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Weighted inequalities for fractional derivatives (= fractional order Hardy-type inequalities) have
recently been proved in [4] and 1]. In this paper, new inequalities of this type are proved and
applied. In particular, the general mixed norm case and a general twodimensional weight are
considered. Moreover, an Orlicz norm version and a multidimensional fractional order Hardy
inequality are proved. The connections to related results are pointed out.
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1 INTRODUCTION

Using the notation Ilflls,o for the norm in the weighted Lebesgue space
L (0, cx; w) L (w),

(fo0 )l/sllfll,,,o If(t)lSw(t)dt

with 1 < s < cx and w w(t) a weight function on (0, x), the Hardy
inequality can be expressed in the form

Ilullq,o0 <_ Cllu’llp,, (1.1)
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with a constant C > 0 independent of u, i.e., under certain conditions, the
weighted Lq-norrn of thefunction u can be estimated by a suitable weighted
LP-norm of its (first order) derivative uI.
The natural question arises whether it is possible to extend inequality

(1.1) to "fractional order derivatives" u (z) with 0 < ) < 1, i.e., under what
conditions we can derive inequalities of the type

(1.2)

and/or

IluXllq,0 Cllu’llp,w. (1.3)

The first problem which arises is how to understand the expression
Ilu(Z)llq,w. Let us mention that for the "non-weighted" case (i.e., for
w(t) =_ 1) the following definition of IluZlls,1 Ilu<Zlls is commonly
used:

(fo fo lU(x) u(y)lS ) a/s
[[u(X) lls= Ix yll+Zs

dxdy ,1 < s < cxz, O < ) < 1.

(1.4)

For this special case, the following inequality holds:

lu(x)lPx-XPdx < Cp lit
Ix y[l+Zp

dxdy

which is inequality (1.2) for the special case

(1.5)

p q, wx(x) =-- 1, wo(x) x-xp.

Inequality (1.5) was derived by Grisvard [2] provided

1
1 < p < cxz, ,#--, u6C(O,o).

P
In fact, he rediscovered an earlier result of Jakovlev [3] who has shown that

fo
c

fofo [u(x)-u(y)[p
lu(x) u(O)IPx-)Pdx < Cp

Ix y]l+p
dxdy. (1.6)

Notice that the additional term u (0) at the left hand side of (1.6) is essential
since the integral on the left hand side of (1.5) diverges if u is continuous at
zero, u(0) - 0 and L > .
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The inequality (1.5) was extended in the seventies by Kufner and
Triebel [5]: Roughly speaking, they derived instead of (1.2) the inequality

Ilullp,m0 C([lu(Zllp,o -t-Ilullp,’)

where now

Ilu(X>llp’
Ix yl I+)p

lip

w(x)dxdy (1.7)

N is a certain additional weight and

wo(x) w(x) x-zp.

The double integral in (1.7) offers one possibility of characterizing the still
undetermined expression for [lu(X) IIp,w. But in spite of the symmetry of the
"non-weighted" expression for lu(Zlls in (1.4), we would prefer a certain

symmetry in x and y also in the weighted case, i.e., we are looking for a

general inequality of the form

fo fofolu(x)-u(y)lplu(x)lPw(x)dx <- CP Ix yll+Lp
W(x, y)dxdy,

(1.9)

possibly (but not necessarily) with W(x, y) W(y, x). In Section 4 of this

paper we will prove some new inequalities of the type (1.9).
Our investigations were motivated by results of Kufner and Persson [4]

and Burenkov and Evans [1]. In [4] e.g. the case when W(x, y) w(x)
or W(x, y) w(y) is handled, and in [1], the case when W(x, y)
w(Ix Yl)lx yl I+zp is treated. For the reader’s convenience and for
later purposes, some of these results are briefly discussed and compared
in Section 2.

