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We study the best constant in Sobolev inequality with weights being powers of distance from
the origin in R”. In this variational problem, the invariance of R" by the group of dilatations
creates some possible loss of compactness. As a result we will see that the existence of extremals
and the value of best constant essentially depends upon the relation among parameters in the
inequality.
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1 INTRODUCTION

‘We begin with recalling the famous theorem due to Giorgio Talenti [11]:

THEOREM 1.1 Let u be any real (or complex) valued function in C& (R™).
Moreover, let p be any number such that: 1 < p < n. Then :

p/q
f |Vu|dezS(p,q,n){/ |u|‘1dx} , (L)
R” R
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276 T. HORIUCHI

where: |Vu| is the length of the gradient Vu of u, ¢ = np/(n — p) and

_ p—1 —1\?/n
S(p,q,n) = 2P/nnp/2n(_'l__£> (L)
p—1 p

r/p) - T(n = 1/p) " w2
I'(n/2)-T'(n) ) )
The equality sign holds in (1.1) if u has the form:
u(x) = [a + blx|P/P=DY=1/p, (13)

1 ..
where |x| = (x% + -+ x,%)i and a, b are positive constants.

The main purpose of the present paper is to study the best constant
in the imbedding theorems for the weighted Sobolev spaces with weight
functions being powers of |x|. Namely, we are interested in the best constant
S(p, q, a, B, n) in the following inequality:

r/q
]IVuI"lxI”“dxZS(P,q,a,ﬁ,n){f |ul"|x|q’3dx} , (14
R" R"

where u is any function in C& (R") and

o<l L _lze+b  n e <pe—"
P q n q l—a+p

(1.5)
For the proof of this inequality and related informations, see [9; Theorem 1
in §2] and [6; Theorem 1 in §3]. If « = 0 and 8 < 0, then the best constant
is already obtained in [11] and [4]. The equality sign in this case also holds
if u has the similar form in Theorem 1.1. Therefore we are interested in (1.4)
when « is a positive number. In this variational problem, the invariance of
R”™ by the group of dilatations creates some possible loss of compactness. As
a result we show that the existence of extremal functions essentially depend
upon the parameters (p, ¢, o, B, n). For example, there is no extremals if
o = B and p = 2. Moreover if we restrict ourselves to the case when p = 2,
we can make clear the behavior of the best constant S(2, g, «, 8, n) rather

precisely as a function of (g, «, 8, n) under the condition (1.5).
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It seems to be worth mentioning that the equality sign in (1.4) can not
be achieved by any function with compact support. To see this we assume
that there exists an extremal u# having the support in a ball B, = {x € R" :
|x| < r}, namely, the infimum is attained by u. Here we may assume u
is nonnegative. Moreover it has to satisfy the Euler Lagrange equation in
distribution sense;

— div(|x|®?|Vu|P72Vu) = A|x|P%u?"',  inB,
ulpp, =0, u>0 in B,. (1.6)

Here A > 0 is a Lagrange multiplier. Then it follows from the next lemma
that u has to vanish almost everwhere in B, .

Lemma 1.2 (Pohozaev identity) Let p,q,n,a and B satisfy 1 < p, 0 <
1/p—1/g <(A—a+B)/n, 1—a+B)p <nand B > —n/q. Assume that
u € W;:g (R™) satisfy the equation (1.6) with Dirichlet boundary condition
in distribution sense. Then it holds that

Ml—-—a+B8—n(l/p— l/q)][ Ix1P2u? dx
B,
=a-yp [ W wveras,  a)
3B,

where v is the unit outer normal to 9B, and S is the (n — 1)-dimensional
Lebesgue measure, and W;:g (R™) is defined by (2.2) and (2.3).

When 1/p —1/q > (1 —a + B)/n it follows immediately from (1.7) that
u=0.Whenl/p—1/q = (1 —a+ B)/n, we deduce from (1.7) that %‘5 =0
on 3 B,, and then by (1.6)

= —f div(jx[*?|Vu|P~2Vu) dx =Af [x|P7u?' dx, (1.8)
Br Br

thus u = 0.

