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Let D be an open subset of IR (n > 2) with finite Lebesgue n-measure, let d(x) be the distance
from x IR" to the boundary 0D of D, and let < p < o. We give a simple direct proof
that if IR"\D satisfies the plumpness condition of Martio and Viisili 10], then the inequality
of Hardy type,

holds whenever/ > max{0, ot }. We also show that the plumpness condition may be replaced
by ones which enable domains with lower-dimensional portions oftheirboundaries to be handled.
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1 INTRODUCTION

Let D be an open subset of Rn, let 1 < p < oe, and given x D let d(x)
be the distance from x to the boundary 0D of D. It is well known (cf. [6],
p. 223) that if u belongs to the Sobolev space Wp(D) and u/d Lp(D),

0
then in fact u lies in Wp(D), the closure of C(D) in Wlp(D). This holds
with no restrictions on 0D. The result in the opposite direction, namely that

0
if u W]p(D) then u/d Lp(D), would follow immediately if one knew
that the Hardy inequality

*Author for correspondence.

125
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fo 1(lu (x)l/d (X))p dx <_ C IVu (x)l p dx, u . Wp(D) (1.1)

was true for the particular D and the particular p. The validity of (1.1) has
been extensively investigated: for example, Davies [4] has shown that if
p 2 and D is bounded and satisfies a certain type of cone condition, then
(1.1) holds; it is clear that his argument can be adapted to permit other values
of p. Other work on the Hardy inequality (1.1), and weighted analogues
of it, may be found in the paper by Ancona [2] and the book by Opic and
Kufner [11 ]. Moreover, Lewis [9] has shown that if 1 < p < n and Rn \ D
is (1, p) uniformly fat, then (1.1) holds; if n < p < c he shows that (1.1)
holds for all D # Rn. The uniform fatness condition which he imposes when
1 < p < n is that there is a positive constant ; such that for all x Rn \ D
and all r > 0,

Rl,p (r-1 (B (x, r)fq (Rn\ D))) >_ ),

where B (x, r) is the open ball in Rn with centre x and radius r, and R1,p is a
certain Riesz capacity. Sufficient conditions for (1.1) to hold have also been
given by Wannebo 14]; these are expressed in terms of a capacity introduced
by Maz’ja and enable him to reproduce Lewis’s results for p > n and to show
that (1.1) holds if p > n 1 and D ( Rn) is simply connected. In 15] other
sufficient conditions for (1.1) to hold are given.

In the present paper we show that if D has finite volume and Rn \ D
satisfies the plumpness condition of Martio and Viiisiilii 10], then not only
does (1.1) hold but also more general inequalities of the form

fo (iu (x)l /d (x))p d C f. (IVu (x)l/d tx))p d, CU

(1.2)

where 1 < p < cx and /3 >_ max{0, ot-1}. This is established in
Section 2 by comparatively straightforward procedures. When D has a

Lipschitz boundary, our result agrees with Theorem 10.4 of Gurka and
Opic [7], obtained by entirely different methods and under the additional
assumption that/3 > p (p 1). If ot 1 and fl 0, (1.2) coincides with
(1.1) but does not then give anything new, as it can be shown that if Rn \ D
is plump and unbounded, it is (1, p) uniformly fat for every p > 1 so that
Lewis’s result applies. The plumpness condition, which will be explained
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in detail in Section 2, is a rather natural geometric condition on D which
is easy to check and has nothing to do with p. Like Lewis, our arguments
depend on a well-known lemma due to Carleson [3]; but we hope that our
direct use of the plumpness condition may have some appeal for those who
are less familiar with notions of capacity, and may stimulate further work.
In Section 3, the plumpness condition is replaced by ones which enable us
to handle domains with lower-dimensional portions of their boundaries, and
here the range of possible p’s for which, say, (1.1) holds is dependent upon
the properties of D. While these results can in fact be obtained from capacity
results, we hope that the direct method of proof will be of interest.