Up to now, we dealt with the case

p=q

and all inequalities mentioned above can be derived more or less directly.
Another approach using the theory of interpolation of Banach spaces was
used in [4] and led to an inequality of the type
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(focx t 1/q

lu(x)lqwo(x)dx

(fo(fo lu(x)-u(Y)IP
< C

Ix yl I+zp

q/p )l/qw(x)dx) dy
(1.10)

i.e., to an expression with a mixed norm on the right hand side for p 5 q.
Moreover, it was supposed that 1 < p < q < cxz [while the case q < p
is still open] and the authors have not been able to remove the mixed norm
for p 5 q. In Section 3, we will prove a new inequality of the type (1.10),
moreover, with a measure v(y)dy instead of dy, but again only for p < q.
Some of the results obtained in this paper can be extended in various

directions. Here we only present and prove an Orlicz norm version of the
inequality (1.5) [and of its extension to the power weight case see, e.g.,
(2.6) with/3 1 +Zp and give an example of a multidimensional fractional
order Hardy inequality; see Sections 5 and 6, respectively.
We close this introductory ection by noting that in all cases we have

considered here we have found that the "fractional" weights w0 in the left
integral are always of the type (1.8) for some suitable weight w. Maybe this
is supported by the following inequality which is an easy consequence of
(1.5) and of the fact that u belongs to the weighted space LP (w) if and only
if uw 1/p belongs to the (non-weighted) space LP.

lu(x)lPw(x)x-ZPdx

fo lu(x)w 1/p (x) u(y)w 1/p (y)l p
< C

Ix yl I+xp
dxdy.

(1.11)

Also the fight hand side in (1.11) could serve as a definition of the expression
Ilu()llp,w,

2 SOME PRELIMINARY RESULTS AND DISCUSSIONS

For the special case when the weight function W(x, y) in the fight hand side
of (1.9) depends on Ix Y I, Burenkov and Evans [1] recently proved the
following interesting result:
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THEOREM 2.1

define
Let 0 < p < o, let w be a weightfunction on (0, o) and

v(x) w(t)dt.

Suppose that v satisfies the A2-condition, i.e., there exists a constant c > 0
such that

v(2t) _< cv(t) for all t > 0.

Thenfor all u LP (O, cx; v)

lu(x)lPv(x)dx <_ Cp lu(x) u(y)lPw(lx yl)dxdy.

For later purposes we also state the following slight improvement of the
recent result by Kufner and Persson mentioned in the introduction:

THEOREM 2.2 Let 1 < p < o and ) >_ -1/p. Furthermore, assume that
thefunction u satisfies

lim
1 fo

x

u(t)dt O.
x--cx X

Let wo and wl be weightfunctions on (0, e) satisfying

(fo
x tB" sup wo(t)dt w (t)dt

x>0

with p’ P__e_ Then, for every > O,p_l

< cx (2.1)

fo fofoxlu(x)-u(y)lp[u(x)lPwo(x)dx < Cp

Ix yl
W(x)dydx (2.2)

where

W(x) x-l wo(x) + x-l-Ptol (X)

and Cp 2p-1 max(l, Cp) with Cp <_ B pP (p 1) 1-p.

The proof of Theorem 2.1 is similar to that of Proposition 1 in [4] but for
the reader’s convenience we present here the details.
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Proof First we use an idea by Grisvard [2] (cf. also p. 261 in Triebel [9])
and define

g(x) u(x) u(y)dy [u(x) u(y)]dy.
x x

(2.3)

Obviously, g() u(z) and

1 foru’(y) u’(y)- u(y)
+ u(x)dx +

y -- g(Y)
g(y)- dx

y x

and we conclude that

u(y) g(y) g(x) dx.
x

Therefore by using the inequality la + blp <_ 2p-I(IaIP -q-IblP), the
assumption (2.1) and Hardy’s inequality (see, e.g., [7]) we obtain that

o
]u(x)lPwo(x)dx

(fo fo f )< 2p-1 [g(x)lPwo(x)dx + wo(x)
g(Y)

dy Pdx
Y

(fo o< 2p-1 [g(x)lPwo(x)dx -I- Cp 11)1(x) g(x_) Pdx
x

2P-1 Ig(x)lPWo(x)dx

where Wo(x) wo(x) + CpX-Pll)I (x). Therefore, by denoting W1 (x)
wo(x) + x-pWl (x) and using (2.3) we find that

[u(x)lPwo(x)dx < C [g(x)lPWl(x)dx

fo(fox )< C lu(x) u(y)ldy Wl (x)dx. (2.4)

Furthermore, by H61der’s inequality and the assumption/3 > 0, we find that
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( f0
x

lu(x) u(y)ldy
x

<__ x-PxP-1 lU(X) u(y)[Pdy

x-1 f,x [u(x) -xU(Y)IP dy
< X/-1 fx lu(x) u(y)lp

Jo Ix y[
dy.

