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1 INTRODUCTION

Let f : C — IR be a convex mapping defined on a convex set C in a linear
space X. Define the functional:

1
Fp LX) =) pif)—Pr f 7 > pix; (1.1)

iel iel
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where f is as above, p = (p;);civ is a sequence of positive real numbers,
I € Pr(IN), i.e., I is a finite set of indices and X = (X;)iev C X is a
sequence of vectors in X. It is easy to see that, with the above assumptions,
one has:
i) F(f,p,1,x) = 0,1i.e., Jensen’s discrete inequality, and
@) F(ef + Bg,p,1,x) = aF(f,p,I1,x) + BF(g,p,I,x) > 0 for all
a, B = 0 and f, g are convex mappings.

It is instructive to examine the properties of this functional with respect to
the second and the third arguments. The following results (Theorem 1.1 and
1.3) were established in [1]:

THEOREM 1.1  (Properties of F with respect to the second argument) Let
f :C € X — IR be a convex mapping on the convex subset C of the linear
space X and X = (X;)ieiv C C. Then:

(i) For allp, q > 0 one has the inequality:

F(fp+a. 1L.x) = F(fip. 1, X))+ F(f,q,1,x) 20, 1.2)

where 1 is fixed in Py (IN), i.e. the mapping F(f, -, I, X) is superadditive.
(ii) Forallp = q = 0 (i.e., each component of p is greater or equal to the
corresponding component in q, and each component of q is greater or equal
to 0), one has the inequality;

Ffip, 1,x) = F(f,q,1,x) 2 0 (1.3)

for a fixed I € Pr(IN), i.e. F(f, -, I, X) is monotonically non-decreasing in
the second argument.

Consider the following subset of nonnegative sequences

Pr(I) :={p = (piev, pi 20, i € INand ) _ p; =1}
iel
for a fixed I in Pr(IN). It is obvious that P,(I) is a convex set as for p,
qeP,(I)anda, B > 0and o + B = 1 we have that ap + Bq € P, (I).
We shall first derive some convexity properties of the functional F with

respect to the second argument. The following corollary to Theorem 1.1
holds:

CorOLLARY 1.2 The mapping F(f,, 1,X) is concave on Pr(I) for every
fixed I in Pr(IN) \ 9.
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Proof Leta, B > 0witha 4+ 8 = 1. By (1) we have that
F(f,ap + Bq, I,x) > F(f,ap, I,x) + F(f, Bq, I,x) forp, q € P, (I).

Since F(f, -, I, x) is homogeneous, we have

F(f,ap, I,x) =aF(f,p,1,Xx)

and
F(f, B9, 1,x) = BF(f.q, [, x+

and the proof is complete. n

THEOREM 1.3  (Properties of F with respect to the third argument) Let
f : C € X — IR be a convex mapping on the convex subset C of the
linear space X and x = (X;)ieiv C C. Then:

(i) Forall J, K € Py(IN) with J N K = @, one has the inequality

F(fip, JUK,x) > F(f,p, ], x)+F(f,p,K,x) >0, (1.5)

where p > 0 is fixed, i.e., the mapping F(f,p, -, X) is superadditive as an
index set mapping.
(ii) Forall J C K, I, K € Pr(IN), one has the inequality

Ffip, K,x) = F(f,p, J,x) =0, (1.6)

for a fixed p > 0, i.e. F(f,p, -, X) is monotonically non-decreasing as an
index set function.

In this paper, we shall derive several counterpart inequalities for the
functional of (1.1) for the case where the mapping f is defined on an open
convex subset C of the linear vector space IR" and f is differentiable on C.
In particular, we extend the results in Theorem 1.1 and Theorem 1.3 to come
up with further counterpart inequalities with respect to the second and third
arguments. This wil be taken up in the next two sections, where we will also
discuss some applications of these results.

2 COUNTERPART INEQUALITIES WITH RESPECT TO THE
SECOND ARGUMENT

In this section, we show that the inequalities of Theorem 1.1 can be further
refined if the first argument of the functional F is a differentiable function.
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THEOREM 2.1 Let f:C € X — IR be a differentiable convex mapping on
the open convex set C. Thus for all p, q > 0 one has the inequality:

OSf(fvp'i‘qal’x)_}.(.ﬁp’l’x)_]:(f,q’l’x)

PrQ; 1 <\ 1 .
S <Vf (’E Zp,xl) Vf(Q, Zq,x,) ,

iel iel

1 1
P, ZP:‘X;‘ ~ o Z‘b’xi> 2.1)

iel iel

where I € Pr(IN) and X = (X;)ieiv C C are fixed. Equality holds in both
inequalities if and only if p = q.

