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Let c 6 [0, 1), p > 0. It is shown that if f is an entire function of exponential type
cmzc and n___ ’_.- If(g)()n)l p < oc, where {),}ez is a sequence of real numbers

satisfying I1.n nl _< A < , I.+u .1 > 6 > 0 for u = 0, then f[_ If(x)lPdx

B n___- If(g) (,k,,)I p, where B depends only on c, p, A and 6. A sampling theorem for

irregularly spaced sample points is obtained as a corollary. Our proof of the main result contains
ideas which help us to obtain an extension of a theorem of R.J. Duffin and A.C. Schaeffer
concerning entire functions of exponential type bounded at the points of the above sequence
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1 INTRODUCTION AND STATEMENT OF RESULTS

According to a famous theorem ofCarlson 12, Theorem 5.81] if f is an entire
function ofexponential type < r which vanishes at n 0, -+-1, 4-2 then
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it must be identically zero. An extension of this result due to Plancherel and
P61ya [10, Section 33] reads as follows.

THEOREM A Let p > 0 and c [0, 1). If f is an entire function of
exponential type such that

lim sup y-1 log{lf (iy)[ + If (-iy)l} czc
y--oo

then there exists a constant B depending only on p and c such that

(1.1)

If(x)lPdx < B If (n)l p (1.2)

It was shown by Boas [1] that the sampling points in (1.2) do not have
to be integers. The following theorem is covered by his generalization of
Theorem A.

THEOREM B Let ) "= {.n be a sequence of real numbers such that

[)n -nl < A < o, [,,,+u -)l > 3 > 0, (u # 0). (1.3)

Ifp, c and f are as in Theorem A, then there exists a constant B depending
on p, c, A and 3 such that

If(x)lPdx < B If(,n)l p (1.4)

With ) "= {)n as above let

z)t z tG(z) "= (z-)0) H 1-n 1- (1.5)
n=--cxz ,--n

The proof of Theorem B makes essential use of the fact that for certain

positive constants Cl, c2 depending only on A, 3 we have [8]

IG(z)I < Cl(Izl + 1)4A exp(rlm zl) for all zC, (1.6)

IG’(&)I > c2(1 + [JLnl) -4zx-1 (1.7)

and for each e > 0 holds [9, pp. 92-93]

exp(zr 13m zl)
IG(z)l

O (exp(elzl)) if Iz -)nl > 3/2. (1.8)
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These inequalities extend certain very important properties of the function
sin zrz to which G(z) reduces when ,n n for all n 6 Z. From (1.6) it can
be concluded that for some constant c3 depending only on A and 3 we have
[11, see (3.3")]

Ia(z)l
< c3([z[ + 1)4A exp(zrl3mzl) for all z 6 C, (1.9)

where the function on the left is assumed to have its singularity at z )n
removed. Hereafter we will use y to denote 3m z.

Here is another extension of Theorem A which was obtained only a few
years ago.

THEOgEM C [4, Theorem 3] Let m 6 N, p > 0, c 6 [0, 1). If f is an entire

function ofexponential type such that

lim sup y-1 log{If (iy)l + If(-iy)l} cmrr (1.10)

then there exists a constant B depending only on m, p and c such that

cx c m-1

If(x)lPdx < B E E If(")(n)lP (1.11)
O n=-- =0

One might wonder why we restricted ourselves to the sequence {n}nZ;
but consideration of an bitry sequence {n satisfying (1.3) would have
required an additional propeay of the function G(z) which was not avlable
to us at that time. According to it, for each k 2, there exists a constant c4,
depending only on A and 3 such that [5, see Theorem 1 and Remk 6]

IG((X)I
[G(&n)[

< c4, for all n 6 Z. (1.12)