Proof of Lemma 1.2 By astandard argument of regularization, we see that
u is smooth. Then the equality is established by the computation of div P
and an integration by parts for

P = |x|*?|Vu|P~2(Vu, x)Vu. (1.9)

For the precise see [4; Prop. 13], [5] and [10].
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2 WEIGHTED SOBOLEV SPACES AND INEQUALITIES

In this section we shall modify the classical Sobolev spaces so that we can
treat the variational problems in the subsequent sections. To this end we recall
the weighted inequality of Sobolev type.

LemMa 2.1 Let p satisfy 1 < p < 400 and let n satisfy n > 2.Suppose
(I-a+pp<n, 0<1/p-1/g=Q0—-a+p)/nand—n/q <B <a,
then there is a positive number C such that for any u € C3°(R"),

1/q 1/p
(f |u|q|x|’3’1 dx) < C(/ [Vul?|x|*P dx) . 2.1
Rn Rn

u d au 172
Here, Vu=(ﬁ,a—)’:2,...g—;‘) and |Vu| = (X j_q [2£2) /7.

%

The proof of this is seen in many places, for example in Maz’ja’s book
[9; Theorem 1 and its corollaries in §2]. This result is also obtained as a
corollary to the more general imbedding theorem in the author’s paper [6;
Theorem 1 in §3]. This lemma naturally leads us to define the following
spaces: Let 1 < p < 400 and «, B be real numbers > —n/p. Let LL(R")
denote the space of Lebesgue measurable functions, defined on R”, for which

1/p
[lu; LER™)|| = (f |u] P |x|*P dx) < +o00. (2.2)
Rﬂ,
W,,'5 (R") is defined by
Wy bR = {u € LYP ®") : |[Vu| € LLR™), (2.3)
where
1 1 l—a+p8 or » np
—_— — p = .
r q(p) n 1 n—(I-a+Pp (o4
We equip Wé: £ (R") with the norm
s Wo'? @)1 = llus LEP R+ 1| Vul; LE®RM. (2.5)
We also set
RYP(R™) = {(u € WHP(R™) : u is a radial function },
o,p B
llu; Ry E@R™MI| = lu; Wy § (R, 2.6)

Under these notations we prepare a compactness proposition for the
imbedding and restriction operators W;: g R") — L;, (B) for any ball B.
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ProrosiTION 2.2 Let p satisfy 1 < p < +o00 and let n satisfyn > 2. By B
we denote an arbitrary ball in R".

(1) Assume that (1 —a+B)p <n,0<1/p—1/r < (1 —a+ B)/nand
—n/q < B < «, then the following restrictions of the mapping are compact;

Wy b ®") > Ly(B),  p=<r<q(p)=np/ln—p(l—a+p)l. Q7

(2) Assume that (1 —a + B)p <n,0<1/p—1/r < (1 —a+ B)/n and
—n/q < B, then the following imbedding mappings are compact:

RYP(R™) > Ly(B),  p=<r<gq(p)=np/ln—p(l—a+p)l 238)

In the assertion (2) of this proposition, » may exceed the so-called Sobolev
exponent provided 8 > «, because elements in R;‘,g (R™) are essentially
dependent upon one variable. And the proof is elementary by the use of the
polar coordinate system. For the detail see [4; Lemma 10] for instance.

3 MAIN RESULTS

We shall study the following variational problems. Assume that p, g, n, o
and g satisfy

{ l<p<4oo, (I—-a+B)p<n, n=2, 3.1
O0<1/p—1/g=(01—a+pB)/n ’
and
—n/q < B <a. 3.2)

Under these assumptions we set

S(p,q,a, B,n) = inf [/ |VulP|x|P*dx : u € W;:;(R”), llu: LEI = 1].
Rn
(P)

In the following problem we assume instead of the inequality (3.2)
—n/q < B. (3.3)

Sr(p,q,, B,n) = inf[/ [VulP|x|"*dx :u € RijZ(R"), llw: LGl =11
R’l
(Pr)
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In the problem (Pg), if we make a change of variables defined by

1h h=(1—05+/3)(n_P+P0‘)

l=r n—p(—a+p)

, 3.4)

we get an equivalent variational problem (Pg) for v € C TRy :

