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1 INTRODUCTION

Let f C -- IR be a convex mapping defined on a convex set C in a linear

space X. Define the functional:

(1 ).T’(f, p, I, x)" Pi f (Xi) eIf pixi

ieI iI

(1.1)
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where f is as above, p (Pi)i6IN is a sequence of positive real numbers,
I 79f(IN), i.e., I is a finite set of indices and x (x,i)iiU C X is a

sequence of vectors in X. It is easy to see that, with the above assumptions,
one has:
(i) .T’(f, p, I, x) > 0, i.e., Jensen’s discrete inequality, and
(ii) (otf +/3g, p, I, x) ot.T’(f, p, I, x) +/3.T’(g, p, I, x) > 0 for all
or,/3 >_ 0 and f, g are convex mappings.

It is instructive to examine the properties of this functional with respect to
the second and the third arguments. The following results (Theorem 1.1 and
1.3) were established in 1 ]:

THEOREM 1.1 (Properties of with respect to the second argument) Let

f C X IR be a convex mapping on the convex subset C ofthe linear
space X and x (xi)iIU C C. Then:
(i) For all p, q > 0 one has the inequality:

.T’(f, p + q, I, x) > .T’(f, p, I, x) + .T’(f, q, I, x) > 0, (1.2)

where I isfixed in 7"gf(IN), i.e. the mapping f’(f,., I, x) is superadditive.
(ii) For all p

_
q

_
0 (i.e., each component ofp is greater or equal to the

corresponding component in q, and each component ofq is greater or equal
to 0), one has the inequality;

.T’(f, p, I, x) > 9t’(f, q, I, x) > 0 (1.3)

for afixed I 79f(IN), i.e. U(f, ., I, x) is monotonically non-decreasing in
the second argument.

Consider the following subset of nonnegative sequences

79r(I) "= {P (Pi)ilN, Pi >_ O, IN and Pi 1}
i6l

for a fixed I in 79f(IN). It is obvious that 79r(I) is a convex set as for p,
q 6 79r (I) and or, fl > 0 and ot + fl 1 we have that tp + flq 6 7"9r (I).
We shall first derive some convexity properties of the functional f" with

respect to the second argument. The following corollary to Theorem 1.1
holds:

COROLLARY 1.2 The mapping f(f,., I, x) is concave on 79f(I)for every

fixed I in 79f (IN) \ 0.
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Proof Let a,/3 > 0 with a +/ 1. By (1) we have that

(f, up +/Sq, I, x) >_ (f, up, I, x) + ’(f,/q, I, x) for p, q 79r (I).

Since .T’(f,., I, x) is homogeneous, we have

f(f, up, I, x) ot’(f, p, I, x)

and
f(f,/Sq, I, x) =/5.T’(f, q, I, x+

and the proof is complete.

THEOREM 1.3 (Properties of .T" with respect to the third argument) Let

f C c_ X --+ IR be a convex mapping on the convex subset C of the
linear space X and x (Xi)iIN C C. Then:
(i) For all J, K 79f (IN) with J A K 0, one has the inequality

.T’(f, p, J t3 K, x) > (f, p, J, x) + (f, p, K, x) > 0, (1.5)

where p > 0 is fixed, i.e., the mapping .T(f, p,., x) is superadditive as an

index set mapping.
(ii) For all J c_C_ K, I, K 7)f(IN), one has the inequality

)v(f, p, K, x) > ’(f, p, J, x) _> 0, (1.6)

for a fixed p > O, i.e..Y’(f, p,., x) is monotonically non-decreasing as an

index setfunction.

In this paper, we shall derive several counterpart inequalities for the
functional of (1.1) for the case where the mapping f is defined on an open
convex subset C of the linear vector space IRn and f is differentiable on C.
In particular, we extend the results in Theorem 1.1 and Theorem 1.3 to come
up with further counterpart inequalities with respect to the second and third

arguments. This wil be taken up in the next two sections, where we will also
discuss some applications of these results.

2 COUNTERPART INEQUALITIES WITH RESPECT TO THE
SECOND ARGUMENT

In this section, we show that the inequalities of Theorem 1.1 can be further
refined if the first argument of the functional .T" is a differentiable function.