2 A WEIGHTED HARDY INEQUALITY

First we fix the notation and provide some basic definitions. Throughout the
paper we shall assume (unless otherwise stated) that D is an open subset of
Rn (n > 2) with finite Lebesgue n-measure. Given any sets A, B C Rn, the
distance between A and B will denoted by d(A, B) and the distance from
x Rn to A by d(x, A), writing d(x) d(x, OD) for shortness; if A has
finite Lebesgue n-measure A In, the average of a function u over A is defined
to be

UA IAI-1 [ u (x) dx.
Ja

The open ball in Rn with centre x and radius > 0 will be denoted by
B(x, t); when rn N t_J {cx}, Cn (D) will stand for the space of all rn times

continuously differentiable real-valued functions with compact support in D;
we write Ilullp,o (fo lu (x)l p dx) 1/p for all p (1, o); k-dimensional
Hausdorff measure on Rn will be denoted by 7-/k when k < n Wp (D)
will stand for the Sobolev space of all functions which, together with their
first-order distributional derivatives, are in Lp (D). Given two non-negative
expressions (that is, functions or functionals) R1, Re we shall write R1 -< R2
as ashorthandforthestatementthatR1 < CR2 for some constant C (0, )
independent of the variables in the expressions R1, R2; if R1 -< R2 and

R2 -< R1 we write R R2.

DEFINITION 2.1 Given any b (0, 1], we say that Rn \ D is b-plump if
there exists tr > 0 such thatfor all y D and all (0, tr] there is an

x (Rn \ D) tq B(y, t) with d(x) > bt.
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This definition is due to Martio and Vaisali 10]; Jerison and Kenig [8] call
the hypothesis of the definition a corkscrew condition. Moreover, there is a
connection with the exterior regular domains ofTriebel and Winkelvoss 13]"
if D coincides with the interior of its closure, then D is exterior regular if,
and only if, it is b-plump for some b.

Our first result is the following:

TIOIEM 2.2. Suppose that Rn \ D is b-plump for some b (0, 1], let
1 < p < cx and let or, R be such that

max {0, ot- 1}. (2.1)

Then there is a constant C > 0 such thatfor all u C (D)

[ [
dD dD

(2.2)

Proof Let u 6 C (D) we may and shall suppose that u is defined on all
of Rn and is zero on Rn \ D. Let I/V be a Whitney decomposition of D (see
[12], p. 16); that is, IA; is a family of closed dyadic cubes Q, with pairwise
disjoint interiors, such that D Uaw Q,

1 < d (Q, OD) / diam (Q) < 4 for all Q 6 142

(diam (Q) being the diameter of Q) and

1/4 <_ diam (Q1)/diam (Qz) < 4 for all Q1, Q2 142 with Q1NQ2 .
For each Q 6 I/V we fix an XQ OD such that d (OD, Q) d (XQ, Q) and
choose a cube D a with centre xa such that diam () diam (a).
Then

fo (In (x)l/d (x))p dx fQ (lu (x)l/diam a (Q))P dx

< f (lu (x)l/diam (Q))P dx.
QeW

(2.3)

Since Rn \ D is b-plump, there exists tr > 0 such that for all z 6 0D and
allt 6 (0, cr],thereisay 6 (Rn\D) fqB(z,t) withd(y, 0D) > bt.
We may assume that cr >_ diam (9) for all Q W and so may choose
t= diam () for ifthere is a maximal Qo 6 Wsuchthat diam (o) > r,
we simply take k > 0 such that cr > k diam (o) and then work with
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k diam () instead of diam (). It follows that for each Q W there is

a y (Rn \ D) n B (XQ, diam ()) with d (y) > b diam (9); we write

,-- Q (y, b diam (9)In),
the open cube with centre y and sides of length b diam () /n parallel to
the axes.
As A C Rn \ D, the mean value u’ 0. Thus from (2.3) we obtain

fD (lu (x)l/d’ (x))p dx -< E (lu (x) / diam a (Q))P dx.
Q’Vv

(2.4)

Use of H61der’s and MinkowskPs inequalities now shows that for all c R,

f, u (x).- u’2l p dx <_ 2p (I O.In/I.ln) f, lu (x) clp dx

21) (n/b)n f, lu (x) cl p dx.

