1(¢(r)), where ¢(r) = (1 —¢€)r + be,

and show that for small ¢ > O the function v is a subsolution to the
differential equation (11). Because of the strict inequalities at r = a, we
have v(a) < uz(a), v'(a) < u)(a). Hence v < uy and v(b') = oo, where
¢ (b") = b; and therefore by < b’ < by, which is the desired contradiction.
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We want to use (7) and consider the expression

N
Dv=(p— l)lu'll"’_2 {u'{((l —eP -1 +oe’u'1r75((z%}

with
N@) =(1—-e)P 1 —e)r+be] —r.
For € small, (1 —€)? ~ 1 — pe and (1 — €)?~! &~ 1 — (p — 1)¢, hence

N(@)=~—per+ (1 —(p—1)e)be <eb—pr) <0

because r > a > b/p. Thus the second term of Dv is negative. Next we
show that u’l’ is positive for u large. The derivative u/1 is positive, so u; has an
inverse function 7 () with 7’ = 1/u’. The function z(u) = u/ (r (u)) satisfies
(with u as independent variable and r = r(u))

reoy %1 8(r,u) _ _Ot_/ c2f () o
Z(u) = Pl Ty th —(p Ty z(uo) = uy,
where ug = uy(a), u() = u’1 (a). Solving the corresponding initial value
problem for y(u),

’ e f (w)

y = oDy T y(uo) = ug,

we obtain

1/p
yw) = (pple (F(u) = F(uo)) + ug’) > 2(u),

which implies
/

/ g(r, u) o crf () o
7>

-_— > = —,

(p=Dyr ! r T (p-1yr! a
By the lemma, f(u)/y?~! — oo as u — oo, which implies uj/uy — oo
as r — b;. Hence we may assume (by moving the point a to the right, if
necessary) that u” is positive and therefore Dv < 0 in [a, b1). According to
(7) we have to show that

Dv < g(r,v) — g(¢(r), v).
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This is obviously true if g(r, s) is decreasing in r. In this case, which covers
the case where g(r, s) = f(s), the theorem is proved. In the general case, we
take € small and u large, which implies (1 — €)? — 1 ~ —pe and 1’ /u” ~ 0,
hence

1 1
Dv < =5 pe(p = DIuj|"*u] < =2 (Ljun@()pe
< —L(® —a)eg(¢p(r),v) < g(r,v) — g(p(), v).

Itwasusedthat¢p (r)—r < b—aand L(b—a) < p/3 (a and b can be chosen
close to by). These inequalities show that v is indeed a lower solution. W

CoroLLARY  We consider solutions u(r; ro, uo, ug) of (3) under the assump-
tion (A).

(a) Caserg = 0. Assume that the maximal solution u(r; 0, ug, 0) (ug > so)
blows up at r = bg. Then the initial value problem (3) has, for ug < A < o0
anduy, = 0, a unique solutionu(r; 0, A, 0) which blows up at by. The function
by, is continuous and strictly decreasing in A € (ug, 00) and by — 0 as
A — 00, by, = by as A —> uy.

(b) Case ro = a > 0. Assume that the maximal solution u(r; a, ug, u{))
(ug > so, u6 > 0) blows up at bp. Then the solution u(r; a, A, \) is unique
for & > uo, > ug, (A, ) # (uo, ugy), and it blows up at a point b . The
function by, is continuous and strictly decreasing in A and ., and it tends to
a as ) — oo or ju — 00 and to by as (A, ) — (uo, ug).

(c) Uniqueness of blow-up solution. Under the assumption of (a) the
blow-up problem Lju = g(r,u) in J = (0, R), W (@©0) = 0,u(R) = o0
has for given R € (0, by) one and only one solution.

If g(r,uo) =0, g(r,s) > 0 for s > ug, r > 0 and if the maximal solution
i(r; 0, up, 0) is u = uo, then the blow-up problem has for every R > 0 a
unique solution.

(d) The statements in (a)—(c) remain true if g(r,s) = I(r)g(r, s), where
g(r, s) satisfies (A) and the assumptions in (a)—(c), l is continuous, increasing
and l(ro+) > 0.

Remark  In contrast to earlier work [1, 2, 4, 7, 8] on the general N-
dimensional blow-up problem, the above uniqueness result is obtained merely
by monotonicity, Keller’s condition and (in the nonautonomous case) by a
Lipschitz condition with respect to r. Without this last condition (AS), the
theorem fails. For a counterexample take a blow-up solution u of Lgu = f(u)
and define g by
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fGs—=1) for s > u(r)+1,
const.in s  between u(r) and u(r) + 1.

f(s) for s <u(r),
g(r,s) = {

The functions w(r) = u(r) + X, 0 < A < 1 are blow-up solutions of
ng = g(r, w). If one takes, e.g., f(s) = &°, then (A1)—(A4) hold, and (AS5)
is violated.