Proof Since the mapping f: C — IR is differentiable and convex in the
open convex set C we have that:

JF®—f@®=(Viy.x—y) 22

where X = (x1,...,%1), Yy = (J1,--.-,yn) € C. Using the inequality (4)
we can write for all X,y € C and o, 8 > O with « + B > 0, that:

ax + By ax + By
f(——(m3 )—f(X)z<Vf(X), e —x)
__B _
=15V @y %) 23)
and
ox + By ox + by _
f( 7 )—f(y)z<Vf(y), o y>
=——" (V) y—X). 2.4)

]

Now, if we multiply the inequality (2.3) by « and the inequality (2.4) by 8
and summing the obtained results, we obtain:

@+B)f (“;‘]:ﬁy) —af®) — BF()
> P i@y —x) — (V)Y —x]

Ta+p
_ 9B _ _
“atp (V&) = Vf(),y—x)
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and thus we obtain

0 <af() +BF(y) — (o +B)f (%i—gy-)
of
< VW - VX -y). 25)

Now, it is easier to see that:

OSf(f,P+‘l,I’X)—«7:(f,P»I»X)—f(fv(I»I,X)

=P f <71; Zpixi) + 01 f (é; Z‘Iixi)

iel iel

Pr- 3 Yier Pi%i + Q1 - & D Qixi)

—(Pr+0nf ( P+ 0

Pro; 1 RPN SR —
=< P+ 0, <Vf (FI ;Plxl) f(QI ieZ]‘Itxt>,

LS - -é—zq>

iel iel

where in the last inequality we have used (2.5) with the choices:

1 1
a=P, B=0Q05, x= FZPka» y= 'Q—ZCIka-
I ker I ke

The following corollary is immediately obvious.

COROLLARY 2.2 Let f be as above. If I € Pr(IN) \ @ is fixed and p,
q € P, (1), thus for all t € [0, 1] we have the inequality:

O_S]:(f’tp‘l'(l_t)q’ I,X)—tf(f,p,I,X)—(l—l)f(f,q, I’X)

<td-1) <Vf(z pix) —VfQ aix), Y pixi— Zqz'xi>-

iel iel iel iel

3 COUNTERPART INEQUALITIES WITH RESPECT TO THE
THIRD ARGUMENT

Similarly, if the first argument of F is differentiable, then it is also possible
to refine the result of Theorem 1.3 further.
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THEOREM 3.1 Let f:C € IR" — IR be a differentiable convex mapping
defined on the open convex set C. Thenforall J, K € Py(IN) with JNK =,
one has the inequality:

0<F(f,p, JUK,X) - F(f,p, J,x) — F(f,p. K, X)

P’p"< Pl TP = V(o 3 s

~ Pyjuk

IEJ keK
Zp,x, -— Zkak> 3.1)
zeJ keK

where p = 0 is fixed and x = (X;)iev C C.

Proof 1tis easy to see that

0 < F(f, p,JUK x) — F(f, p,J x) — F(f,p, K, x)
= PJf(‘- D pixi) + PKf(—— > pexe)

tEJ kEK
Py pL > ics PiXi + Pk - pL > kek PkXk

. P P J K

(Py + K)f|: P, + Px

<> ’+P e < f(-—Zp,x, Vf(—Zkak)
J X zeJ keK
N zpkxk>
zeJ keK

and for the last inequality we used (2.4) with the choices:
o= P;,8=PFPg

and

= I%Zp,-xi andy— Zpkxk,

ieJ keK

and the proof is complete. [
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4 APPLICATIONS IN THE A-G MEAN INEQUALITY

We now present an application of the above results to the following well-

known Arithmetic mean — Geometric mean inequality (A-G Mean inequality,
for short):

An(P, X) = Gn(p, %), 4.1

Wherex:(xlany"' ,xn)éo,p=(P1,P2a"' ,Pn).Z_oand

1 n
An(p %) = == ) pixi
n

1

Gn(p, %) = (ﬂ x{’f) "

i=1

where P, = Y/, pi. If pi #0Vi = 1,2, -, n, it is well-known that the
equality holds in (2.6) if and only if x; = x = -+ - = x,,..
For I € P¢(IN), let us consider

1
AP0 =53 pixi
iel

1

P
Gi(p,x) = (]_[xf’i) ! ,

iel

where x;, p; > 0, Vi € I.Itis easy to see that for f(-) = — In(-), we have:

_ AI(p’ X)
F(=In(),p,I,x) = P;In [————-—-—Gl(p, x)] >0,

which is a direct proof of (4.1) by Jensen inequality. A more sophisticated
extension of the A-G inequality is as follows.