Sr(p,q,a, B,n) = C(p,q,k)x
+o0 +oo
inf[ f [V (r)|Pr/ A—etP)=1 g, . / lo(r)|4r/ A—e+B-1 gy = 1],
0 0
(Pg)
where
C(p,q.h) = |Sn—1|1—p/q . pp-1+p/a (3.5)

and |8"~!| is the area of n — 1-dimensional unit sphere. This problem was
solved by Talenti using the notion of Hilbert invariant integral. Namely it
follows from Lemma 2 in [11] that the infimum is achieved by functions of
the form

v(r) = [a + blx|»T = ] T 3.6)
Then with somewhat more calculations we see

LemMmA 3.1  Assume that (3.1) and (3.3). Then we have

Sr(p,q,a, B,n) =

= .n_(n—yp)”_l ' (n—p+pw)”_{'"y (2(19—1))pT
p—1 n—yp 124

L(/yp)T(n(p — 1)/yp) }—
9 3.7
8 { F(1/2)T/7) @7
where y = 1 — « + B. In particular if « = B, then we have
_ p—%
Sk(p. q. o, ct,m) = S(p. g ) - ("n—p_:pﬁ) RENCE)

Therefore we immediately get
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Lemma 3.2
(1) Assume that 1/p —1/q =1/n,1 < p < n andn > 2. Then we have

{ S(p,q,n) < Sr(p,q, o, a,n), ifa >0 39
S(p,q,n) > Sr(p, q, &, a, n), ifa <0 ’
(2) Assume that (3.1) and (3.3). Then we have

Sr(p,q, o, B,n) = k' P"PliSk(p,q,0, B —a, n), (3.10)
where k= n_”;_fap.

From this lemma it seems that if « < 0, Sr(p, q, «, B, n) is also the best
constant for the problem (P), and in the subsequent argument this proves to
be true. The following lemma is partially proved by Talenti and Egnell ( in
the case thatee = 0,8 <0).

Lemma 3.3 Assume that p, q, «, B, n satisfy (3.1) and (3.2). Assume that
B <o <0,then

S(p’ Q»a,ﬁ»n)=SR(P»q,°" /S»n)' (3.11)

Proof of Lemma 3.3 By apolar coordinate system, we rewrite (P) to obtain

o [ [ o+ B s
Sn—1

f / lu|?rPat" =1 grds,, _1] (P)
Sn 1

where S, is a n — 1-dimensional Lebesgue measure and A is the Laplace
Beltrami operator on the unit sphere S"~!. Making a change of variables
defined by
r=pf,  k=—1"PF (3.12)
n—p+ap

we have

00 A 2
mf[k1 p=pla [ (|a,,v|2+k2'—-p32'—)"/2 o'~ dpdS, :

Sn—1

o0
ueWa;g(R"), / / |v|qp<""P>‘1/P“dpdsw=1}
st Jo (P')
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where v(p - @) = k~V9u(p* - w). Since @ < 0 by the assumption, we see
k > 1. Therefore we see

S(p,q,a, B,n) > k'"P7PI1.S(p,q,0, B —a,n), (3.13)

where we used (n — p)g/p —1 =q(B —a)+n —1.Since 8 —a <0,
the assertion (4.4) in Lemma 4.1 and the spherically symmetric decreasing
rearrangement of v leads us to

S(p’q’oaﬂ_(xan)=SR(p»q$0’ﬂ_a,n)' (3'14)
Therefore the assertion follows from Lemma 3.2.

Now we are in a position to state our main result.

THEOREM 3.4
(1) Assume that0 <o = B8,1/2 —1/q = 1/n,n > 2. Then it holds that

S2,q9,0,0,n) =852,4,0,0,n) =852, q,n). (3.15)

Moreover there exists no extremal function which attains the infimum in
W, 2(R™).
(2) Assume thata > 0,0 > 8,0 < 1/p—1/g=A—-a+B)/n,n>2
and1 < p < 1_2—+ﬂ Then the infimum S(p, q, o, B, n) is attained by an
extremal function u in W; g (R™) and this u satisfies in distribution sense the
equation:

— div(|x|P*|Vu|P2Vu) = I - |x|P9|u|?2u, (3.16)

where I is a Lagrange multiplier.