314 S.S. DRAGOMIR and C.J. GOH

THEOREM 2.1 Let f: C c_ X -- IR be a differentiable convex mapping on
the open convex set C. Thusfor all p, q > 0 one has the inequality:

0 < .U(f, p + q, I, x) U(f, p, I, x) .Y’(f, q, I, x)

Pii Vf qi xieI -I- QI
iI iI

eI
iI

(2.1)

where I 79f(IN) and x (Xi)iiN C C are fixed. Equality holds in both
inequalities ifand only ifp q.

Proof Since the mapping f’C --+ IR is differentiable and convex in the
open convex set C we have that:

f(x)- f(y) _> (Vf(y), x- y) (2.2)

where x (Xl Xn), y (Yl Yn) C. Using the inequality (4)
we can write for all x, y 6 C and t,/3 > 0 with ot +/3 > 0, that:

(Vf(x), y x) (2.3)

and

(Vf(y), y x). (2.4)

Now, if we multiply the inequality (2.3) by ot and the inequality (2.4) by/3
and summing the obtained results, we obtain:

(t +/3)f ( +/3y)+/3 off (x) -/3f(y)

> [(Vf(x) y x) (Vf(y), y x)]o+/

(Vf(x) Vf(y), y x)
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and thus we obtain

O<tf(x)+flf(Y)-(t+fl)f(tx+fly)-
< (Vf(x) Vf(y), x y).

Now, it is easier to see that:

0 _< ’(f, p + q, I, x) ’(f, p, I, x) ’(f, q, I, x)

PIf Epixi + Qlf Eqixi
i6i i6i

PI Eii pixi -t-- QI - EiI qi Xi
--(PI + Qi)f PI + QI

<_
PIQI (Vf(1) ( 1 )PI + QI -I EpiXi f -I EqiXi

i6I i6I

PI
pixi

Q!

where in the last inequality we have used (2.5) with the choices:

1 1EpkXk’ Y --I kI qkxk"or:P1 16--QI, x--
P1 kI

The following corollary is immediately obvious.

(2.5)

COROLLARY 2.2 Let f be as above. If I 79f(IN) \ 0 is fixed and p,
q 79r (I), thusfor all [0, 1] we have the inequality:

0 <_ ’(f, tp + (1 t)q, I, x) tf(f, p, I, x) (1 t)’(f, q, I, x)

<- t(1- t) (Vf(E piXi) vf(E qiXi)
iI

E pixi E qixi}"iceiI

3 COUNTERPART INEQUALITIES WITH RESPECT TO THE
THIRD ARGUMENT

Similarly, if the first argument of .T" is differentiable, then it is also possible
to refine the result of Theorem 1.3 further.
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THEOREM 3.1 Let f" C c_ IRn -. IR be a differentiable convex mapping

definedon the open convex set C. Thenfor all J, K Pf (IN) with J f’lK 0,
one has the inequality:

0 < f(f, p, J K, x) .T’(f, p, J, x) .T’(f, p, K, x)

PjPK(vf 1

iej
1

<
PJUK (-j pixi) Vf(-K E pkXk),

kK

p---f Pi xi PK kKE PkXk (3.1)

where p

_
0 isfixed and x (xi)iIN C C.

Proof It is easy to see that

0 < .T’(f, p, J t.) K, x) .Y’(f, p, J, x) f(f, p, K, x)
1 1

Pj f -fi-fj p x -+- PK f -K k KE p/x)
eJ -fi- E J P X -Jc" PK -p-- Ek K pkXk

--(PJ + PK)f eJ + PK

< PjPK(vf(liej 1

PJ + PK -j pixi) Vf(KK E pkXl),
kK

and for the last inequality we used (2.4) with the choices"

Or-- Pj, fl-" PK

and

X
1 1 Epgx,
pj E pixi and y-

keKiJ

and the proof is complete. []
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4 APPLICATIONS IN THE A-G MEAN INEQUALITY

We now present an application of the above results to the following well-
known Arithmetic mean- Geometric mean inequality (A-G Mean inequality,
for short):

An(p, x) >_ Gn(p, x), (4.1)

where x (Xl, x2, Xn) - 0, p (Pl, P2, Pn)

_
0 and

1 n

An (p, x) /1’= pixi

1

Gn (p, x) := x
i=1

where Pn _in=l Pi. If Pi 0 i 1, 2,... n, it is well-known that the
equality holds in (2.6) if and only if X x2 Xn..