ProrosiTion 4.1 With the above assumptions, we have, for p, q = 0:

| < [AI(P-HL x)]P'+Q' [GI(P» x>]”' [Gz(q, x>]Q'

Gi(p+4q.x%) Ar(p,x) Ar(q,x)
coxp| P12 (Ar®®) —A1@ %)
- P+ Q; Ar(p,x)A1(q, %) ’

where Pr =3 ,c;pi >0and Q1 = ; ;i > 0.
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Proof Applying Theorem 2.1 to the convex mapping f(-) = In(-), we
deduce that:

Ar(p+q,x) Ar(p,x) [Az(q,X)]

P, n|=—m22 | —-pln| "2 |-0Q;In| —2=

0= (Pr+0n n[GI(p+q,X)] Fr n[Gz(p,X)] Qi Gi(q,x)
PQ;

< g (AT @0+ 47 @) - (A1)~ A1(@, %)

_ P01 (A1(p.X) — Ar(g, X))
Pr+Qr  Ar(p,x)A[(q, %)

The conclusion of the Theorem is obtained by taking the exponential of each
term in the above. ]

Similarly, applying Theorem 3.1 to the convex mapping — In(-) yields the
following result:

ProrosITION 4.2 With the above assumptions and for J, K € Pg(IN), J N
K # 0, we have the following inequality:

| < [AJUK(p, x>]”w" [G,(p, x)]”’ [an, x)]”K

GJUK(p’ X) AJ(p» X) AJ(pa X)
2
o[ PrPE A0 = Ax @]
PJUK AJ (p’ X)AK(p’ X)

where Py =3, ;pi >0, Pk =Y ;g pi >0and Pyjuxk =Y ;e uk Pi-

5 APPLICATIONS FOR THE EXPONENTIAL MAPPING

In the A-G mean inequality, we use the convex mapping f(-) = —In(.). If
we use the other well-known convex mapping f(-) = exp(-) instead, further
inequalities on the arithmetic mean can be obtained directly from Theorem
2.1 and 3.1 as follows:

ProrosiTION 5.1
(i) Forp,q=0,
0 < (Pr+ Qp)explA;(p + q,Xx)] — Prexp[A;(p, x)] — Q1 exp[A;(q, X)]

P
< PO olArp, )l —explA (g, XD (A1 (X — A1 (g X)) - (5.1)
Pr+Q;




JENSEN’S INEQUALITY 319

(ii) For J,K € Pr(IN),J NK # 0,

0 < (Pyuk) explAjuk (p, X)] — Py exp[A;(p, X)] — Pk exp[Ak (p, X)]

< P’ 9K (explAs (0, 0] — explAx (@, X)]) (A (P, X) — A (B, X))

52)

The above inequalities (5.1) and (5.2) can be used further to derive similar

inequalities for geometric means. One simply replaces all occurence of x; by
In y; in (5.1) and (5.2) to yield the following:

PROPOSITION 5.2
(i) Forp,q=0,andy; >0Vi €1,

0=<(Pr+01NG(p+q,y) — PiG[(p,y) — 01G/(q,Y)

P,
<5 ;Qél (G1(®,Y)—G1(q,y)(n G (p,y)—InG1(q, y)) . (5.3)

(ii) For J, K € Ps(IN), T N K # 8,

0 < (Pjuk)Gjuk(,y) — P;G;(p,y) — PkGk(p,Y)

< PJQK (G, Y) — Gx (@, (I Gs(P,y)~InGx @, ). (5.4)

Note that the first inequality of (5.3) suggests some kind of concavity
property of the geometric mean function G; with respect to the first variable
P, and the first inequality of (5.4) suggests some kind of concavity property
of the geometric mean function G; as an index set function in /.

6 FURTHER INEQUALITIES FOR THE GEOMETRIC MEAN

Consider the mapping f : IR — IR, defined by

f() :=In(1 + exp(-)) 6.1
: Iy exp(-)
with () = 1+ exp()
and f”(') — exp(')

—_— >
(1 +exp(-))
Clearly f is convex in IR. Consider the following mapping:

Gr(p,x+Yy) ]P‘
Gi(p,x)+G;(p,y)

L', I,x,y) = [ (6.2)

where x,y = 0.
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THEOREM 6.1  With the above assumptions, we have,
() Ifp,q =0, then

'p+q,1,x,y) =T, 1,x,9)I'(q, 1, x,y) > 1, 6.3)

i.e., the mapping T'(-, I, X, y) is supermultiplicative in the first argument.
(i) Ifp = q = 0, then

L, 1,x,y) =T(q, I,x,y) = 1, (6.4)

i.e., the mapping T'(-,1,X,y) is monotone nondecreasing in the first
argument.