The details of the proof of this crucial inequality were given in [5] in the
case A 1/4. In Remk 6 of that paper it was stated that the inequality
remains tree for bitr A but the details were left out because, there the
case A > 1/4 was of little impoance. Here it is impoant to let A be any
positive number and so e give below some hints which the reader ght
find helpful in verifying the inequality in the case A > 1/4.
From (1.6) it follows that [G(z)l < c exp()(ln[ + 2)4A in the disk

[z n[ 1 and so by the Cauchy’s integral formula for the kth derivative,
we have

]G((n)] < kCl exp()(lXnl + 2)4
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This is in conjunction with (1.7) implies that

IG()(Xn)l
IG’0,)I

< k!(cl/c2)exp(rc)([,kn[ + 2)4zx(lXnl + 1)4zx+l

from which the desired estimate for IG()(;Ln)l/la’()n)l follows trivially if
n is bounded. So we may suppose In > 4A.
The proof of (1.12) in the case A < 1/4 was based on the fact that for

each n Z,

(,on(N) "=

N

vq{--n,O,n}

< 10

if N > Nn, where Nn is an integer depending on n, and the estimates

< 2-1-2k+1 for k 3, 4

hold for all N N. We note that, for A > 1/4, this remains true in the sense
that the quantities

N 1 N 1
on(U),

v=-N (,kv ,kn)2’ v=-N I)v ,knl
where k 3, 4

u#n u#n

are bounded by constants depending only on A and 8. To see this assume
n > 4A and for sufficiently large N write

on(N) IB(n) A(n) + E(n)l < IB(n) A(n)l + IE(n)l

where

A(n) :--
[n-2A]-I

v--1

2n + 2n v -v
(n + v + (, +_,,))(n v + (,, ,,))

N 2n + 28n (v 3-v-,B(n) Z_., (n + v -t-- (3n 3-v))(v n + (3v n))v=[n+6A]+3

E(n) [n+6A]+2 2n + 2n v -v
/---, (n + v + ( _))(v n + ( ))v=[n-2A]



AN INEQUALITY FOR ENTIRE FUNCTIONS 153

The quantities A(n), B(n) can be estimated from below and above as in the
case A < 1/4. Besides, we easily see that

IE(n)l <
24(1 + 2A)

The desired property of q)n (N) can then be proved in essentially the same
way as before.
The quantities

N 1 N 1Z ()u --n)2 Z Iv nlkv=-N v=-N
u#n #n

where k 3, 4 present no new problems.
We are now able to prove our main result.

THEOREM 1 Let m N, p > O, c [0, 1)and * := {)n} be a sequence

of real numbers satisfying (1.3). If f is as in Theorem C, then there exists a

constant B depending only on m, p, c, A and 3 such that

c m-1

If(x)lPdx < B lf(")()n)lp
Cx3 n-----/z--0

(1.13)

Remark 1 Theorem 1 implies, in particular, that if f is an entire function
of exponential type satisfying (1.10) for some c 6 [0, 1) and vanishes along
with its derivatives of order 1 m 1 at points ;n for which (1.3) holds,
then it must be identically zero. This is an extension ofthe theorem ofCarlson
mentioned above.

Let ) := {)n} be an arbitrary sequence satisfying (1.3), G as in (1.5), m a
positive integer and

G(z) )mkIIm,n(Z) ffm,n(,; Z) "-- Gt(n)(Z n)
(n Z).

For 0 </z _< m- 1 we consider the function

di)m,n,lz (Z) diIm,n,lz (/; Z)
m-l-/z

:-- (1//x!)(z )n)lXJffm,n(Z) (1/j!)am,n,j(z Zn)j

j=0
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where am,n,o 1, am,n,1 :-- --m,n (,n) and for j > 2,

am,n,j (--1)J

() lttm,n ()n) (J2) *,n(n)
1 (JT1)klItrn,n(i,n)
0 l

0 0

() d/(j)=m,n (.n)
(- 11) q/(mJ, 1) ()n)

(--) kI/(m2) (n)

(I) I/,n (.n)

It is not hard to verify that

fork =0 m- 1 and v # n.
(1.14)