The choice c u ’ in this inequality, together with the Poincar6 inequality
in a cube (see [6], p. 243), gives

f’ (f’ )P/qIll (x) u"l p dx I n+l--q [Vll (x)lq dxn (2.5)

where p andq are related by 1 < q < p nq/(n-q); the constant

implicit in the inequality is independent of Q. Since Vu (x) 0 whenever
x Rn \ D, we see that if/ > 0,

lVu (x)lq dx fn" IVu (x)[q dx
Q 6"V Q r’I QTO

{diam (Q1)/d (x)}q IVu (x)lq dx
QIW, QInQTb.O_
(diam (_.))flq f, (IVll (X)[ /dfl (X))q dx. (2.6)
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Hence from (2.4)-(2.6) we find

fo (lu (x,, /d dx

(IVu (x)l/d (X))q dx

+/- (IVu (x)l/d (x))q dx [0.1 -p/qin

aw (2.7)

the final inequality being a consequence ofour assumption that fl -or-t- 1 > 0.
To conclude the proof we use the following well-known lemma first proved
by Carleson [3] when p 2 and n 1 (see [12] for the general case).

LEMMA 2.3 Let Qo be a cube in Rn and suppose that Qi is a sequence of
cubes such that each Qi is contained in Qo and, Qi ln < const IQ01 let
v Lp (Qo)for some p (1, cxz). Then there is a constant C, independent
of v, such that

Z IQilln-P It) (x)l dx < C Iv (x)lp dx. (2.8)

We apply this to the Q, noting that the basic hypothesis of the lemma is
satisfied since for a fixed cube B,

It)In diam" (Q)-<_ IBI..
QcB,QW QCB,Qel/V

Since p/q > 1, Carleson’s lemma shows that the fight-hand side of (2.7)
can be estimated from above by a multiple of

(IVu (x)[/d (x))p dx,

and the theorem follows.

Remark 2.4 (i) When D has a Lipschitz boundary it is plain that Rn \D
satisfies the plumpness condition, and so inequality (2.2) holds. This result,
under the additional assumption that fl > p/(p 1), was obtained by Gurka
and Opic ([7], Theorem 10.4). Their paper also contains sufficient conditions
for (2.2) to hold when OD is in the H61der class C,K for some tc (0, 1];
and it gives results concerning the inequality analogous to (2.2) but with the
left-hand side replaced by
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D
lU (X)Iq/dq (x) dx

for suitable q.
(ii) When ot 1 and/ 0, (2.1) reduces to the Hardy inequality

(lu (x)l/d (x))p dx < C fo IVu (x)lp dx, u C (D) (2.9)

mentioned in the Introduction. As explained there, the special case of
our results, that (2.9) holds when Rn \ D is plump and unbounded and
1 < p < cx, is contained in those ofLewis [9]. Note, however, that inspection
of our proof shows that the constant C in (2.9) may be taken to be

where

p(n-3)+-l+a(6a)ab-nn7con

( 1) 1
a=p 1--

n 3

and (.On B (0, 1)In; if D is convex, then we may choose b = 1. In this

connection we are informed that when D is convex and has C boundary,
then P. Sobolevski and T. Matskewich have very recently shown that the

best constant C in (2.9) is 1 see also ’On the best constant for

Hardy’s inequality’, M. Marcus, V.J. Mizel, Y. Pinchover (to appear). When
p n 2 and D is a sector of a circle the best constant C in (2.9) has been
shown by Davies [5] to be 4 if the angle of the sector is less than/30 4.856.

If we use the classical variational capacity argument, Lemma 2.5 below,
the Hardy inequality (1.1) follows easily.
As normal, for a compact subset E of a nonempty open set D in Rn we

write

v6C(D), 0<v< lonDand|
cap (E, D) inf IlVvlIoP,D_ v 1 in an open neighbourhoodP

of E in D.

LEMrA 2.5 [6, Corollary 2.4/Chapter VIII] Let Q be a cube in Rn and

define any u C(D) to be zero outside the domain D. Let 1 < q < p <
n__q_ P < n Ifq- cap ( t3 (Rn\ D) 2Q) > o, thenforanyu C(D)n--q’
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lU(x)l p dx <
c(n’q) diam (a)n (fQ )P/q(q cap (- fq (Rn\ - I2Q))p/q IVu(x)lq dx

Using Lemma 2.5 and the proof of Theorem 2.2 we obtain the following
theorem.

THEOREM 2.6 Suppose that D is a domain with constants ) > 0, co > 0
such that

q cap (- fq (Rn\ D), 20) diam (a)q-n >_ ) (2.10)

for all cubes Q Q(y) with centre y OD and O < diam (Q) <

co D 1In. Let 1 _< q < P n_q p < n.<nq Then there exists a constant c > 0
such thatfor all u C(D),

lu(x)lP fod(x-3P dx c IVu(x)lp dx.