The estimate (2.2) follows by combining (2.4) and (2.5).

COROLLARY 2.3 Let 1 < p < x, 13 >_ O, >_ --1/p and t > )p 1. If
(t)dt O, thenlimx-c 2 f u

fo foCfoX]U(X)-u(Y)[Px#-l-ZP+adydx.[u(x)[Pxa-Pdx < Cp

(2.6)

Proof Apply Theorem 2.2 with wo(x) xa-zp and tO1 (X) Xt-’kp+p.

Let us note that applying Theorem 2.1 with w(t) a-zp-1 we find that
for a < )p we have

fo
c

foCfoClu(x)-u(Y)lP[u(x)IPxa-ZPdx < Cp

ix yl+Xp Ix yldxdy. (2.7)

Moreover, Theorem 2.1 cannot be used for any ot >_ p (since then
v(x) =_ o). But using Corollary 2.3 we see that (2.7) holds also if
.p _< c < )p / 1 This fact follows from (2.6) putting there/3 0
and noting that x--XP+ _< Ix y[-1-LP+a for all y, 0 < y _< x and
-1 -)p + ot <0.
More generally, using Theorem 2.2 with/3 0 and with W(x) strictly

decreasing we obtain an inequality of the type

[u(x)lPwo(x)dx <_ Cp lu(x) u(y)lPW(lx yl)dxdy,

(2.8)

and this inequality cannot be obtainedin general using Theorem 2.1 e.g. in the
case that the integral fx w(t)dt is divergent. Another inequality of the type
(2.8) can be obtained by using our Theorem 4.1 with w(x, y) w(lx y[)
(see Remark 4.5).
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3 THE GENERAL (MIXED NORM) CASEp q

Let to and v denote weight functions on (0, o). Moreover, define

y

V(y) v(x)dx,

In(x) u(y)l
(Au)z(x, y):

Ix ylx

dx fo v(x)dx v(y),

The main result of this section reads as follows:

THEOREM 3.1
and

Let 1 < p < q < o, ) > l/p, wz (x) O)p,q (X)X-zq

frOO ) 1/q

Cp,q sup wL(x)V-q (x)dx
r>0

(fo )l/q’[wx (x)v-q (x)]l-q’dx < cx. (3.1)

Thenfor u Lq (0, x; tox)
c

lu(x)lq tox(x)dx) 1/q

I(Auz,)(x, y)lp

(3.2)

to(x)dx]
q/p v(y)dy)1/q

provided

K-- Cp,qq
< 1. (3.3)

(q- 1)l/q’

Remark 3.2 Note that for the case v(y) --- 1 we obtain the mixed norm
inequality (1.10) with

x

WO(X to,(X) X (-’k+l/p’)q to 1-p’(t)dt)
-q/p’
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Proof HSlder’s inequality yields

(f0y )qlu(x)l- u(y)lv(x)dx

(foy )q/P (JoY (uP(x)) e-
< [u(x) u(y)[Pw(x)dx

\ w(x)

Therefore

q/p’

0
cx Y

> y_q/p_)q vp (X)
\ w(x)

jo
y

u(x)v(x)dx]q v(y)dy

wx(y)lu(y)

dx)
-q/P’

y

lu(y) v(x)dx

1 foy u(x)v(x)dxlqdy"
V(y)

Using this estimate together with the Minkowski and Hardy inequalities [the
latter one can be used due to (3.1)] we find that

(oC )
1/q

]u(y)lqwz(y)dy

(jo i jo
y ),q<_ wx(y)lu(y)

V(y)
u(x)v(x)dxlqv(y)dy

(fOOC (for )q )l/q-Jr- wz(y)V-q (y) lu(x)lv(x)dx dy
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Ix Yl
w(x)dx v(y)dy