According to a formula for the j-th derivative of the reciprocal of a j times
differentiable function [5, Lemma 3]

am,n,j-- Zj klimi’n(Z) Z-’An
(1.15)

Given m N and a sequence ) "= {;n} satisfying (1.3), we associate with
any function f IR C belonging to cm-l(I) the formal series

oo m-1

Lm,.(f; Z) := f(lz)(.n)Om,n,lz(,; Z) (1.16)
n=--oo

Although Lm,z(f; z) may not be defined for z 6 {.n} it follows from (1.14)
that f-(’)(f;;n) f(’)()n) for alln Z and/x 0, m- 1"-’m,
Considerably more can be said if f in (1.16) is an entire function of
exponential type belonging to LP (IR) for some p > 0.

THEOREMD [5,7] Let m N,O < p < oo and . := {Ln} a sequence
satisfying (1.3) with

A < / ?- if 0< p<2
(1.17)

/ if 2<2--F p < cx.

If f is an entire function of exponential type mrc belonging to Lp (IR), then

f(z) Lm,x (f; z) for all z C.
Now from Theorem 1 we readily obtain
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CogOLLAg 1 Let rn 6 N, 0 < p < o, := {)n a sequence satisfying
(1.3) with A restricted as in (1.17). If f is an entire function ofexponential
type less then mzr satisfying n=-c /z=0Im-1 f(z) ()n) [P <o, then f(z)
Lm,z (f; z) for all z C.

2 AUXILIARY RESULTS

Using the generalized Leibnitz’s formula [3, p. 219] it can be shown that [5,
Lemma 2]

kp(s) (n)
S! jl G(si+l)(’n)

m,n G
Sl.t_..._[_Sm_. (S "Jr- 1)*.. (Sm + 1)*..= (n)
0S1 SmS

From (1.12) it then follows that if c4,1 1 and J/s "= maxl<<s+l c4,,

then for all n 6 Z we have [5, Remark 4]

l/(s) (Zn)] <
(’A/[ )ms !mS+m

--m,n (S + m)!
(2.1)

d(J)Since am,n,j is a polynomial in tPm,() --m,(ik) there exists a

constant c5 depending only on A, 8 and m such that

[am,n,j[ <_ C5, where 0 < j < rn 1, n 6 Z. (2.2)

Hence using (1.7) and (1.9) we conclude that for all z 6 C we have

]dPm,n,/(z)] < c6(Izl+l)amzX(exp(zrmlyl))(lzl+l+l)nl)m-l (l+l)n[) (4zx+l)m

where c6 < (m+ 1)c5(c3/cl)m. Since (Izl/ 1 + [)n [)m-1 < (Izl/ 1)m-l(1 +
[,n 1)m-1 weget

[m,n,z(z)[ < c6(IZ[-I- 1)(4A+l)m-l(exp(zrmlyl))(1 q--IZn[) (4/x+2)m-1

(2.3)
Using this estimate we can easily show that if f --+ C is a function

belonging to Cm- () such that for some M > 0 and some ot > (4A + 2)m,
M

If() (.n)l < (n Z, /z 0 m 1), (2.4)
1 + [,n ot

then on each given compact set E C C the series n=-c =0m- f(z) (-n)
ePm,n,g(z) converges absolutely and uniformly, i.e. Lm,n,g(f; ") is an entire

function. Further,

]Lm,x(f; z)] O ((Izl / 1)(4A+l)m-1 exp(zrmlYl)) (2.5)
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Hence, we have

LEMMA 1 If(2.4) holdsfor some ot > (4A + 1)m, then Lm,z(f ") is an

entirefunction ofexponential type raze.

It is interesting and useful for us to know that more can be said when f is

an entire function of exponential type satisfying (1.10).

LEMMA 2 Let f be an entirefunction ofexponential type satisfying (1.10).
If(2.4) holdsfor some ot > (4A + 2)m, then f(z) =- Lm,z(f z).