For I 79f (IN), let us consider

1
AI(p, x) "---/pixi

1

GI (P, x) "= x

where Xi, Pi > O, Vi I. It is easy to see that for f (.) In(.), we have:

I AI(p’ x) ]’(--ln(.), p,/,x) PI In
G/(p,x)

>_ 0,

which is a direct proof of (4.1) by Jensen inequality. A more sophisticated
extension of the A-G inequality is as follows.

PROPOSITION 4.1

1<
GI(p -1- q, x) Ai(p, x) Al(q, x)

I PIQI (AI(p,x)-AI(q,x))2]_< exp
PI + QI AI(p, X)Al(q, x)

where PI _,iI Pi > 0 and QI Zi6I qi > O.

With the above assumptions, we have, for p, q

_
O:

01
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Proof Applying Theorem 2.1 to the convex mapping f(.) In(.), we
deduce that:

< PI QI (_A]_l(p, x)A- A)-l(q, x)). (A/(p, x)- Ai(q, x))
PI+QI

PI QI (Ai(p, x) AI(q, x))e

PI + QI AI(p, x)Ai(q, x)

The conclusion of the Theorem is obtained by taking the exponential of each
term in the above.

Similarly, applying Theorem 3.1 to the convex mapping In(.) yields the
following result:

PROPOSITION 4.2 With the above assumptions andfor J, K 79f (IN), J N
K 0, we have thefollowing inequality:

GjjK(p, x) Ajx) Aj(p, x)

< exp I PJPK (AJ(p’x)-AK(p’x))2
PJK aj(p, X)AK (p, x)

where Pj iJ pi > O, PK YiK Pi > 0 and Pjt_JK iJt_JK Pi.

5 APPLICATIONS, FOR THE EXPONENTIAL MAPPING

In the A-G mean inequality, we use the convex mapping f(.) In(.). If
we use the other well-known convex mapping f(.) exp(.) instead, further
inequalities on the arithmetic mean can be obtained directly from Theorem
2.1 and 3.1 as follows:

PROPOSITION 5.1
(i) For p, q

_
O,

0 < (PI d- QI) exp[Ai(p + q, x)] PI exp[Al(p, x)] QI exp[Ai(q, x)]
PIQI

< (exp[Ai(p, x)] -exp[Ai (q, x)])(Ai(p, x)-Ai(q, x)). (5.1)
PI+QI
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(ii) For J, K 79f(IN), J fq K 0,

0 < (PJtK) exp[AjuK(p, x)] Pj exp[Aj(p, x)] PK exp[AK(p, x)]
PJQK

< (exp[A/(p, x)] exp[AK (p, x)]) (Aj(p, x) AK(p, x))
PJ (5.2)

The above inequalities (5.1) d (5.2) can be used fuher to derive sil
inequalities for geometric mes. One simply replaces all occurence of xi by
In yi in (5.1) and (5.2) to yield the following:

PoosIIO 5.2
(i) For p, q O, and Yi 0 i I,

0 (PI + QI)G(p + q, y) PGt(p, y) QiGz(q, y)
PIQI

< (GI (p, y)-GI (q, y))(ln G(p, y)-ln Gz(q, y)). (5.3)
PI+Q1

(ii) For J, K Pf (IN), J K ,
0 (Pj)Gj(p, y) PjGj(p, y) PG(p, y)

PjQ
< (Gs(o, y) G(O, r))0n G(p, y)-ln G(p, y)). (5.4)

PJUK
Note that the first inequality of (5.3) suggests some nd of concavity

propey of the geometric mean function GI with respect to the first vable
p, d the first inequality of (5.4) suggests some nd of concavity propey
of the geometric mean function GI as an index set function in I.

6 FURTHER INEQUALITIES FOR THE GEOMETRIC MEAN

Consider the mapping f IR --+ IR+ defined by

f(.) := ln(1 + exp(.))
exp(.)

with f’(.)
1 + exp(.)

and f"(.)
exp(.)

> 0.
(1 + exp(.))2

Clearly f is convex in IR. Consider the following mapping:

[ GI(p,x + Y) ] e’
I’(p, I, x, y) :--

GI(p, x) + GI(p, y)

where x, y

_
O.