+ K w)(y)lu(y)lqdy

Inequality (3.2) follows by subtracting and using (3.3).
Considering the case p q in Theorem 3.1 we obtain

Colot,al, 3.3 If l < p < , -l/p, wx(x) Op,p(X)X-xp and

Cp sup wz (x)V-p (x)dx
r>0

(zr )alp’(wz (x)v-P (x))-P’dx < ,
then

fo

c

lu(x)lPwx(x)dx) lip

<
1 (fofolU(X)-u(y).p

1-K Ix-yl I+zp w(x)v(y)dxdy) liP

(3.4)

provided

K=
Cpp

< 1.
(p- 1)l/p’

Consequently, (3.4) may be regarded as a fractional order Hardy inequality
of the type (1.9) with the weight

W(x, y) w(x)v(y)

on the right hand side.

Remark 3.4 Applying Corollary 3.3 with w(x) 1, v(y) 1 and with
u (x) replaced by u (x) u (0) we find that if 1 < p < cx, ) > 1/p, then

(f0 lu(x)-u(O)lPx-ZPdx) 1/p

<
)p_t_ p l (fo fo lU(x) u(y)lp )lip)p 1 Ix yl I+xp

dxdy (3.5)
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cf. formula (1.6). Moreover, it is not difficult to see that (3.5) holds with
0 < ) < 1 and with the constant 1/2)/ (1 )) for p 1.

Remark 3.5 Theorem 3.1 requires a certain integrability of v and

(vPw-1)1--r- on (0, y) for y > 0. This requirement can be replaced by an
integrability condition on (y, cx), if one modifies the proof of Theorem 3.1
as follows: Let

fyV(y) v(x)x-1/P-’-3dx

with some real parameter 3, and

wx (y) v(y)
w(x) ,I

x-e’dx vq (y)"

Now, we use the estimate

foC (fo l(Au)z(x,Y)lp )q/Pifr l w(x) v(y)dy

fo (fy lU(x)-u(Y)’p )q/P> w(x)dx v(y)dy

and denote the last double integral by J. Since H61der’s inequality yields

(fy lu(x) u(y)l
v(x)dxx1/p+.+6

< (fy lu(X)-u(y)Ip
x+@ )q/P(fyCX:(l)P(x)) @f- )w(x)dx x-’P’dx

\ w(x)

q/p’

we obtain that
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Then we proceed as in the proof of Theorem 3.1, using the Minkowski
inequality and the Hardy inequality the last one assuming that Cp,q < c
where

(for t 1/q

Cp,q sup x(xl-q (x)dx
r>0

.(fr(L(x)v-q(x)xq/P+,q+3q)l-q’dx)
1/q’

Finally, we obtain again inequality (3.2) with wz (x) replaced by z(x)
provided

K Cp,qq
< 1.

(q- 1)l/p’

4 A GENERAL WEIGHT IN TWO VARIABLES FOR p = q

In this section, we will prove the following assertion:

THEOREM 4.1 Letto(x, y) be a non-negative measurablefunction on (0, o)
(0, o), locally integrable in both variables separately. Let 1 < p < o and
) >_ -lip.
(i) Denote

(xl_. f0
x

W(x) col-p’(x, t)dt

and Wx (x) W(x)x-zp. If

Cp" sup pO+l--------ydx wl-p’(x)x)P’dx <
r>0 x

and
Cpp

K= <1,
(p- 1)l/p’

thenforu LP(O, o; Wz)

(f0 Wx(x)lu(x)lPdx) 1/p

1 (foOfolU(X)-u(y)lp

1-K Ix-yl l+xp

(4.1)

(4.2)

co(x, y)dxdy) liP
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(ii) Denote

(f0yW(y) col-p’(t, y)dt

and (x) "(x)x-zp. If

Cp" =sup dy
r>0 yp(Z+l) (fo

r

W1-p’ (y)yXP’dy)lip’
and

Cpp
< 1,

(p- 1)l-p’

(4.3)

then (4.2) holds with Wz and K replaced by Wz and K, respectively.