Proof Since() f() 0, .,m 1m,z(f; )) (X) for all n 6 Z and/z
the entire function g(z) := f (z) Lm, (f; z) has zeros of multiplicity at

g(z)least m at each of the points )n of the sequence ). Hence H(z) "= 6z)
is entire. Since g is of exponential type, say r, we may use (1.8) to conclude
that for z lying outside the union of disks Dn := {z Iz ) < 3/2} we
have

IH(z)l < Kexp((r + 1)lzl), (2.6)

where K is a constant. If z Dn, then by the maximum modulus principle

[H(z)l < K exp ((r + 1)([)n[ nt- /2)) < K exp ((r + 1)(2l)n[ + ,S)lzl)21)n a

whence

K exp ((r + 1)(2A + 8)lzl)IH(z) (2.7)
2A -8

if I)nl > A. In view of (2.6) the preceding estimate holds for all z with

Izl > A. If K1 :-- maxlzl_< IH(z)l, then clearly

.H(z).< max{K, K1}exp ( (r+ 1)(2ZX-t-,)lz.) forall z 6 C
2A -8

i.e. H is of exponential type.
We next estimate H(rei) more precisely for large r and 0 near -t-rr/2.

Our hypothesis about f implies that for all 0,

If(r exp(i0))l O (exp(c’mzrl sin0l + dlcosOl)r)
where c < 1 and d is finite. So by (1.8)

f(rexp(iO))
O (exp(-(1 -c’)mrlsinOI + dl cos01-t-me)r)

(G(rexp(iO)))m
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f(z) is bounded on arg z 0 if 0 is sowhere e is arbitrarily small; thus (G(z))
near -4-7r/2 that -(1 ct)mzrlsinOI + d[ cos01 + me < 0. Next, we note
that

m,n,lx (Z)
(G(z))m

m-l-lx lam,n,jllz *hiIx+j-m

j=0 J!

< (1/c2)m c5(1 -+" I,knl) (4A+l)m Iz ZnlIx+j-m
j=0

by (1.7) and (2.2)

mcs(1 + Inl) (4zx+l)m
< if Iz--)nl > 1.

c’lz-Znl
Hence, for lYl _> 1,

Zm,. (f; z)
(G(z))m

cx m-1

n=--: IX--O

di)m,n,ix (Z)
(G(z))m

mcsM (l+l.nl)(4A+l)m

c’lYl n=_ 1 + IZl=
by (2.4)

since or > (4A + 2)m.

In particular,
Lm,z (f; r exp(i0))
(G(rexp(iO)))m

is bounded on arg z 0 if 0 < 0 < zr. Thus,

H(z)
(a(z))m

f(z)
(G(z))m

Zm,) (f; z)
(G(z))m

is bounded on arg z 0 if 0 is sufficiently close to +7r/2. Hence H is
bounded on four rays any two consecutive ones of which make an angle of
less than rr. Since H is an entire function of exponential type it must be
bounded everywhere by a Phragm6n-Lindel6f theorem [2, Theorem 1.4.2]
and so is a constant. Finally, this constant must be zero since H(iy) -- 0
as y - cxz. Consequently, g(z) =- O, i.e. f (z) =-- Lm,(f z). []



158 G.R. GROZEV and Q.I. RAHMAN

For the proof of Theorem 1 we shall also need the following.

LEMMA 2 For any rl in (O, zr cyr) let otl (O) < or2(0) < be the
positive zeros of sin rlz arranged in increasing order. Given any sequence
{;kn} satisfying (1.3) and a positive integer k, we canfind in each subinterval
I := [r/t, rft] of (0, r crc) with Oil (rlt) Oil (OIt) t, a point rl such that

Iotj () n > /2for all n e Z and j 1 k.

