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We study the best constant in Sobolev inequality with weights being powers of distance from
the origin in n. In this variational problem, the invariance of n by the group of dilatations
creates some possible loss of compactness. As a result we will see that the existence of extremals
and the value of best constant essentially depends upon the relation among parameters in the
inequality.
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1 INTRODUCTION

We begin with recalling the famous theorem due to Giorgio Talenti 11]"

TI-I.OREM 1.1 Let u be any real (or complex) valued function in C (n).
Moreover, let p be any number such that: 1 < p < n. Then

IVulp dx > S(p, q, n) lulq dx (1.1)
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Ministry of Education, Science and Culture.

275



276 T. HORIUCHI

where: IVul is the length of the gradientVu ofu, q np/(n p) and

(- ;r(n) (1.2)

The equality sign holds in (1.1) if u has theform:

u(x) [a + blxlP/(P-1)] 1-n/p, (1.3)

where Ix (x2 +." + x2) and a, b are positive constants.

The main purpose of the present paper is to study the best constant
in the imbedding theorems for the weighted Sobolev spaces with weight
functions being powers of Ix I. Namely, we are interested in the best constant
S(p, q, , , n) in the following inequality:

[VulPlxlp dx > S(p, q, , , n) lulqlxlq dx (1.4)

where u is any function in C (Rn) and

1 1 1-c +/3 n n
0<---= </ < or, l<p<

p q n q 1-c+/3
(1.5)

For the proof of this inequality and related informations, see [9; Theorem 1
in 2] and [6; Theorem 1 in 3]. If ot 0 and/3 < 0, then the best constant
is already obtained in 11 and [4]. The equality sign in this case also holds
if u has the similar form in Theorem 1.1. Therefore we are interested in (1.4)
when ot is a positive number. In this variational problem, the invariance of
n by the group of dilatations creates some possible loss of compactness. As
a result we show that the existence of extremal functions essentially depend
upon the parameters (p, q, or,/, n). For example, there is no extremals if
ot --/3 and p 2. Moreover if we restrict ourselves to the case when p 2,
we can make clear the behavior of the best constant S(2, q, or,/3, n) rather
precisely as a function of (q, or,/3, n) under the condition (1.5).
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It seems to be worth mentioning that the equality sign in (1.4) can not
be achieved by any function with compact support. To see this we assume
that there exists an extremal u having the support in a ball Br {x E ]n..
Ix < r}, namely, the infimum is attained by u. Here we may assume u
is nonnegative. Moreover it has to satisfy the Euler Lagrange equation in
distribution sense;

div(IxlPlVulp-2vu) )lxlquq-l, in Br
ulsr 0, u > 0 in Br. (1.6)

Here . > 0 is a Lagrange multiplier. Then it follows from the next lemma
that u has to vanish almost everwhere in Br.

LEMMA 1.2 (Pohozaev identity) Let p, q, n, ot and satisfy 1 < p, 0 <

l/p- 1/q < (1 -or + 13)/n, (1 -or + )p < n and 13 > -n/q.Assume that
u WII(n) satisfy the equation (1.6) with Dirichlet boundary condition
in distribution sense. Then it holds that

,k[1 -ot +/3 n(1/p l/q)] f Ixlquq dx

(1 1/p) ] IxlP(x, v)lVulp MS, (1.7)
Br

where v is the unit outer normal to OBr and S is the (n 1)-dimensional
Lebesgue measure, andW(n) is defined by (2.2) and (2.3).

When 1/p- 1/q > (1 -or + )/n it follows immediately from (1.7) that
Ouu 0. When 1/p- 1/q (1 -or + 13)/n, we deduce from (1.7) that 0

on 0 Br, and then by (1.6)

0 f_ div(IxlPlVulP-2Vu)dx ; f_ Ixl’quq-1 dx, (1.8)
,]lYlr

thus u 0.

Proof ofLemma 1.2 By a standard argument of regularization, we see that
u is smooth. Then the equality is established by the computation of div P
and an integration by parts for

P IxI=PIVulP-Z(Vu, x)Vu. (1.9)

For the precise see [4; Prop. 13], [5] and [10].
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2 WEIGHTED SOBOLEV SPACES AND INEQUALITIES

In this section we shall modify the classical Sobolev spaces so that we can

treat the variational problems in the subsequent sections. To this end we recall
the weighted inequality of Sobolev type.