Proof Let the vector z = (z;);es be such that z; = In X vi € I. For
Yi

X Xi —InX i

y denotes the vector ( Ii )iel andz = In y: Then, using the

convex mapping f as defined in (6.1), we have,

convenience, let

0 < F(In(1 4+ exp(-)), I, p, z)

Xi 1 Xi
= E ;In | 1+ ex (ln—>)-—P In{l+exp| — E ;In —
b ( P ! P\, P10,

iel iel
_Pl_
; NP\ Py
=Zp,-ln(1+fi) — PrIn| 14exp ln(l—l(f’-> )
iel i el Yi
Gi(p, x)
—_—_Zpiln(xi + yi) —Zpilny,- ——Plln(l + ————-—>
iel iel Gi(p,y)
=In[[Gi+y)? =) pilny — PrIn(Gs(p,x)
iel iel

+G1(p,y) + In (G (p, y)

=ln[ Gi(p.x+y) ]P’
GI(P, X) + Gl(p3 Y)
=Inlp,1,x,Yy).

Using the first inequality of Theorem 3.1, we have
InT'(p+q,7,x,y) = F(n(l +exp(-)), I, p+q, 2)

> .7:(111(1 + exP(‘)), I’ P, Z) + ]:(ln(l + CXP(')), Iv q, Z)
= ln[r(p’ I, x, y)r(qa I, x, y)]7
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from which (6.3) follows. Similarly, (6.4) follows from the direct application
of the first inequality of Theorem 3.1. n

The following corollary follows from Theorem 6.1 and the fact that
T(tp, L x,y) = (C(p, I,x,y))".

COROLLARY 6.2  With the above assumptions, we have:
L@ep+(1-ng, Lx,y) = [T®,Lx,NI @ Lx '

for allt € [0,1), i.e., the mapping T'(-, I, X,y) is log-concave in the first
variable.
THEOREM 6.3
(i) If J, K € Pr(IN) with J N K = 0, then
I'p, JUK,x,y) >T(p, J,x,)I'(p, K, x,y) = 1 (6.5)

i.e., the mapping T'(p, -, X, y) is supermultiplicative as an index set mapping.
(ii) If J S K, j # 0, then

1<T(p, J,x,y) =T K,x,y) (6.6)
(iii) We have,
L(p.1,x,y) =supl(p, J,x,y) > 1. (6.7)
o)
(iv) We have,
1 pi+p;
. NPi(x. L\ Pij m
T, I, x,y) > ma)% [(Xz + ¥i) l(xj + yj) ] : > 1.
i,je R S
[xipfx]{’f] Pi+p; [yipf y;f]m
(6.8)

Proof The proofs of the above follow directly from Theorem 3.1, the details
of which are omitted. |
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THEOREM 6.4 Let p, q = 0, then we have:
F'p+4q.1,xy)
~I'(p, I,x,)I'(q, I, x,y)
- {pr, x) G1(@, y)}"

6.9
Gi(p,y) Gi(q,x) ©9)

where

_ PO [ Gi1(p,x)Gr(q,y) — G1(q,x)G;(p,Y) ]
Pr+ Q1 L(G(p,x) + G1(p,N)G1(q,X) + G1(q,Y))

Proof The first inequality is just (6.3). To derive the second inequality, we

use the convex mapping f(-) = In(1 + exp(-)) in the second inequality of
Theorem 2.1 to get

Off(f’l"“q’lsz)—F(f,[’:l,z)—f(f,q’I,z) (610)
P
< E%Iz‘, [£(A1 0, 2)) — F'(A1(a, 2)] [A1(®, ) — A1 (. 2)]
Using the fact that
Ty — exp(-)
Fo= 1+ exp(-)
we have,

(A1, 2) — f'(A1(q, 2)

_ exp(As(p,2))  exp(A;(q, 2))
1+exp(A;(p,z)) 1+4exp(A;(q,2))
X X
3 Gy (p’ ;) B Gy (q’ ;)
- X X
1+G,(p, ;) 1+G1(q, ;)
Gi(p,x) Gi(q,x)