Proof Choose r/in I such that ICtl(0) .nl > /2 for all n Z and call
it 01. We can change this value of 0 to a new value 02 contained in I such
that Iot(r/) .nl > /2 for all n Z. Since otj(O) jzr/o this can be
achieved without changing Oel (0) by more than /23. This new value 0e of

0 can be changed (if necessary) to another value 03 contained in I such that
Iot3(03) )nl > /23 for all n Z. This can be done without causing Ctl

to move by more than (1/3)(/23) < /24; the value of ot(0) changes by
less than /23. We can continue this process of moving 0 and obtain at the
k-th stage a point r/ in I such that Iotj (0) -1 > /2 for all n Z and
j--1 k. []

3 PROOF OF THEOREM 1

We assume the right-hand side of (1.13) to be finite, since otherwise there is

nothing to prove. In particular, f, f(m-1) are bounded at the points )n.
Let

M1 :-- sup max ]f(")()n)l
nZ O_</x_<m--

Let N be an integer and put X(nN) "= Xn+N XN, SO that )(oN) O,
IX(nN) nl < IXn+N (n + N)l + IXN HI _< 2A, +u
I)n+N+u Xn+NI > if u 0. Hence

G(N; z) "= z 1- 1-
n=l An

satisfies (1.6), (1.7) and (1.9) with A replaced by 2A. It also satisfies (1.8)
and (1.12); the constants Cl, c2, c3 and c4,k are all independent of N.

Let

a := min{yr-cyr, 1/(2A)), rf := yra/(2yr +Sa), 0" := a/2 (3.1)
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and k be an integer larger than (8A +2)m or (8A + 2)m 1 + 1/p according
as p > 1 or 0 < p < 1, respectively. Refer to Lemma 2 and find an r/k in
[r/’, r/’] such that Iotj (r/k) x(N) > 8/2k for all n 6 Z and j 1 k. We
recall that o1 (r/) < o2(r/) < are the positive zeros of sin(r/z) arranged in
increasing order. Consider the function

(sin(r/kZ) m

F(N; z) "= f(z + XN) -T-----I-Is= (z
(cs s(o)) (3.2)

We claim that

F(N;z) =-- Lm,Zm(F(N; ");z), (X(N) ": {L(nN)}). (3.3)

In order to prove it we use Lemma 1. Let us estimate IF(U)(N; I(N)
-n )lfor

0 </z < m- 1. Writing

F fl" re"" fm+l" fm+2"’" fm+k+l,

where f(z):= f(z + N), f2(z) fm+l(Z):’--sin(r/kZ)and
fm+j+(z) := 1/(z- otj)for j 1 k and applying the generalized
Leibnitz’s formula for the/zth derivative of the product of several functions,
we obtain

/A! [f(/Zl) (X -’]- ,N)FOx) (N; ,(nN))
/Zl I’’"/Zm+k+l/zl +’"+/Zm++l =/z

m+
x

dxz
(sin(r/kX))

1 f(l) (,n+N)
Hjk.:l (,(nN) 0/j) /0

/Z2+"’+/Zm+/+l--/Z--/ /L2! "/Zm+k+l
0.</2 ]Lm+k+ </x-I
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So

Note that the last sum is equal to (m + k)g-l. Setting Me "= max{r/n-1 1
(2k/8)m(m + k)m l--I=l m+j+l !, which depends only on A, 8 and m, we
obtain

If(1)(jkn+N)[. (3.4)

2MM2 the function F(N; .) satisfies theSince IF(g) (N; ;k(nN))l < H_- IXN)-aJ
condition (2.4) at the points k(nN) with a k > (8A + 2)m. So (3.3) holds
by Lemma 2.
We may suppose A > 1/2. Let F be the boundary of the square of side