LEMMA 2.1 Let p satisfy 1 < p < +cxz and let n satisfy n >_ 2.Suppose
(1-o+)p<n, O< 1/p-1/q (1-c + )/n and-n/q < 3 < o,
then there is a positive number C such thatfor any u C(]n),

(L )l/q (flulqlxlq dx < C [Vu[P[x[P dx (2.1)

Ou Ou OuHere, Vu (-x, Ox- OXn) and IVul (Y--1 I’ff [2) 1/2

The proof of this is seen in many places, for example in Maz’ja’s book

[9; Theorem 1 and its corollaries in 2]. This result is also obtained as a

corollary to the more general imbedding theorem in the author’s paper [6;
Theorem 1 in 3]. This lemma naturally leads us to define the following
spaces: Let 1 < p < +o and or, be real numbers > -niP. Let L(JRn)
denote the space ofLebesgue measurable functions, defined on Rn, for which

Ilu; LP(In)II lulPlxltp dx < +cx. (2.2)

W; (IRn) is defined by

WI[ff (IRn) {u tq(P)(IRn) lVu LP(IRn)}, (2.3)

where

1 1 1-cr +/3 np
or q(p)

p q(p) n n (1 -ot +/3)p (2.4)

equip W:ff (]Rn) with the normWe

Ilu; wli()ll- Ilu; L(P)(IRn)II 4-IIIVul; LP(n)II., (2.5)

We also set
1,p 1,pR, (]R) {u W,() u is a radial function },

1,p 1,pIlu; R,(n)ll- Ilu; W, (I)ll. (2.6)

Under these notations we prepare a compactness proposition for the

imbedding and restriction operators W21 (IRn) L (B) for any ball B.
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PROPOSITION 2.2 Let p satisfy 1 < p < +cx and let n satisfy n > 2. By B
we denote an arbitrary ball in Nn.
(1) Assume that (1 c + 13)p < n, 0 < 1/p 1 /r < (1 ot + /n and
-n/q < 13 < or, then thefollowing restrictions ofthe mapping are compact;

Wlot; (]n) _. Lr(B), p < r < q(p) np/[n p(1 -or +/3)]. (2.7)

(2) Assume that (1 ot + )p < n, 0 < lip 1/r < (1 ot + )/n and
-n/q < , then the following imbedding mappings are compact:

RI’P(n) -- L(B), p <_ r < q(p) np/[n p(1 -or +/3)]. (2.8)

In the assertion (2) of this proposition, r may exceed the so-called Sobolev
1,pexponent provided/3 > or, because elements in R,/(Rn) are essentially

dependent upon one variable. And the proof is elementary by the use of the

polar coordinate system. For the detail see [4; Lemma 10] for instance.

3 MAIN RESULTS

We shall study the following variational problems. Assume that p, q, n, ot

and/3 satisfy

1 <p<+cx, (1-c+fl)p<n,
O< 1/p-1/q (1-ot + fl)/n

n>2,

and
-n/q < t3 <

Under these assumptions we set

(3.2)

(P)
In the following problem we assume instead of the inequality (3.2)

-n/q </3. (3.3)

SR(p, q, or, fl, n) inf IVulPlxlp’ dx u Ro,(IRn), Ilu LII 1

(Pn)
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In the problem (PR), if we make a change of variables defined by

Ixl r 1/h, h
(1 -ot + fl)(n p + pc)

n- p(1 -or +fl)
(3.4)

we get an equivalent variational problem (P) for v C1 (]+)

SR(p, q, or, , n) C(p, q, k)

inf Iv (r)lprn/(1-+fl)-I dr ]v(r)lqrn/(1-+)-1 dr 1I,
(PR)

where

C(p, q, h) ISn-111-p/q hp-I+p/q (3.5)

and sn-ll is the area of n 1-dimensional unit sphere. This problem was
solved by Talenti using the notion of Hilbert invariant integral. Namely it
follows from Lemma 2 in 11 that the infimum is achieved by functions of
the form

hp

v(r) [a + blxlT:-- p(1---+fl) (3.6)