Proof Obviously

fo lu(x) u(y)l

Ix yl l+xp

p
co(x, y)dxdy

_fofoXlU(X)-u(y)lp

Ix yl +xp
oo(x, y)dydx

fx lu(x) u(y)lp
+ ...ix...2. yl./.p.., w(x, y)dydx

fo
x lu(x) u(y)lp

>
xl+.p co(x, y)dydx

fx lU(X) --..u(Y)lp+ yl+Xp co(x, y)dydx I1 + I2.

H61der’s inequality yields

X(u(x) u(y))dy (fox )< lu(x) u(y)IPco(x, y)dy

(fox col-P’(x,t)dt



38 H.P. HEINIG et al.

and consequently

foX W(x)xI-p foxI1 >_
xl+,p (U(X) u(y))dylp

x

xl+,p IXU(X) u(y)dylp

fo W(X)
lu(x)

l fo
x

u(y)dylp
xp x

Hence, by the Minkowski and Hardy inequalities, we have

and since K < 1, (4.2) follows at once.

Part (ii) can be proved completely analogously, estimating now frombelow
the integral 12, which can be rewritten by Fubini’s theorem as

f0
y Itt(X) u(y)lp

I2 yl+,p
og(x, y)dxdy.

But it follows also directly from part (i) using the following symmetry
argument: Since for h(x, y) lu(x) u(y)lPlx yl--xp we have
h(x, y) h(y, x), the fight hand side in (4.2) satisfies

h(x, y)w(x, y)dxdy h(x, y)w(y, x)dxdy.

If we denote for tOl (X, y) w(y, x) by Wl(x) the function, which

corresponds to tO1 as W corresponds to tO, we have that Wl(x) W(x),
and now we proceed as in the proof of part (i) with W1 instead of W.
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Remark 4.2 The proof of Theorem 4.1 shows that in fact we can derive a
better inequality provided (4.1) and (4.3) hold simultaneously:

(foOO )lip(1 K) Wx(x)lu(x)lPdx

+ (1 K) Wx(x)lu(x)lPdx

< (fo fo lU(x)_u(y)lp )l/px yll+Xp
o)(x, y)dxdy

COROLLARY 4.3 Let 1 < p < o, >_ -1/p and < )p- 1. Then

lu(x) u(O)IPxa-XPdx

<
Zp + p -ot l (fo fo lU(X) u(y)lP
;p ot 1 Ix y I+zp xadxdy

(4.4)

Proof Apply Theorem 4.1 (i) with u(x) replaced by u(x) u(O) and
with o(x, y) w(x) x. Then W(x) xa and (4.1) holds with

Cp (p 1) 1/p’/(zp + p ot 1) provided ct p) p < -1 and
-tpt/p + ,kp’ + 1 > 0, i.e., if ot + 1 < p(. + 1). But this is the case if
ot + 1 < )p. Moreover, K p/(Zp + p- t 1) < 1 if ot + 1 < )p.

Remark 4.4 For the case ct 0, the statement in Corollary 4.3 follows
also at once from our Corollary 3.3 (see Remark 3.4). Moreover, according
to Corollary 1 in [4] (cf. our Theorem 2.2), the following complement also
holds: If 1 < p < c, Z > -1/p and ct > )p 1, then

(fo )l/p (foC fo lu(x)_u(y)lp )liplu(x)[Px-XPdx <_ C
Ix yll+Xp

xadxdy

(4.5)
where C 2p-1 (1 + p/(ot ;p + 1)). For ct 0, the inequalities (4.4) and
(4.5) coincide with the inequalities (1.6) and (1.5) mentioned in Section 1.

Remark 4.5 By applying Theorem 4.1 with
og(x, y) w(Ix Yl)lx y1-1-xp we obtain another inequality of the
Burenkov-Evans type (see Theorem 2.1). In particular by using this result
with w(x) x we rediscover the inequality (2.7).
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Remark 4.6 In Theorem 4.1, we in fact used the integrability ofcol-p’ (x, y)
either with respect to x or with respect to y on intervals (0, z), z > 0. If this
condition is not fulfilled, we can proceed in a similar way as in Remark 3.5:
We estimate the integral Ie from the proof of Theorem 4.1,