Remark  Intheassertion (1), the best constant S(p, g, «, «, n) is notknown
unless p = 2. Because the proof in this paper essentially use the linearlity
of the Euler Lagrange equation. But at least we see that S(p, q, o, ¢, n) <
S(p, g, n) in the proof of the assertion (1). And the best constant in assertion
(2) is also unknown for the present. We also note that if we replace the weight
function |x| by |x,|, we can show a similar result.

4 PROOF OF THE ASSERTION 1

First we prove the assertion 1. Let €2 be a domain of R”. For a nonnegative
function f € C°() with having a compact support, we denote by S(f)
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the spherically symmetric decreasing rearrangement of f (the Schwarz
symmetrization of f). That is:

S(f)x) =sup{t = w@) > 1S"- xI"}, pw@) =I{x : fFx) >t}
4.1)
We prepare the following lemmas. The first one is well-known ( for the proof
see [11; Lemma 1] for instance ).

LemMa 4.1 Let S(f) be the spherically symmetric decreasing rearrange-
ment of a nonnegative function f € C°(Q) with a compact support. Let
g € C°%(0,00)) be a nonnegative decreasing function. Then, for every
exponent p > 1, the followings hold:

f S(f)P dx = / £7 dx, 4.2)
Rn Q

[vserans [ vsras @3
R" Q

[ sraisparz [ £ gaxpax @4

The next one is a variant of the Hardy-Sobolev inequality.

LemMa 4.2 Assume that f € C*(Q),u € CP (), Q2 C R" (n > 2). Let
us set v(x) = S| f - ul)(x). Then it holds that

|Vu|2dx+1f U [A(f?) = 2|V FP1dx 5] IVul® f2dx. (4.5)
R® 2 Q Q

Admitting this in the present we shall establish the assertion (1) in
Theorem 3.4.

Proof of the assertion (1) By the use of these lemmas for f = |x|*, Q =
R”, we see that

2/q
S(z’q’”)</ lv]? dx> +a@+n—2) | w?x?@Vdx
R -

< / |Vul?|x|?* dx. (4.6)
]Rn

Here 1/2 —-1/9g = 1/n, n > 2. Hence if there exists an extremal function
u e W;:g (R™), then we have

SQ2,g,n)+a@+n—2) | u?x?*Vdx <SQ2,q,a,a,n). (47)
Rn
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This implies S(2, q, «, o, n) > S(2, q, n), and obviously the equality sign
holdsin (4.7) only if u = 0. Therefore it suffices to see the opposite inequality.
Let us set, for y € R" \ {0},
Sy =inf( [ (VullyPdx : [ ity dx = 1,0 € CRRY).
R R

4.8)
One then checks easily that if we replace u by e /9u(- — y/€),e > 0,9 =

2n/(n —2) and let ¢ tend to 0, we have S(2, q, «, &, n) < S(y). On the other
hand, it holds

S(y) = inf{/ |Vu|2 dx : f ul?dx =1} = S(2, q, n). 4.9)
i R"
So that we see S(2, g, @, @, 2) = S(2, q, n).
Proof of Lemma 4.2 First we have

f|V(f-u)|2dx=/[|Vu|2f2+u2|Vf|2]dx+1f Vu? -V f2dx
Q Q 2 R”

- / Vu g - X [ LA — 21V £ dx. 4.10)
Q 2 Ja

Then, from Lemma 1 we can show the desired result. Here we note that
this proof still works if we put either f(x) = [x|% (¢ > 0,n > 2) or
f&x) = |xp|*, (@ > 1/2,n > 2).