Then with somewhat more calculations we see

LEMMA 3.1 Assume that (3.1) and (3.3). Then we have

St p q, or, fl n)
PY

(3.7)

where y 1 ot + ft. In particular if or fl, then we have

Sn(p’q’t’t’n) S(p’q’n) (n- p+ Pt)
p

p
(3.8)

Therefore we immediately get
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LEMMA 3.2
(1) Assume that 1/p- 1/q 1/n, 1 < p < n and n > 2. Then we have

S(p, q, n) < SR(p, q, or, or, n),
S(p, q, n) > SR(p, q, or, or, n),

ifot > O
(3.9)

ifot <O

(2) Assume that (3.1) and (3.3). Then we have

S(p, q, or, , n) k1-p-p/q S(p, q, O, or, n), (3.10)

where k n-p
n--p+otp

From this lemma it seems that if ot < 0, Se (p, q, or,/3, n) is also the best
constant for the problem (P), and in the subsequent argument this proves to
be true. The following lemma is partially proved by Talenti and Egnell in
the case that ot 0,/3 < 0 ).

LEMMA 3.3 Assume that p, q, or, 13, n satisfy (3.1) and (3.2). Assume that
<t<O, then

S p, q, or, fl, n) Sg(p, q, or, 13, n). (3.11)

Proof ofLemma 3.3 By a polar coordinate system, we rewrite (P) to obtain

I fs fo [lku12)p/2raP+n-1inf
n--1

(lOrul2 + --7g-- drdSo,

lulqrq+n-1 drdSo, 1
n-1

(P’)

where So, is a n 1-dimensional Lebesgue measure and A is the Laplace
Beltrami operator on the unit sphere Sn-1. Making a change of variables
defined by

r pk, k
n P (3.12)

n p +otp

we have

[inf kl-p-p/q
,-

(lOpvl2 ._[_ k2 IAvlZ]P/2102 ! pn-1 dpdSo,

u wl;(n), ivlqp(n-p)q/p-1 dpdS 1
n-1 (P’)
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where v(p co) k-1/q u(pk co). Since ot _< 0 by the assumption, we see

k > 1. Therefore we see

S(p, q, or, 8, n) > k1-p-p/q S(p, q, O, ,8 or, n), (3.13)

where we used (n p)q/p 1 q(/3 -or) + n 1. Since/3 -ot < 0,
the assertion (4.4) in Lemma 4.1 and the spherically symmetric decreasing
rearrangement of v leads us to

S(p, q, O, , n) Sic(p, q, O, or, n). (3.14)

Therefore the assertion follows from Lemma 3.2.

Now we are in a position to state our main result.

THEORE 3.4
(1) Assume thatO < ot --/3, 1/2- 1/q 1/n,n > 2. Then it holds that

S(2, q, or, or, n) S(2, q, 0, 0, n) S(2, q, n). (3.15)

Moreover there exists no extremal function which attains the infimum in

(2) Assume that ot > O, ot > , 0 < lip- 1/q (1 -ot + )/n, n > 2
n Then the infimum S(p q or, 13, n) is attained by anand l < p < _
+

extremalfunction u in W;(an) anc this u satisfies in distribution sense the
equation:

-div(lxlPlVulP-2Vu) I. Ixlqlulq-2u, (3.16)

where I is a Lagrange multiplier.

Remark In the assertion (1), the best constant S(p, q, ct, or, n) is not known
unless p 2. Because the proof in this paper essentially use the linearlity
of the Euler Lagrange equation. But at least we see that S(p, q, or, or, n) <

S(p, q, n) in the proof of the assertion (1). And the best constant in assertion

(2) is also unknown for the present. We also note that if we replace the weight
function Ix by IXn I, we can show a similar result.

4 PROOF OF THE ASSERTION 1

First we prove the assertion 1. Let be a domain of Rn. For a nonnegative
function f 6 C() with having a compact support, we denote by S(f)
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the spherically symmetric decreasing rearrangement of f (the Schwarz
symmetrization of f). That is:

S(f)(x) sup{t /x(t) > IS-l. Ixl }, /z(t) I{x f(x) > }l.
(4.1)

We prepare the following lemmas. The first one is well-known for the proof
see 11; Lemma 1] for instance ).