Proof We use the same notation as in the proof of Theorem 2.2. We need
to verify only the inequality

lu(x)lp dx diam (Q)-P < diam (_)n(1-qe) IVu(x)lq dx

(2.11)
where 1 _< q < p _< n--n-q-n_q,p<n," otherwise the proof is similar to the proof
of Theorem 2.2. However, Lemma 2.5 and the assumption of Theorem 2.6
immediately yield (2.11):

lu(x)lp dx diam (Q)-P

<I c(n’q) diam (O)n-q
q- cap ( fq (Rn\D), int (2))

x diam ())n(1-q) IVu(x)lq dx

Ic(rt’q)l p/q (f. )P/q< diam (_)n(1-q) ]Tu(x)[q dx
Z
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Remark 2.7 To obtain the general case (1.2) the condition (2.10) should be
replaced by q cap (- q (Rn\ D), 2Q) diam (Q)q(-)-n > ., where
_>0.

3 OTHER CONDITIONS ON THE BOUNDARY OF D

First we establish the following result:

THEOREM 3.1 Let D be a domain in Rn (n > 1) and suppose there are

constants s 6 (0,1) and T > 0 such that for each y OD and all
(0, T), there is a k-dimensional cube Qk,t (Y) C OD, with y ak,t (Y)

and 7-[k (Q,t (y)) > stk; suppose also that p (1, n) is such thatfor all
these k,n p < k < n- 1. Then there is a constant C > O such that
Hardy’s inequality

(lU (x)l (x))p dx C ]O IVu (x)l p dx, C (D)/d u

holds.

(3.1)

Our proof of this theorem hinges upon the following two lemmas. In these
all cubes are assumed to have edges parallel to the coordinate axes in Rn,
and the intersection of a cube Q in Rn with a k-dimensional plane is denoted
by Q’ (1 < k < n), with the understanding that Qn Q.

LEMMA 3.2 Let Q be a cube in Rn and let p (n, cx) q [1, oe) Then
there is a constant c c (n, p, q) such thatfor every u W (Q),

lu (x) uat < c (liu ua[I q(p-n’/p )p/{np+(p--n)q)q,Q IlVull,a (3.2)

for almost all x in Q.

Proof The result is simply the special case m 1 of Lemma 5.18 of [1 ],
applied to u u a.
LEMMA 3.3 Let Q be a cube in Rn, let 1 < k < n and let 0 < n p < k <
n. Then there is a constant c c (n, p, q) such thatfor every u wlp (Q)

(fQ )lie (fQ )liP[U (y) UQ
q dy <_ c IVu (y)l p dy (3.3)

where q kp/ (n p) and dy denotes Lebesgue measure on R.
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Proof Exactly as in the proof of Lemma 5.19 of 1] we find that

fQ lu (y) UQ fQ )
iz(p-v)/(p.)

q dy < lu (x) UQ
q dx

(fo IVu (x)l p dx (3.4)

where v is the largest integer less than p,/x (nk_v),)t, (nk21_l) and
qo np/(n p). By Poincar6’s inequality in the cube Q we can estimate

qthe term fQ lu (x) UQ dx in (3.4) by means of fQ IVu (x)lp dx, and the
result follows.

Proof ofTheorem 3.1 It is enough to prove (3.1) for u C (D). Let I/V
be a Whitney decomposition of D. Given any Q l/V, fix xQ OD such
that d (Q, OD) d (Q, XQ) fix a cube with XQ as centre and such that
Q c and diam () c (n) diam (Q). Then

o
(lu (x)l/d (x))P dx /_ (lu (x)l/d (x))P dx

"< f (lu (x)l/diam (Q))P dx.
JO

(3.4)

For each cube there is a set ",d(a) := C OD such that (’;,d(a)) "
s diam (9), where k (n p, n 1]. Since u 0 on ,

l (x)lp dx f’6 lu (x) ugl dx. (3.5)

Moreover, Minkowski’s inequality and the Poincar6 inequality in a cube yield

(3.6)
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where q np/(p + k). Use of H61der’s inequality gives

(3.7)

where )k is the intersection of and the k-dimensional plane containing
the cube Qk,t (XQ) for suitable t. From Lemma 3.3 we have

(f’,l p )lip (f,. )l/qu (x) u’ dxl <_ c (k, n, p) IVu (x)lq dx (3.8)

where q np/(p + k), p < n and n p < k < n. Combination of
(3.4)-(3.8) now shows that