Proof The assumption that f = 0 in [ug, ug + €] implies # = ug because
of (A4). Hence f(s) > O for s > ug. (a) We write u(r, 1) for u(r; 0, A, 0).
Uniqueness follows from Corollary 3.(f) since g(0, 1) > O for A > sp, and
strict monotonicity of b, from Theorem 6. As A | Ay > up, the solution
u(r, 1) tends to u(r, Ao) uniformly in compact subsets of [0, b,,), which
together with b, < b, implies by, — b,,,. This remains true for Ag = uq since
u(r; 0, up, 0) is the maximal solution. Since g(r, s) > ¢ f(s) for s > s1,
u(r, 1) is for A > s a supersolution for the problem with the right hand side
c1f(s). Since according to Lemma 1.(c) in [9] the solutions w of the latter
problem with wo = A, w6 = 0 are supersolutions to Lgv = (a + Dc1 f(v),
vo = A, vy = 0, and since the asymptote of v(r, 1) can be computed and
tends — O as A — oo (see [10], Satz 1.1), the same is true for the asymptotes
by of u(r, A).

(b) The proof is similar to the proof of (a) and will therefore be omitted.

(c) The first part follows readily from (a). In the second part we have
u(r, \) = ug as A — ug uniformly on compact intervals. Since u’(r, 1) is
strictly increasing, u assumes large values, and for these g(r, s) > c1 f(s)
(see (a)), i.e., u(r, 1) is a blow-up solution and b, — o0 as A — uy.

(d) The proofs of (a)—(c) remain almost unchanged: the uniqueness of
the initial value problem now follows from the corollary to Theorem 4.
Furthermore one has to observe that the solutions w of LZw = c1l(r) f(w)
with wg = A and w(’) = 0 are, due to the monotonicity of [(r), supersolutions
to the problem Lgv = (a + Dcil(r) f(v) with vg = A, vo = 0, for which
the asymptote can be computed explicitly, is strictly decreasing in A and has
the same asymptotic behaviour as in (a)—(c). |

References

[1] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence,
uniqueness and asymptotic behavior, J. d’Analyse Math., 58 (1992), 9-24.



(2]

3]

[4]
[5

—

[6]
(7]

[8]
[9]
[10]
(11]
[12]

[13]

INEQUALITIES INVOLVING THE p-LAPLACIAN 71

C. Bandle and M. Marcus, Asymptotic behaviour of solutions and their derivatives, for
semilinear elliptic problems with blowup on the boundary, Ann. Inst. Henri Poincaré, 12
(1995), 155-171.

M. DelPino, R. Mandsevich and A. Murda, Existence and multiplicity of solutions with
prescribed period for a second order quasilinear o.d.e., Nonlinear Analysis, TM.A., 18
(1992), 79-92.

G. Diaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence
and uniqueness, Nonlinear Analysis, TM.A., 20 (1993), 97-125.

B. Franchi, E. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative solutions
of quasilinear equations in ]RN, Advances Math., 118 (1996), 177-243.

J.B. Keller, On solutions of Au = f(u), Comm. Pure Applied Math., 10 (1957),503-510.
A. Lazer and P.J. McKenna, Asymptotic behaviour of solutions of boundary blow-up
problems, Differential and Integral Equations, 7 (1994), 1001-1019.

A. Lazer and P.J. McKenna, A singular elliptic boundary value problem, Applied
Mathematics and Computation, 65 (1994), 183-194.

P.J. McKenna, W. Reichel and W. Walter, Symmetry and multiplicity for nonlinear elliptic
differential equations with boundary blow-up, Nonlinear Analysis, TM.A., accepted.

W. Reichel, GroBe Losungen und iiberbestimmte Randwertprobleme bei quasilinearen
elliptischen Differentialgleichungen, Dissertation, Universitit Karlsruhe, 1996.

P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical
boundary points, Comm. Partial Differential Equations, 8 (1983) 773-817.

W. Walter, A new approach to minimum and comparison principles for nonlinear ordinary
differential operators of second order, Nonlinear Analysis, TM.A., 22 (1995) 1071-1078.
'W. Walter, Sturm-Liouville theory for the radial A ,-operator, Math. Zeitschrift, accepted.