5 PROOF OF THE ASSERTION 2

Let us set for u € W;"g (R™)
[ J(@) = [pu lul?]x|P? dx,
E(w) = fR,, |Vul?|x|P* dx

Here0 < (1—-a+B8)/n=1/p—1/qg,a0a>B8 > —n/q, pl —a+B) <n.
We alsosetfor0 < A <1

(5.1

S* =inf[E() : Ju) = A, u € Wy J(R")] 5.2)
Assume that {u;} C W;,'g (R™) is a minimizing sequence such that

'liT E(uj)=8=S(p,q,a, B,n) Jwjp)y=1 (=12,3,...).
j—>+oo
5.3)
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In order to prove the existence of the extremal function in W(i ’ 5 (R™), first we
show the tightness of the sequence considered. Let us also set

pj = IV PIx|%P + Ju |11,

Qj(R)=/ pidx  (j=1,2,3,...). (5.4)
Bx(0)

Ford =1—a —n/pand e > 0, we set u® = £°u(x/e). Then we see

J@) = J(u®) and E() = E@W®). (5.5)
Hence we may assume from the first
1

Q1) = 3 j=12,3,... (5.6)

Then we see

LemMA 5.1  For an arbitrary ¢ > 0, there exists some positive number R
such that we have

/ pjdx <&, (G=1273,...) 6.7
R\ Bg(0)

Proof of Lemma 5.1 First we note that for some positive number L

lim pjdx=L>1+S. (5.8)
Jj—>00 Jgn
According to the argument in [8; Theorem 1 in part 1], we just have to
show that dichotomy cannot occur. To this end we assume that dichotomy
occurs. Then, extracting subsequence from {u;} if necessary, we see that for
an arbitrary ¢ > 0, there exist positive numbers A € (0, L), R and a sequence
of positive numbers {R;} such that:

\A—/ Pj dx
Br(0)

Let f and g be nonnegative smooth functions such that

f_{ L, xl <1 _{ L, x> 1 5.10)
1 o ki>2 271 o m<12 ‘

<e, f pjdx <&, and lim R; = 00. (5.9)
Bg; (0)\Br(0) J=>o0
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Let us set

1 == .
{ u (x) = f(x/R) - u, 5.11)

W) = g@/R;) - u.
Then, for any &’ > 0 there is a positive integer N (¢) such that

\/Rn[lvf(x/R)lplujl” +IVEGx/R)IPuj PTIx P dx < & (5.12)

for j > N(¢’). In fact we see
[ e ax
R=|x|<2R

r/q ot p(A—a+p)/n
s( [ gl dx) : ( [ wi dx)
R<|x|<2R Ix|<2R

< CRPs. (5.13)

And in a similar way,

f lujl?|x|P* dx < CRPe. (5.14)
R;/2<|x|<R;

Here C is a positive number independent of each R and u;. Therefore we see
(5.12). On the other hand, we may assume that for some numbers s, ¢ € [0, 1]

Jlujl|xPedx — s,
J13191x1P dx — 1, (5.15)
1—(s+nl<e

From Sobolev inequality, there is a positive number ¢ such that
/ |Vu |P]x|P* dx > c. (5.16)

When ¢ tends to 0, we may assume that s = s(¢) also converges to some
number 5 € [0, 1]. In case that s = 0 or 1, then we see S > ¢+ § — ¢ for
any € > 0, and this contradicts to Sobolev inequality. Therefore, 5 € (0, 1).
Since t = t(¢) - 1 — 5, we have

S>8 + 817 =[P + (1 —5)P/1]§ > S, (5.17)

and this is a contradiction.
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After all we see that under the condition (5.6) the minimizing sequence
{uj};’_';l C W;:g(R”) and {,oj}]?i1 are tight in L%(]R”) and a space of all
bounded measures on R” respectively. To see the existence of extremals, we
need an apparent variant of the concentration compactness lemma due to
Lions in [7] and [8]. For the sake of self-containedness we state it here. The
proof is omitted. Let {#;} be a minimizing sequence satisfying (5.3).

CoNCENTRATION COMPACTNESS LEMMA 5.2 Let {u;} be a bounded sequence in
W; g (R™) converging weakly to some u and such that |Vu;|?|x|P* converges
weakly to p and |u;|?|x |B4 converges tightly to v where 11 and v are bounded
nonnegative measures on R". Then we have (1) There exist some at most
countable set J and two families {x;}je; of distinct points in R", {v;}je; in
(0, 00) such that:

V=5 P £ Y s, = VulP Y i,
T T (5.18)

for some pj > 0. Moreover it holds that

rlg - i
vt < 5 (5.19)
(2) Ifv e W;:E(R") and |V(u; + v)|P|x|* converges weakly to some
measure T, then @ — i € L' (R™).
(3) Ifu = 0 and w(R") < Sv(R™)P/4, then J is a singleton and we have

V=Y, = (5.20)

Syrld K
for some y > 0 and xp € R".