4A with centre at the origin and sides parallel to the coordinate axes. Then
by the maximum modulus principle

l)N max [f(x)l max [f(x +)N)I < max [f(z +
Ix --&N <2A --2A<x<2A F

Using (3.2), (3.3) and (1.16) we get

f (z + )N) (Z otj) (1/sin(olcz))m

oo m-1

((N). Z).E E F(g)(N;)’(nN))(pm’n’g
n------(zx g---O

Since min{(1 c)zr/(2 + 8(1 c)), rr/(4rrA + 8)} < Ok < 1/(4A) and
2A < Izl _< 2x/A for z E F it follows that I1/(sin(rlkZ))l is bounded above
on F by a constant M3 depending only on c, A and 8. Besides, from (2.3) it
follows that for z E F,

Idi)m,n,g()(N)" z)l < U4(1 + I.(N) l)(8A+2)m--1
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where M4 depends only on A, andm. Itis clearthatmaxzer I-Ijk.=l Iz-ogl
M5 where M5 depends only on c, A, 6 and m. Hence, using (3.4) we obtain

VN < M5 (M3)mm4M2 E (1 + IX(nN) I) (8zx+2)m-1

(7)E If(1)(’kn+g)l
/a,=o I=O

cxz m-1

-(
n=--cx

where g := M5(M3)mM4M2m(m.@I]) and

d(N (1 + I){N) l) (8A+2)m-1

1-[jk’=l )(nN) --Otj

Clearly

/ IIn+2A,A I+Otl],
H I)(nU)--091 > L(n, k) "= n 2 ot,

j-1 (2T)k

(1 + Inl + 2A)(8A+2)m-1

if n <-2A

if n > c +4A

if -2A_<n_<otk+4A.

Note that 0tl > 2zr/r ot < k(2r + 6o’)/cr where o" is as in (3.1). Hence
n
u) < ln where

d,, "=
(1 + Inl-!- 2A)(8A+2)m-1

L(n, k)
(3.5)

which means, in particular, that dn does not depend on N. Now we distinguish
two cases.

CASE (i). 1 _< p < .
By the choice of k the series neZn converges. Denote its sum by S.

Having assumed A to be 1/2 we clearly have

If(x)lPdx < If (x + N)lPdx
cx N--- A

<2A E max If(x+N)lp

-A<x<A
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Since Ix + NI Ix + )N "1"- (N )N)I and IN )N[ _< A it follows that

max If (x + N)I < max If (x + )N)I
-A<x<A -2A<x<2A

and so

If(x)lPdx <_ 2A (VN)p
N:-oo

< 2ASp

--OO n----oo /z--0

2Sp}Ip
N=-ex n=-eo \/z=O

by the properties of convex functions [6, p. 72]. Hence

f_zx m-If(x)lPdx <_ 2mASPyp [f(lz)()n)[P
oo n----oo

which proves Theorem 1 in the case p > 1.

CASE(ii). 0 < p < 1.
By the choice of k the series 2nez(dn)p converges to a finite sum say, Sp.

As above
oo oo ( m-1

If(x)lPdx <_ 2Ayp n If(u)(n+N)l
N=- n=- =0

Sets(a)" (n_(an)s)l/Swherean dn m-
"= .=0 If("(n+)lp and

apply inequality (2.10.3) from [6] with s 1, r 1 to obtain

m-1

N=-n=- =0
m-1

2 vp p (aN)p
n=- =0 N=-

m-1

2ASpVp

n=- =0
and so Theorem 1 holds also in the case 0 < p < 1.
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Remark 2 Let {,n }nEZ be a sequence ofreal numbers for which (1.3) holds.
From above it follows that if f is an entire function of exponential type
satisfying (1.10) for some c [0, 1) and

If()(Ln)l < M1 for /x=0 m-1 and all neZ,

then for all N e Z,

max If(x + N)I _< max If(x + XN)I
-A<x<A -2A<x<2A

oo m-1

n----oo /z----.0

< ’mM1 ln
n=-oo

?’mSM1,

i.e. If(x)[ is bounded on the real line by a constant depending only on

M1, c, A, 8 and m. This extends a result of R.J. Duffin and A.C. Schaeffer
for which we refer the reader to [2, Theorem 10.5.1].
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