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G. Bennett showed, by elementary proof, that if p < q then (1.1) holds, and the constant p/s
is best possible; and if p > q then (1.2) is valid. The reversed inequalities have remained
open problems. As a first step into the converse direction, what seems to be very intricate
without additional assumptions, we prove the inverse inequalities under slight restrictions on
the monotonicity of the parameters appearing in the problem.
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1 INTRODUCTION

In [1] G. Bennett described a new way of looking at inequalities and proved
several interesting theorems. The new way means "the factorization of
inequalities". For precise definition and explanation of the great advantage of
the factorization we refer to 1 ]. Now we only observe that Bennett’s results
provide the best possible version of several classical and latest inequalities,
for they replace inequalities by equalities appearing in the factorization.
As one of the advantages of the factorization of inequalities we mention

that using the new factorizing results being in the work mentioned above,
G. Bennett proved, among others, that the following two conditions of quite
different type

k=l n=k
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_!..are equivalent, where 0 < p, q < oe, 7 and a := {an is a fixed

sequence of non-negative terms with a > 1 so that the partial sums

n
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k=l

never vanish, furthermore x := {xn} is an arbitrary sequence of real (or
complex) numbers.
To give a direct proof of this equivalence it seems to be a very troublesome

task, see also the comment in 1], p. 24. But in section 10 of his cited work
G. Bennett showed that if p < q then

P
0"1 --0"2 (1.1)

s

holds, and the constant p/s is best possible; and if p > q then

0"2 _< 0"1. (1.2)

The reversed inequalities have remained open problems.
After several attempts we are still unable to prove (1.1) for p > q, or (1.2)

if p < q without additional assumption; however under slight restriction on
the monotonicity of the sequences {An and {tn }, where

ixl
tn := tn(a,x,s) :=

k=n Ak

we can verify that if p > q then

0"1 _< K0"2, (1.3)

and if p < q then

a:z < K0"I (1.4)

hold.
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We hope that the "blocking-method" to be used in our proofs, or its
refined version, will be transmittable for catching the original problem, that
is, to prove (1.3) and (1.4) without conditions for the sequences x. In the
forthcoming inequalities, unfortunately, by means of {tn we have to assume
certain smoothness on the sequences x, too.

To formulate our results we have to present some furher notions and
notations.
We shall say that a sequence , := {’n} of positive terms is quasi

-power-monotone increasing (decreasing) if there exists a constant K :=
K(/3, ?,) > 1 such that

Kn ?’n > m Ym (n ’n < Km Vm)

holds for any n > m. Here and in the sequel, K and Ki denote positive
constants, not necessarily the same at each occurence. If we wish to express
the dependence explicitly, we write K in the form K(a ).

Furthermore we shall say that a sequence , of positive terms is quasi
geometrically increasing (decreasing) if there exist a natural number/z and
a constant K := K(?’) > 1 such that

1
Vn+z >_ 27’n and ’n < K’n+ (’n+z < -?’n and ?’n+ < KVn)

hold for all natural numbers n.

We shall also use the following notations:

2m+l

Olrn ".’-- _, an,
n--2

Xk,

and
m+/x-1

Xm,l Xn
n=m

Now we establish our results.
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THEOREM (i) Using the notations given above, ifp > q, the sequence {An}
satisfies the condition

A2n <_ An, (1.5)

and the sequence {tn} is quasi fl-power-monotone decreasing with some

positive , then inequality (1.3) holds.
(ii) If p < q, (1.5) holds and the sequence {tnA2n-p/s is quasi

-power-monotone decreasing with some positive , then inequality (1.4)
holds.

(iii) Ifp < q and the sequence {t2,Otm} is quasi geometrically increasing,

furthermore
Otm+l _< Kotm (1.6)

stays, then (1.4) newly holds.

Comparing the conditions of (ii) and (iii), it is easy to see, roughly speaking,
that one of the conditions of (ii) restricts the growth of the terms tn, while
the condition on {t2mOgm in (iii) limits the decline of the terms tn.
We would like to emphasize that in the most commonly used case, that is,

if an 1, then restrictions (1.5) and (1.6) are automatically satisfied. The_n,
in each case, already one condition assures the suitable inequality.

2 LEMMAS

We need the following lemmas.

LEMMA 1 ([3]). For any positive sequence / {Yn} the inequalities

’n_<KVm (m=1,2 ;K> 1),

or

(2.1)

m

’n < K?’m (m= 1,2 K > 1) (2.2)
n=l

hold if and only if the sequence ?, is quasi geometrically decreasing or

increasing, respectively.

LEMMA 2 ([4]). If a positive sequence y is quasi -power-monotone
increasing (decreasing) with a certain negative (positive) exponent , then
the sequence {V2" is quasi geometrically increasing (decreasing).
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LEMMA 3
R, then

([2]) If {ck is a sequence ofnon-negative numbers and 0 < r <

t c t
k=l k=l

1/r

3 PROOF OF THEOREM

First we prove the special cases s 1 of our inequalities, namely it is easy
to see that if inequalities (1.3) and (1.4) hold in the special case s 1, then
the general cases follow effortlessly replacing Ixl by Ixls, p by p/s and q
by q/s both in the inequalities and in the assumptions.