LEMMA 4.1 Let S(f) be the spherically symmetric decreasing rearrange-
ment of a nonnegative function f C(f2) with a compact support. Let
g 6 C((0, cx)) be a nonnegative decreasing function. Then, for every
exponent p > 1, thefollowings hold:

f s(f)P dx f fP dx, (4.2)

f lS(f)lP dx <- f Iflp (4.3)

f S(f)Pg(lxl)dx >_ ffP (4.4)

The next one is a variant of the Hardy-Sobolev inequality.

LEMMA 4.2 Assume that f C2(f2), u 6 C(), C Rn (n > 2). Let
us set v(x) S(If" ul)(x). Then it holds that

[Vv[2dx + - [A(f2)- 2lVfl dx <_ IVu dx. (4.5)

Admitting this in the present we shall establish the assertion (1) in
Theorem 3.4.

Proof of the assertion (1) By the use of these lemmas for f Ix 1’, f2
Rn, we see that

S(2, q, n) Ivl q dx + oe(o + n 2) u2lxl2(c-> dx

[ IVulZlxI 2t dx. (4.6)

Here 1/2 1/q l/n, n > 2. Hence if there exists an extremal function
u 6 W(R"), then we have

S(2, q, n) 4- or(or 4- n 2) f tZlx]2(c-1) dx <_ S(2, q, o, c, n). (4.7)
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This implies S(2, q, oe, c, n) > S(2, q, n), and obviously the equality sign
holds in (4.7) only ifu 0. Therefore it suffices to see the opposite inequality.
Let us set, for y 6 In \ {0},

S(y) inf{f. [Vul2lyl2 dx [ulqlYl=q dx 1, u 6 C(n)}.
(4.8)

One then checks easily that if we replace u by ,-n/qu(. y/F.), 8 > 0, q
2n/(n 2) and let e tend to 0, we have S(2, q, or, or, n) < S(y). On the other
hand, it holds

S(y)=inf{f. ivul2 dx. lulqdx=l}=S(2, q,n). (4.9)

So that we see S(2, q, or, or, 2) S(2, q, n).

Proof ofLemma 4.2 First we have

foIV(f U)[2 dx [[Vul2f2 -+- U2IVf[2] dx + - VU2 vf2 dx

lvul2f2 l f. U2[A(/2) 21Vfl2] dx. (4.10)

Then, from Lemma 1 we can show the desired result. Here we note that
this proof still works if we put either f(x) Ix c, (or > 0, n > 2) or

f(x) Ixnl’, (o >_ 1/2, n > 2).

5 PROOF OF THE ASSERTION 2

us set for u 6 W;ff (]n)Let

J(u) f, lulqlxlq dx,
(5.1)

E(’) finn IVulPlxlp dx

Here0 < (1-or +)/n l/p- 1/q, ot > > -n/q, p(1-or +/3) < n.

We also set for 0 < ) < 1

Sz inf[E(u) J(u) ), u 6 W(IRn) (5.2)

Assume that {uj} C WI? (IRn) is a minimizing sequence such that

lim E(uj) S =_ S(p, q, ot, , n) J(uj) I (j-1,2,3 ).
j+

(5.3)
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In order to prove the existence of the extremal function in W:(n), first we
show the tightness of the sequence considered. Let us also set

pj --IVujlPlxlCp + ]ujlqlx]q,

Qj(R) I pj dx (j 1, 2, 3 ).
JBR(O)

(5.4)

For 6 1 ot n/p and e > 0, we set ue eu(x/e). Then we see

J (u) J (ue) and E (u) E(ue). (5.5)

Hence we may assume from the first

1
Qj(1) , j 1, 2, 3 (5.6)

Then we see

LEMMA 5.1 For an arbitrary e > O, there exists some positive number R
such that we have

dx < (j 1, 2, 3 (5.7)P
n\B(O)

Proof ofLemma 5.1 First we note that for some positive number L

f
lim I pj dx L >_ I + S. (5.8)

j--+ cx:) JRn

According to the argument in [8; Theorem 1 in part 1], we just have to
show that dichotomy cannot occur. To this end we assume that dichotomy
occurs. Then, extracting subsequence from {uj if necessary, we see that for
an arbitrary e > 0, there exist positive numbers A 6 (0, L), R and a sequence
of positive numbers Rj such that:

A-- fB pj dx
(0)

< ’ fBj (0)\BR(0)
pjdx <e, and lim Rj =cx. (5.9)

j--+

Let f and g be nonnegative smooth functions such that

1, Ixl < 1 { 1, Ixl > 1
f

0, Ixl > 2,
g o, Ixl < 1/2.