(6.1)

(6.2)
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THEOREM 6.1 With the above assumptions, we have,
(i)/fp, q

_
0, then

F(p+q, I,x,y) > F(p, I, x, y)F(q, I, x, y) >_ 1, (6.3)

i.e., the mapping F (., I, x, y) is supermultiplicative in the first argument.
(ii) Ifp >_ q >_ O, then

F (p, I, x, y) >_ F (q, I, x, y) >_ 1, (6.4)

i.e., the mapping F(., I, x, y) is monotone nondecreasing in the first
argument.

xiProof Let the vector z (zi)iI be such that zi ln i 6 I. For
x denotes the vector

eI . Then, using theconvenience, let y and z In x

convex mapping f as defined in (6.1), we have,

0 _< .T’(ln(1 + exp(.)), I, p, z)

Pi In 1 + exp In xi PI In 1 + exp I Pi In
iI Yi iI Yi

--pilnii (1-+-/.)- PI In ll-+-exp Iln (/I (..)pi)
=piln(xi+yi)-_pilnyi-PIln 1+

Gi(p,y)
iI iI

In H(xi --[- yi)pi
Pi In Yi eI In (GI(p, x)

il ieI

+GI(p, y)) -I- In (GI (p, y))Pl
GI(p, x + y) ]PIn

Gl(p, x) + Gi(p, y)

In F (p, I, x, y).

Using the first inequality of Theorem 3.1, we have

In F(p + q, I, x, y) ’(ln(1 + exp(.)), I, p + q, z)
> ’(ln(1 + exp(.)), I, p, z) + (ln(1 + exp(.)), I, q, z)

ln[r (p, I, x, y)F (q, I, x, y)],
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from which (6.3) follows. Similarly, (6.4) follows from the direct application
of the first inequality of Theorem 3.1.

The following corollary follows from Theorem 6.1 and the fact that
1-’(tp, I, x, y) (F(p, I, x, y))t.

COROLLARY 6.2 With the above assumptions, we have:

1-’(tp -t- (1 t)q, I, x, y) >_ [l"(p, I, x, y)]t [1-’ (q, I, x, y)]-t

for all [0, 1], i.e., the mapping F(., I, x, y) is log-concave in the first
variable.

THEOREM 6.3
(i) If J, K Try(IN) with J fq K 0, then

F (p, J t_J K, x, y) > F (p, J, x, y)F (p, K, x, y) > 1 (6.5)

i.e., the mapping (p,., x, y) is supermultiplicative as an index set mapping.
(ii) If J c_C_ K, j =/: 0, then

1 < F (p, J, x, y) < F(p, K, x, y) (6.6)

(iii) We have,

F (p, I, x, y) sup F (p, J, x, y) > 1. (6.7)
JC_I

(iv) We have,

1
pi-l-Pj

F(p, I, x, y) > max
[(xi -1- yi) pi (xj @ yj)PJ ] Pi -[- Pj

i,jl 1 1

[xix;J]Pi-’]-’PJ [yiPiy;J]Pi’Jc-PJ
(6.8)

Proof The proofs ofthe above follow directly from Theorem 3.1, the details
of which are omitted.
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THEOREM 6.4

where

Let p, q

_
O, then we have:

F(p + q, I, x, y)
1<

F(p, I, x, y)F(q, I, x, y)

{ GI(p,x) GI(q,Y) }<
GI(p,y) Gi(q,x)

PI+QI (G
GI(p, x)Gi(q, y) Gi(q, x)Gi(p, y)
;;i + GI(p, y))(G,(q, x) iil; Y))

(6.9)

Proof The first inequality is just (6.3). To derive the second inequality, we
use the convex mapping f(.) ln(1 + exp(.)) in the second inequality of
Theorem 2.1 to get

0 < U(f, p + q, I, z) .T’(f, p, I, z) .Y’(f, q, I, z) (6.10)

<
PIQI

[f’(ai(p,z))- f’(ai(q,z))] [ai(p,z) ai(q,z)]
PI+QI

Using the fact that

f’(.) exp(.)
1 + exp(.)

we have,

f’(AI(p, z)) f’(Al(q, z))
exp(Al (p, z))

1 + exp(Al (p, z))

GI p,

1 + Gi(p, )
GI(p, x)

GI(p, x) + GI(p, y)