For simplifying the writing we shall write Xn instead of IXn I.

Proof of the case (i). The assumptions s 1 and p > q imply that
p > 2. Since the sequence {tn is quasi/3-power-monotone decreasing with
some positive t, so, by Lemma 2, the sequence {ta, is quasi geometrically
decreasing, that is, there exists a natural number/x so that

t2. > 2t2.+.

holds for all n. Hence we get that

2+-

> t2.+u
Ak--

and consequently
2n+z

Xn,lz _a Xk A2.t2.+.. (3.1)

N
Since p/q p 1, thus an elementary consideration gives that for any

N [N ,xPn }lipEXn - EA _I
n=l n=l

K(N, a) < K(N, a)cr/p (3.2)

Thus (3.2) clearly implies that

tl t2. <_ K1 (Ix, a)cr/p. (3.3)
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Hence and from (3.1) with n 0 we get that
cx 2-1

Xn _< a-I xk _< K2(/z, a)0.21/pt2

_
Ann=2" k=l

Now we can start to verify (1.3).

(3.4)

0.1 an Z + an tPn =: S1 + $2.
n=l k=n n=l n=2U+l

Since
2

S1 antPn < tA2,,
n=l

so, by (3.3) and (3.4), we obtain that

S1 < K (/x, a)0.2.

Using (1.5) and (3.1) we easily get that
O Cx 2"+l O

$2 an tnp < ( an)t <_ A2,.+ t’ <_
n=2U+l rn=/x n=2"+l rn=/z

<KA2"_ut2mt;-i <KXm_lz.zt2
rn lz m--b6

p-1 p-1K Xrn.. t2m+ <__ K yXm. t2m
m=0 m=0

K(-+-

_
)Xm.lxt2"

m=0 m=/x+l

=: $3 + $4.

Here $3 can be estimated as $1 above, consequently we know that

$3 _< K1 (/z, 11)o’2.

Finally, again utilizing (3.1) and (1.5), we estimate $4 as follows:
c 2"-1

$4 <K Xm.l(al-, xi)p-l<

m=/z+l i=2m-u

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Cx:) 2m+- k

(k /1 )p-1 Klff2.
m=+l k=2 "=

Summing up the pial results (3.5) (3.9) we have proved (1.3) for s 1.
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Proof ofthe case

so

(ii). An easy calculation gives that
rn rn

E Xn ,antn antn+l,
n=l n=l

x k

t72 <_ Xk an tn <_
k=l n=l

x 2"+1-1 rn 2TM-
1 tn)P-1< ( xk)(Ae---- E an

m=0 k=2 i=0 n=2

Now we apply Lemma 3, so by p 1 < 1,
(X) m

1-p <_$5< EXmA2m t-la-1

m--0 i=0

< p-1 p-1 1-p
2 Ol A2m Xm <_

i=0 m=i

By (1.5)

A2,+I A2m A2m+l t2 --’. $6.
i=0 m=i

(3.10)

(3.11)

1-p 2-p

__
A2m A2m+l tzm < K . A2m t2 (3.12)

rn rn

Since the sequence {A2n-Ptn is quasi/-power-monotone decreasing with

some positive 1, therefore, by Lemma 2, the sequence {A222p tern} is quasi
geometrically decreasing, what, by Lemma 1, implies that

2-p 2-pAem t2 KA2 t2. (3.13)
m=i

Using this, (3.12) and (1.5), we obtain that

i=0 i=1

i-1

i=1 m=l

+ E
i=0 m=l i=m+l

(3.14)
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Since p < 2 and {An} is increasing, thus (3.13) clearly implies that

E t2 <_ Kt2
m-i

also holds. Thus, by Lemma 1, the sequence {t2, is also quasi geometrically
decreasing, and therefore the sequence {tn} (p > 1) is again quasi
geometrically decreasing, consequently

also holds.

Putting this into (3.14) we get that

$6 < K2 antPn--K2crl.
n--1

(3.15)

Collecting the estimations (3.10), (3.11) and (3.15) the statement (ii) in
the special case s 1 is proved.

Proof ofthe case (iii). The first part of the proof is the same as in the case
(ii). The deviation appears in the estimation of $5. Then first we shall use the
estimation

rn

t2iOli <_ Kt2mtm (3.16)
i=0

coming, by Lemma 1, from the assumption that the sequence {t2mOtm} is

quasi geometrically increasing. Later on we shall apply inequality (1.6) and
the inequality

m

(A2 <_) oli <_ Kotm, (3.17)
i=0

what plainly follows from (3.16).
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Thus we obtain that

S5 <_ Z Xrn oli t2i <_
m=0 i=0

1-p -1 t;-I< K E Xm A2m olPm <
m=O

1-p OlPm-1 p-1<_ K Z t2m A2m+ A2 t2 <
m--O

m=O n=l

This and (3.10) imply the statement (iii) for s 1.
As we have asserted above the general cases when s is given by

1 1 1
-=-+- (0 < p,q < cx:
s p q

can be derived from the special cases s 1 by replacing the terms Ixk I, P
and q by Ixls, p/s and q/s, respectively.
Thus our theorem is completed.
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