fofxlU(x)-u(y)lp

12 yl+Zp
co(x, y)dydx,

from below using the following H61der inequality:

c u(x) u(y) P

yl/p+)+
CO(X, y)dy

(fxlU(X)__u(y)lp )(fx )p-1< CO(X y)dy y-P’CO(x y)dy
yl+.p

with a suitable parameter 6. Here, the role of the function W(x) is played by

(fxCXZW* (x) y-P’CO(x, y)dy

i.e., we need the integrability of CO(x, y)y-aP’ with some 6 in the neighbour-
hood of infinity. The remaining steps are similar as in the proof of Theorem
4.1 (i) and are left to the reader (see also Remark 3.5). Let us mention that
condition (4.1) is then replaced by

(fo
r )lipC" sup W*(x)dx

r>O

(foc W*I-p’(x) xl/p’-P’+’+’dx)
the function Wz (x) W(x)x-zp in (4.2) is replaced by W*(x). X1-1/p-L-3

and the parameter 6 has to satisfy 6 > 1 1/p
A similar result can be obtained using the integrability of x-aP’CO(x, y) (as

a function of x !) in the neighbourhood of infinity if we proceed analogously
with I1 rewritten (by Fubini’s theorem) as

i1 f0c fy
c lu(x)-u(y)lpxl+.p CO(x, y)dxdy.
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5 A GENERALIZATION TO THE ORLICZ NORM

In this section we will modify inequalities (1.5) and (2.6), i.e., the case with
power weights x, using the norm in a suitable Orlicz space.

For this purpose, let P be a Young function satisfying the A2-condition.
Then it is well-known that there exists a/ > 0 such that for all K > 1,

P(ct) <_ tc P(t). (5.1)

If H is the Hardy (averaging) operator defined by

lf0X(Hu)(x) u(t)dt
x

and both P and its complementary function P satisfy the A2-condition, then
Palmieri [8] (cf. also [6, Corollary 4]) proved that

IltVHulle lltuullp (5.2)
1 v

where the norm in (5.2) is the Orlicz norm. [If v < 0 then the condition that
P A2 can be omitted.]

It is well known that the Orlicz norm I1" II P and the Luxemburg norm I1" 117o
defined by

( )Ilgll," inf [tk > 0" e !g(x)l dx
k

satisfy

Ilgll, IlgllP 211gll,.

Let 0 < ) < 1 and denote

v(x)
(Au)z(x, y)

u(x) u(y)
vz(x)= xX Ix- ylz

further, let I1" IIe(z) denote the twodimensional Orlicz norm on (0, o) x
(0, cx) with respect to the measure d/x dxdy

Ix-yl
The main result of this section reads as follows.
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THEOREM 5.1

l+X,8 < 1,
If P and P satisfy (5.1) with the constant > O, then for

Iluxlle CIl(Au)xlle( (5.4)

where

2(1 +
1 +/3()- 1)

Moreover, if) > 0 the condition that P satisfies (5.1) may be omitted.

Proof The convexity of P yields

fofo fofo (,u(x)-u(y),)dxdyP(l(Au)zl)dlz P
Ix ylz Ix yl

fo fo
x ( lu(x) u(y)l ) dY>- P

xz x

e
x x

( fo )x lu(x) u(y)l
dy dx P (luz(x) (Hu)z(x)l)dx>_ P

xx

The Minkowski inequality, the estimates (5.3) and the (Hardy) inequality
(5.2) with v -) yield

IluxllP Ilux (Hu)) + (Hu)xll,

Iluz (Hu)zllP + II(Hu)zlle

_< 211ux (nu)zllo + IIt-znulle
, t_< 211(zXu)zllp(u / 1 +/3) IluzllP

<_ 211(Au)zllP( 4-
1 +/, Iluxlle

and (5.4) follows immediately.
Of course (5.3) shows that (5.4) holds also with Orlicz norms replaced by

the Luxemburg norms.
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6 AN N-DIMENSIONAL FRACTIONAL ORDER HARDY
INEQUALITY

We are also able to prove some N-dimensional versions of the inequalities
mentioned. First some notation: For x NN, B(Ixl) will denote the ball
{y NN; lyl _< Ixl} and IB(Ixl)l its volume. It is IB(Ixl)l IxlNISN-11/N
where Su-1 is the unit sphere in Nu and IsN-I its area.