(5.10)
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Let us set
ul(x) f(x/R)’u,
u2(x) g(x/Rj) u.

Then, for any e > 0 there is a positive integer N() such that

(5.11)

[IVf(x/R)lPlujlp + IVg(x/Rj)lPlujlP]lxlp dx < et (5.12)

for j > N(e). In fact we see

IP[x[p dx
_<lxl_<2R

)P/q< luj q Ix q dx
_<lxl_<2R

< CRPe.

Ixl 1-- dx
1<2R

(5.3)

And in a similar way,

dx CRPe. (5.14)lujlPlxlp
j/2<lxl<Rj

Here C is a positive number independent of each R and uj. Therefore we see

(5.12). On the other hand, we may assume that for some numbers s, 6 [0, 1]

lq Ix I/q dx -- s,

f lulqlxlq dx --+ t, (5.15)

I1 (s + t)l _< e.

From Sobolev inequality, there is a positive number c such that

f lvujlPlxlp dx > c. (5.16)

When e tends to 0, we may assume that s s(e) also converges to some
number g 6 [0, 1]. In case that g 0 or 1, then we see S >_ c / S e for
any e > 0, and this contradicts to Sobolev inequality. Therefore, g 6 (0, 1).
Since (e) -+ 1 g, we have

S > S --1- S1--- [P/q --[-. (1 -)P/q]s > S, (5.17)

and this is a contradiction.
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After all we see that under the condition (5.6) the minimizing sequence
{u}. 1,p

j=l c W, (IRn) and {PJ}-I are tight in L(IRn) and a space of all
bounded measures on Rn respectively. To see the existence of extremals, we
need an apparent variant of the concentration compactness lemma due to

Lions in [7] and [8]. For the sake of self-containedness we state it here. The
proof is omitted. Let {uj be a minimizing sequence satisfying (5.3).

CONCENTRATION COMPACTNESS LEMMA 5.2 Let {uj be a bounded sequence in

WI; (an) converging weakly to some u and such that ]Vuj IPINI pa converges

weakly to lZ and luj q Ix q converges tightly to v where Ix and v are bounded
nonnegative measures on Nn. Then we have (1) There exist some at most

countable set J and twofamilies {xj}jej ofdistinctpoints in IRn, {vj}jej in

(0, cx) such that:

lulqlxlq, + 2_., ,a,, , >_ + 2..,,a,,
J J (5.18)

for some tzj > O. Moreover it holds that

V;/q < lZJ. (5.19)
S

(2) If v WI(Nn) and IV(uj q- v)lPlxlp converges weakly to some

measure -if, then -/z L (R).
(3) If u =_ 0 and lz(IRn) <_ Sv(ln)p/q, then J is a singleton and we have

1
13 ’(Xo S,p/q lz, (5.20)

for some g > 0 and xo ]n.

END OF PROOF OF THEOREM. From this lemma we may assume that there is
a weak limit u WII (Nn) of the minimizing sequence {uj}. Therefore
it suffices to show that uj converges strongly to u 7 0 identically under
the condition o > >_ 0. From the assumption we see/x(Rn) S and
v(Rn) 1 (tightness). Here we note that the lack of compactness can occur

only at the origin. Because the weight function vanishes only there. More
precisely, if D is bounded open subset of Rn having a positive distance to

the origin, then the imbedding operator WII (Rn) Lq(D) is compact
under the conditions 1/p 1/q (1 oe + fl)/n, c > fl > -n/q and
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1 < p < n/(1 ot +/3). Now if u 0, then from Lemma 5.2 and the above
+/-/z 3o Butremark we see v s

1
Qj(1) >_ lujlqlxlq dx -- 1. (5.21)

1(o)

This is a contradiction. Next we see uj converges strongly to u. Let us set
a f, lu q Ix q dx and assume that 0 < a < 1. Then from the lemma we
have

vo 1 -a, lzo S13g/q, f IVulPlxlp dx < S- lzo. (5.22)

Hence we see

lVulPlxlp lzo S(1 P/q) < S(1dx S vo)p/q Sap/q

(5.23)
On the other hand, it holds

lvulPlxlp dx > Sa Sap/q. (5.24)

So we reach a contradiction.