TGO +Gip,y) Gi(@x+Gigy)
Thus, by (6.10) we deduce that

O0<InT(Pp+4q,I,x,y) —InT'(p, I,x,y) —InT'(q, 1, X, y)
PrQ; [ G1(p,x)G1(q,y) — G/(q,X)G/(p,y) ]
T Pr+ Q1 L(G(p,X) + G1(P, Y))(Gi(q, X) + G1(q,Y))
y [ln Gip.¥) | Gi, x)]
Gi(p.y) Gr(q,y)
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which is equivalent to

Osln[ 'p+4q,1,x,y) ]
', I,x,9)I'(q, I,x,y)
w
<hn { Gi(p,x) Gi(q,y) }
Gi(p,y) Gi(q,x)

where

b= PrQ; [ G1(p,x)G1(q,y) — G1(q,x)G(p,y) ]
P+ Q5 L(Gr(p,x) + G, )(G1(q, %) + Gi(q,y) ]

The conclusion follows from taking the exponential of each term of the
above. n

Similarly, application of the second inequality of Theorem 3.2 leads to the
following result, which we shall merely state without proof.

TuEOREM 6.5 Let K, J € Py(IN) with KN J =@ and K, J # @, then,

'(p, JUK,X,Yy)
~I'(p, J,x,y)I'(B, K, x,y)
- {Gz(p, x) Gk (p,y) }A
“ LGy Gk(p,X)

6.11)

where

_ PP [ G;(P,x)Gk(P,y) — Gk (P, x)G;(P,y) ]
Pruk LGy, %)+ Gy, Y)(Gx® X) + Gk, y) ]

7 APPLICATIONS IN INFORMATION THEORY

Another application of Theorem 3.1 can be found in Information Theory.
Suppose X is a discrete random variable having range R = {x;,i € Z} and
having a probability distribution {0 < p; = Pr(X = x;), i € Z }. Letp be
the probability vector corresponding to the probability distribution of X. The
b-Entropy of the random variable X is defined by [2]:

1
Hy(X) = Hy(p) := ) _ pilog, o (7.1)
ieT !
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Several inequalities for the entropy function can be established merely by
applying the Jensen ineqaulity, the following is one of them:

0 < Hy(X) <log, |T|.

Now let’s say we are interested in the entropy of two sub-probability vectors of
p (upon appropriate normalization) and we wish to relate this to the entropy
of the original probability vector as given in (7.1). For some index subset
JJK €I, JNK =@, JUK = 1,J,K # @, we define the new

random variables X; and X having range in Ry := {x;, i € J} and
Sk := {x;,i € K} and respective probability distributions
(p] =L >0, ieJ) and {pk :=% >0, i €K},
K

Py

where Py :=3 ., pj > Oand Pg := Y ;. pj > O.Letp; = {p], j € J}
and px = { piK , J € K} be the probability vectors corresponding to the
probability distribution of X ; and X k¢ respectively. The entropies of the two
sub-probability vectors are defined in the usual manner:

1
Hy(X;) =) _ p/ log, —

ieJ i
1

Hy(Xg) =Y _ pflog, —.
iek pi

THEOREM 7.1  With the above assumptions, we have

0 <log, |Z| — Hp(X) — Psllog, |J| — Hy(X )] — Pk [log, |K| — Hp(Xk)]

2
= PJPK V“l s
Inb y
y = |J1Pg
\K|P;

where
1 _ K|
P; Pg

Consequently, if y = 1 or

then
log;, |Z| — Hp(X) = Pyllog, |J| — Hp(X ;)]

+ Pgllog, |K| — Hp(Xg)].
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Proof InTheorem 1.3,let f(-) = —log,(-) whichis convex with V f(-) =
——ﬁ; and letx; = % Then,

]:(f,P,I,x)"‘j:(f,P, J,x)—]:'(f,p, K,X)

=—-Zp,~logbp,-+logb( Z %>+PJZ£—ilogbpi

ieT ieJuk 1

ieJ
1 Di pi 1 pi
— Pylog, | — — |+ Pg —log, pi — Px lo —_— —
b(PJZ':‘pi) iEZKPK b H 8 PKEI;PI'
=log, |J U K| — Hp(X) — Pj[log, |J| — Hp(X ;)]
— Pkllog, |K| — Hp(Xk)], (7.2)

and

Py Px 1 1
b Py <Vf(P_, D pix) = V(5= ) pexi)

ieJ keK

1 1
P; ;plxl Px keZkaxk>
(-
wb \ 7] " K] P, Px
_ PyPg (IJIPK |K|P; )
mb \|KIP;  [J|Px

P; Py 1\?
— i 7.3
= (r-) 7.3

The conclusion thus follows from replacing the terms in Theorem 3.1 by
(7.2) and (7.3).
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