END oF ProOF OF THEOREM. From this lemma we may assume that there is
a weak limit u € W;:g (R™) of the minimizing sequence {u;}. Therefore
it suffices to show that u; converges strongly to u # O identically under
the condition ¢ > B > 0. From the assumption we see u(R") = S and
v(R") = 1 (tightness). Here we note that the lack of compactness can occur
only at the origin. Because the weight function vanishes only there. More
precisely, if D is bounded open subset of R” having a positive distance to
the origin, then the imbedding operator W;:g R") —> L%(D) is compact
under the conditions 1/p —1/g = (1 —a + B)/n,« > B > —n/q and
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1 <p<n/(1—a+pB).Nowifu = 0, then from Lemma 5.2 and the above
remark we see v = % u = 8y. But

1
Lo / 191189 dx —> 1. (5.21)
2 B,(0)

This is a contradiction. Next we see u; converges strongly to u. Let us set

a= fR,, |u|7|x|P? dx and assume that 0 < a < 1. Then from the lemma we
have

vw=1-a, uo> Svg/q, / |[Vu|P|x|P*dx < § — uo. (5.22)
Hence we see

f [VulP|x[P* dx < § — o < S(1 — v2/9) < S(1 — v)?/9 = SaP/4.
(5.23)
On the other hand, it holds
f |Vu|P|x|P* dx > §¢ = SaP/4. (5.24)

So we reach a contradiction.

Appendix

In this section we calculate the best constant S(2, g (), «, B(), n), where
o, B(a), q(a) and n satisfy the relations;

2(n + 2a) n+2a—2

2 = >2, = —, =
@ =pql)n=24q@ n+20—2 * n+ 2

ProposiTioN A.1  In addition to these assumptions we assume that 2a is a
positive integer. Then it holds that

S2,q(@), «, B(a),n) = Sr(2, q(a), a, B(x), n)
I'((n + 2) /2))2/ (n+20)

=52, 2n/(n = 2),n +20) - _Mwm'( .
2,2n/(n—2),n42a) -7 T(n/2) (A2)
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Proof We abbreviate S(2, (), «, (), n) to S. Let us set V = [0, 00)".
Then

S > 2% inf [[ |Vul?|x|> dx : / ]2 |x > dx = 1] . (A3)
\% \%
Note that

/ IVullx*dx = Y ¢ f IVul22 3% - x2 dx, (A4
\%4

|o|=a

!
where o = (01,02,...,0,) and ¢, = m Then we see

$227% _inf Y co(ee/Co)1@x
D e=les=0 5=y

inf U Vg 237 - x20 dx f |vg [9@x 7" - x27 dx = 1] :
v
(A.5)
‘We needs more notations.
2= 2%, ..., 7Y
Y A ) J 20;+1
= (ZI’ZZ"" ’220,«+1) € R~%
ke = |8291] - |§292| ... |§20n]
Vo @ = v(z!], |22, ..., I2"])

Under these notations

(A.6)

Sz2mm _inf Y colen/Co)1@x

g,=1,6,>0 |o|=c

k;linf[/ IVVy (2)|?dx : / |Vg(z)|q(“)dx=ka:|.
Rn+2a ]Rn+2a

2 inf Co [80 ko ]2/‘1("‘)
= 2wz in — X
280=1,8020 o |=a ka Ca

inf[/ |VV6|2dx:f |Vg|q(“)dx=1]
]Rn+2a Rn-(.-zu

. o [ 6o - kg ]H1@
=205 52, q(@), n+20) Y k—[ - ] (A7)
o o

lo}=c

Here we prepare elementary lemmas.
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LEMMA A.2 Under the same notations, it holds that

inf Z Co [80 - ks ]2/(1(00 _ ( Z Ca)l_Z/q(a) (A.8)
Zea=1,8020 jo|=a ka CU |o|=a ka