Appendix

In this section we calculate the best constant S(2, q(ot), or,/3(o0, n), where
or, fl(ot), q(ot) and n satisfy the relations;

2or flq ot n > 2, q ot
2(n + 200 n + 2t 2

fl(ot)- or. (A.1)
n + 2or 2’ n + 2or

PROPOSITION A. 1 In addition to these assumptions we assume that 2or is a

positive integer. Then it holds that

S(2, q(ot), or, fl(ot), n) Sn(2, q(ct), or, fl(ot), n)

=S(2 2n/(n 2), n -k- 2ot) yr-2a/(n+2O (I’((n + 2t)/2) ) 2/(n+2)1-’(n/2) (A.2)
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Proof
Then

S > 2,-- inf IVu Ixl dx" lu Ix[ dx 1

Note that

fv fv 2"2al 2a2 2a" dx’l7ul2lxl 2t dx Z Ca IVu[ 1 62 Xn

We abbreviate S(2, q(ot), or, fl(ot), n) to S. Let us set V [0, )n.

(A.3)

(A.4)

! Then we seewhere 0- (0-1,0"2 o"n) and ca

S _> 2.+2 inf ca (6a / Ca )2/q (or)

y e=l,e>_0 lal=

[fv 2..2a -2a"dx" fvlV,lq(’)2’ -2a"dx 1].inf IXTva .x ...xn

(A.5)

We needs more notations.

Z (Z Z2 Zn)
j (./J .zJ ,rJ ]I?2aj+l

.’1’ "2’ "2aj+l

ka IS2a sZazl Szan
Va(z) v(lzll, Iz21 Iznl)

Under these notations

(A.6)

(A.7)

Here we prepare elementary lemmas.
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LEMMA A.2 Under the same notations, it holds that

Ccr r 8or kcr ]2/q((*)inf - / Cye=l,e>0[

1-2/q((*)

(A.8)

LEMMA A.3

Ca Isn-ll 1 r(-)E k-- 2nlSn+2(*-I 2nrr (* r()
(A.9)

Proof ofLemma A.2 Let us set

F({ea})a)=(*, be) E )7 be E a 1 (A.10)
lal--(* Irl--(*

Applying the method of a Lagrange multiplier to F({e}ll--(*,/z) under the
restriction lrl--(* 8r 1, 8or _> 0, the infimum in Lemma is attained when

q(ot)
q(a) ( 2 )2-q() 1

11. 2-q()

q (or) lcrl=(* cr /

Therefore the assertion is now obvious.

Proof ofLemma A.3 In place of ea, we set

(A.12)

where a (0-1,0"2 ng, lal 0-1 + 0"2 -+- + 0"n. Then we show
n,a 1. To this end let us setthat lal--(* 8cr

’.’(* l(n, a) Dn,c,
Dn a Fin [2crj’,

j--l\crjl

and l(n, 0) 1.

(A.13)
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We shall show the assertion inductively. So we assume that

e’ 1, (A.14)
Icr =crl -q-... +Crk =/3

for any nonnegative integers k and/3 satisfying k < n 1 and/3 < or, and
we consider the case k n. By the hypothesis of the induction, we see

Dn,cr Dn-l,a l(n 1, ot k) -1.
Irl=o k--0 Icrl=c-k k=0

(A.15)
Then it suffices to show that ()=o l(n 1, k)- l(n, )-,
namely

LEMMA A.4 For n, ot > O, we set

e(n, or) Z (n 1)(n -4- 1)... (n 3 + 2(or k))
(A.16)

Then
n(n + 2)... (n + 2or 2)

e(n, ot) (A. 17)

Proof ofLemma A.4 Again we make use of the induction on the values of
ot + n. We assume that (A.18) holds when ot + n < m. Now we assume that
ot + n rn + 1 First we see that for any nonnegative integers ot and n

P(n, ot + 1) 2P(n, or) + P(n 2, oe + 1). (A.18)

Then the desired equality (A.18) easily follows from these relations.
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