(lu (x)l /d (x))p dx -.<

_
S
-1 diam (Q)n-k-p IVu(x)lq dx

s-1 diam (Q)-k-P ---Ix-p/q,n
QeV;

(f )P/qIVu(x)]q dx

)"q"<

_
S
-1 ]_.11-p/q IVu(x)]q dx

n
QVV (3.9)

since np k p 0. As the ) form a sequence ofcubes to which Carleson’sq
lemma, Lemma 2.3, may be applied, it follows from (3.9) that

(lU (X)l/d (X))p dx < C fD IVU(x)IP dx

for some C C (k, n, p) s-1 The proof is complete.

A variant of Theorem 3.1 along the lines of Theorem 2.2 can easily be
given.
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THEOgEM 3.4 Let p (1, n) andor,/3 R; let D be a domain in Rn (n > 1)
and suppose that there are constants s (0, 1) and T > 0 such thatfor each
y OD and all (0, T), there is a k-dimensional cube Qk,t (Y) C D
with y Qk,t (Y), 7@ (ak,t (y)) > stk, and

1 >_ max{O, ot- 1}, n-p<k<_n-1. (3.10)

Then there is a constant C > 0 such thatfor all u C (D),

(I. (x)l/ (x))e dx _< c (IV. (x)l/e (x)) dx.

Proof This follows the pattern of that of Theorem 3.1; just as before and
with the same notation, it follows that

L (lu (x)l/d (x))p dx -< _. diam (Q)--k-p ll-p/q,n
QeW

)P/qx IVu(x)lq dx (3.12)

where q np/(p + k); see the inequalities leading up to (3.9). Under
conditions (3.11) the right-hand side of (3.12) can be estimated from above
by a constant times

E diam (Q)-k-ap+p ll-p/q,n ([Vu (x)l/dE (X))q dx
Qsw

)P/qE Ii 1-p/qn (]Vu (x)l/dfl (X))q dx
QV

The result now follows as before on application of Carleson’s lemma.

Acknowledgements

It is a pleasure to record our thanks to The Royal Society and the Academy
of Sciences of Finland for the support given to R. Hurri-Syrj/inen.



REMARKS ON THE HARDY INEQUALITY 137

References

[1]
[2]

[3]

[4]

[5]
[6]

[7]

[81

[9]
[10]

[11]

[12]

[131

[14]
[15]

R.A. Adams, Sobolev spaces, Academic Press, New York (1975).
A. Ancona, On strong barriers and an inequality of Hardy for domains in R", J. London
Math. Soc., (2)34 (1986), 274-290.
L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math.,
$0 (1958), 921-930.
E.B. Davies, Somenormbounds and quadratic form inequalities for Schr6dinger operators
(II), J. Operator Theory, 12 (1984), 177-196.
E.B. Davies, The Hardy constant, Quart. J. Math. Oxford, 46 (1995), 417-431.
D.E. Edmunds and W.D. Evans, Spectral theory and differential operators, Oxford
University Press, Oxford (1987).
P. Gurka and B. Opic, Continuous and compact imbeddings of weighted Sobolev spaces
II, Czech. Math. J., 39 (1989), 78-94.
D.S. Jerison and C.E. Kenig, Boundary behavior of harmonic functions in non-
tangentially accessible domains. Adv. in Math., 46 (1982), 80-147.
J.L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc., 308 (1988), 177-196.
O. Martio and J. Viisili, Global LP-integrability of the derivative of a quasiconformal
mapping, Complex Variables Theory Appl., 9 (1988), 309-319.
B. Opic and A. Kufner, Hardy type inequalities, Pitman Research Notes in Mathematics
219, Longman Scientific and Technical, Harlow (1990).
E.M. Stein, Singular integrals and differentiability properties of functions, Princeton
University Press, Princeton (1970).
H. Triebel and H. Winkelvof3, The dimension of a closed subset ofR and related function
spaces, Acta Math. Hungarica, 68 (1995), 117-133.
A. Wannebo, Hardy inequalities, Proc. Amer. Math. Soc., 109 (1990), 85-95.
A. Wannebo, Hardy inequalities and embeddings in domains generalising C, domains,
Proc. Amer. Math. Soc., 122 (1994), 1181-1190.