LemMma A3

o _ IS 1 T(=)
ks - 2nlsn+2a—1| - onga l_‘(%)

(A.9)

lo|=a

Proof of Lemma A.2 Let us set
co [&5 - ko 2/q(a)
F({£0’}‘O’|=(xy IJ’) = Z ;(_[C—] - M( Z E¢ — 1) (A.lO)
lo|l=a " o lo|=a

Applying the method of a Lagrange multiplier to F ({€5 }|o|=a» ) under the
restriction Z, oj=a b0 = 1,60 = 0, the infimum in Lemma is attained when

q@)

9@ 2\ @ 1 Co Co -1
() e w-H(ED)
q(a) Zlo‘l:a ¢ [ ks 7 ks |¢;—-:a ke

(A.11)
Therefore the assertion is now obvious.
Proof of Lemma A.3 1In place of ¢,, we set
e et () a0 TG) L, Gop
4 ks F(n—I-ZZa) 220 F(n+22a) j=1 (0j!)?
_ o! n (2Gj>
Tan42)--(420-2)-2¢ =\ g )’ (A12)
where 0 = (01,072,...,0%), |o| =01+ 03+ -+ o,. Then we show

that 3, £5* = 1. To this end let us set
8,';’“ =Iln,a)- Dn,dy
Do =T, (5), (A.13)

1(n, @) = sy ssa—y; and 1(n, 0) = 1.
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‘We shall show the assertion inductively. So we assume that

ghb =1, (A.14)
lo=01-+-+0,=B

for any nonnegative integers k and B satisfying k <rn — 1 and 8 < o, and
we consider the case k = n. By the hypothesis of the induction, we see

ZD —i 2k Z D —i 2k I(n—1 k)~
— n,o — k 4 n—1,0 = k n , O .
lo|=a k=0 lo|=a—k k=0

(A.15)

Then it suffices to show that Y y_, (2kk) Am =l =k~ =1, )7,
namely

Lemma A4 Forn,o > 0, we set

© U\ (= D4 1) (1= 3+ 2 — k)
P, a) = . (A6
o) ,;<k) 2% — k! (A.16)
Then 5 ) )
Pn,ay =" FTD - t2a—2) (A.17)

o!

Proof of Lemma A.4 Again we make use of the induction on the values of
o + n. We assume that (A.18) holds when o + n < m. Now we assume that
o +n = m + 1 First we see that for any nonnegative integers « and n

Pn,a+1)=2P(n,a)+ P(n —2,a + 1). (A.18)

Then the desired equality (A.18) easily follows from these relations.

References

[1] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents. Communications on Pure and Applied Mathematics, 36
(1983), 437-4717.

[2] H.Egnell, Semilinear elliptic equations involving critical Sobolev exponents. Archive for
Rational Mechanics and Analysis, 104, (1988), 27-56.

[3] H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical
Sobolev exponents. Archive for Rational Mechanics and Analysis, 104, (1988), 57-77.

[4] H. Egnell, Elliptic boundary value problems with singular coefficients and critical
nonlinearities. Indiana University Mathematical Journal, 38, (1989), 235-251.



292

[5]

(6]
{73

(8]

[9]
[10]

(1]

T. HORIUCHI

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev
exponents. Nonlinear Analysis, Theory, Methods and Applications, 13(8), (1989), 879-
902.

T. Horiuchi, The imbedding theorems for weighted Sobolev spaces. Journal of Mathe-
matics of Kyoto University, 29, (1989), 365-403.

PL. Lions, The concentration-compactness principle in the calculus of variations. The
locally compact case, part 1 and part 2. Annales de I’Institut Henri Poincaré, 1(2,4),
(1984), 109-145, 223-284.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The
limit case, part 1 and part 2. Rev. Mat. Ibero., 1(1&2), (1985), 145-201, 45-121.

V.G. Maz’ja, Sobolev spaces. Springer, (1985).

S.I. Pohozaev, Eigenfunctions of the equation Au + f(u) = 0. Soviet Math. Doklady, 6,
(1965), 1408-1411.

G. Talenti, Best constant in Sobolev inequality. Annali di Matematica Pure ed Applicata,
110, (1976), 353-372.