Thus, by (6.10) we deduce that

exp(Ai (q, z))
1 + exp(Ai(q, z))

xGi(q, )
I+GI q,

G(q, x)
Gi(q, x) + GI(q, y)

0 < In F (p + q, I, x, y) In F (p, I, x, y) In F (q, I, x, y)

<
PIQI [ GI(p,x)GI(q,y)-GI(q,x)GI(P,Y) 1PI + QI (GI(p-) + GI(p, y))(Gi(q, x) -t- Gi(q, y))

[ln GI(p’x)
_ln GI(q,x)]GI(p, y) Gi(q, y)
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which is equivalent to

[ F (p + q, /, x, y) ]0 _< In F(p )-y-i;q /, y)

< ln { GI(p,_x) GI(q,Y) }zG(p, y) G(q, x)

where

PIQI [ Gi(p,x)Gi(q, y) Gi(q,x)Gi(p, y) ]P + Q (G(p) + G(p, y))(Gi(q, x) + G(q, y))

The conclusion follows from taking the exponential of each term of the
above.

Similarly, application of the second inequality of Theorem 3.2 leads to the
following result, which we shall merely state without proof.

THEOREM 6.5 Let K, J 79f (IN) with K fq J 0 and K, J :/: 0, then,

where

1<
F(p, J t_J K, x, y)

F(p, J, x, y)F(fl, K, x, y)

< { G.(P, x) GK(p, Y) }
z

Gy(p,y) GK(p,x)
(6.11)

Py Pt [ Gy(p, x)G(p, y) G(p, x)Gy(p, y) -[
P, (G(p, x) -t- G,(p, y))(GK(p, x) + G(p, Y)) _!

7 APPLICATIONS IN INFORMATION THEORY

Another application of Theorem 3.1 can be found in Information Theory.
Suppose X is a discrete random variable having range R {xi, Z} and
having a probability distribution {0 < pi Pr(X xi), 2" }. Let p be
the probability vector corresponding to the probability distribution of X. The
b-Entropy of the random variable X is defined by [2]:

Hb(X) Hb (p) E Pi lOgb
1

iZ Pi
(7.1)
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Several inequalities for the entropy function can be established merely by
applying the Jensen ineqaulity, the following is one of them:

0 < Hb(X) logb 1771.

Now let’s say we are interested in the entropy oftwo sub-probability vectors of
p (upon appropriate normalization) and we wish to relate this to the entropy
of the original probability vector as given in (7.1). For some index subset
J,K c_C_ 27, J C K 0, J tO K 27, J,K 0, we define the new
random variables Xj and X/c having range in Rj := {xi, J} and
S/ := {xi, K} and respective probability distributions

Pi pi{p/J "=- > 0, i J}, and {p/K := > 0, i K},
P P;

where P := ,jeJ PJ > 0and P; "= jer PJ > 0.Letpj {p/J, j 6 J}
and PK {p.r j 6 K} be the probability vectors corresponding to the
probability distribution of Xj and XK respectively. The entropies of the two
sub-probability vectors are defined in the usual manner:

1
Hb(X) "= E p/ logb __--y

iEJ Pi
1

Hb(XK) "= E PiK lgb
EK Pi

K"

THEOREM 7.1 With the above assumptions, we have

0 _< logb I-I- Hb(X) Pj[logb IJI- Hb(Xj)] PK[logb IKI- Hb(XK)]

<PjPK(lnb 1)
2

Y

where

Consequently, if ?, 1 or

then
PJ PK

logb 1271- Hb(X) Pj[logb IJI- Hb(Xj)]

+ PK[lOgb IKI- Hb(X)].
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Proof In Theorem 1.3, let f (.) log/) (.) which is convex with Vf (.)
1 and let Xi / Then,lnb (.)’

.T’(f, p, 2-, x) .T’(f, p, J, x) .T’(f, p, K, x)

____pilOgbPi_l_lOgb(jKPi)+Pjij Pi

Z Pi -J lgb Pi

( ij ) iK
pi ( I

iK P---i )1 Pi -t- PK KK lgb Pi PK log/) -K Pi
PJ lgb

Pi

logb IJ KI- Hb(X) P[logb IJI- Hb(X)]

P[log IKI- Hb(X)], (7.2)

and

(7.3)

The conclusion thus follows from replacing the terms in Theorem 3.1 by
(7.2) and (7.3).
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