THEOREM 6.1 Let 1 < p < cxz, N > 1 andp > 1. Then

ixlXP------ dx
2N(l+Xp/PN1/p [p(l /,k)_ l] (f f lu(x)_u(y)lp )liPIsN-111/P ,p 1 v v Ix ylN(+Xp) dydx/(6.1)

Proof Obviously

J" = fr lu(x)-u(Y)lP
N Ix-ylN(l+xp) dydx

(Ixl) IX yl N(I+xp)
dydx

l flII-N(I+Z’P) fB>
2N(I+Xp) IX lU(X) u(y)lPdydx

N (Ixl)

since for y B(Ixl), it is Ix Yl < 21xl, and 1 + Lp > 0. But H61der’s
inequality yields

(u(x) -u(y))dy
(Ixl) <-(fB lU(X)-u(y)lPdy) IB(Ixl)lp-1

(Ixl)

and consequently

J >
2N(I+Lp) ixlNO+Xp

(u(x) u(y))dylPdx
(Ixl)

l f ’B(IxI)II-p
2N(+Xp) ixlN(+Zp)

lu(x)lB(lx[)l- u(y)dylPdx
(Ixl)

1 fe B(Ixl)
lu(x) u(y)dylPdx.

2N(I+Lp) Ixl N<I/zp In(Ixl)l (Ixl) (6.2)
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Therefore, by Minkowski’s inequality

(f lu(x)lp )alpN ]xlXP----ff-dx

u(y)dyixlzpNlU(x)--In(Ixl)l (lxl>

l }alpu(y)dylPdx

u(y)dylPdx
ixlXpN

lu(x)-
In(Ix])l (Ixl)

IB(lxl)l-Pf }/PixlXPN
u(y)dylpdx

u (Ixl)

lip

--=11+12.
(6.3)

It follows from (6.2) that

2N(I+)p)/PN1/P
I1 < j1/p (6.4)

]sN-111/p

and the Hardy inequality with power weights yields

P (flIIu(x)IP)
lip

12 <_ Cp
(P_ 1)l/p, [x[PN

dx

provided

Cp.--sup(flx ’B(IxI)I-P )l/P(fxr>0 l> Ix [ZpN
dx

<r

Yrsup N-I-LpN-Np NP
r>0 N-1 ISN-1IP

(fsu_l for tN-X+XP’Ndtdcr)
1/p’

r(N-Np-)pN)/p
N[sN-11-1 [sN-1 [1/p+a/p’ sup

r>0 (Np(1 + ,) N) 1/p

r ()p’N+N)/p’ (p- 1)I/P
(,p’N + N)I/P p(1 + )) 1

IxI-LpN(1-P’)dx)
dtdcr)

1/p

1/p’

P" (fRo [u(x)lPdx) 1/p and inequality (6.1) follows byHence 12 <
p(l+Z)-I IxlXP

combining the last estimate with (6.2)-(6.3) and subtracting.
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Remark 6.1 Inequality (6.1) is an N-dimensional counterpart of inequality
(1.5), i.e., with weight 1 on the right hand side. Of course, also more
general cases can be considered. Let us mention at least the following more
dimensional extension ofTheorem 4.1; we omitthe proof since the arguments
are quite similar to the onedimensional case.

THEOREM 6.2 Let co(x, y) be a non-negative measurablefunction onN x
N, locally integrable in both variables separately. Let 1 < p < cx and

Ix col-p’ (X, t)dt) 1-p If-lip and denote W(x) (IB( i)1 fa(Ixl)

Cp" sup { fx W(x)

r>0 i>r Ix [.pN

P N1/p
and K Cp (p_l)l/p, iSN_l < 1, then

ixlXP, wl_P,(x)dx ] 1/p’

W(x)
lu(x)lPdx

N IxlXpg

<
1 N1/P2N(I+Xp)/P(fe ]u(x)--u(y)lp

1- K ]sN-1] lip u Ix- y]U(l+kp)
co(x, y)dydx)

X/p
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