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1 INTRODUCTION
We consider the second-order differential operator
Lyl=—(py) +ay
and lower-order perturbations
Bilyl=bjy"  (j=0,1)
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in the setting of the Hilbert space L%(a, 00). We prove three theorems which
give necessary and sufficient integral average conditions on b; for relative
boundedness or relative compactness of B; withrespect to L (with appropriate
domain restrictions). We employ the following terminology (cf. Kato [9, pp.
190, 194] or Goldberg [7, p. 121]).

Suppose B, L are operators in a Hilbert space. We say B is relatively
bounded with respect to L or simply L-bounded if D(L) € D(B) and B
is bounded on D(L) with respect to the graph norm || - ||z, of L defined by
Iyllz = liyll + ILyll, y € D(L), where D(L) denotes the domain of L. In
other words, B is L-bounded if D(L) € D(B) and there exist nonnegative
constants « and 8 such that

Byl < allyll + BlLyll, ye D(L).

A sequence {y,} is said to be L-bounded if there exists K > 0 such that
Iynlle < K,n=1.

B is called relatively compact with respect to L or simply L-compact if
D(L) € D(B) and B is compact on D(L) with respect to the L-norm, i.e.,
B takes every L-bounded sequence into a sequence which has a convergent
subsequence. For example, if L is the identity map, then L-boundedness
(L-compactness) of B is equivalent to the usual operator norm boundedness
(compactness) of B.

The space of complex-valued functions y with domain I such that
Iylloo := esssupser|y(t)] < oo is denoted by L*°(I). A local property
is indicated by use of the subscript “loc,” and AC is used to abbreviate
absolutely continuous. The space of all complex-valued, n times continuously
differentiable functions on I is denoted by C"(I); CZ(I) denotes the
restriction of C"(I) to functions with compact support contained in I;
and C{°(I) is the space of all complex-valued functions on I which are
infinitely differentiable and have compact support contained in the interior
of I. Throughout | - || denotes the norm in L%(a, o0).

Let £ be a differential expression of the form £[y] = —(py’)’ + qy, where
p and g are complex-valued, Lebesgue measurable functions on an interval
I such that 1/p, g € Lioc(I). Then the maximal operator L corresponding
to £ has domain D(L) = {y € L*(I) : y, py’ € ACpc(I), £[y] € L>(I)}
and action L[y] = £[y] = —(py’) +qy (y € D(L)). The minimal operator
Ly corresponding to £ is defined to be the minimal closed extension of L
restricted to those y € D (L) which have compact support in the interior of 1.
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The maximal and minimal operators corresponding to b;y) have similar
definitions. See Naimark [10, §17] for properties of maximal and minimal
operators.

Theorem 2.1 below is a special case of Theorem 1.3 in Anderson [1, pp.
31-32] and of Theorem 1.2 in Anderson [2]. This theorem covers the
case in which the coefficients of L are eventually bounded above by the
corresponding coefficients of an Euler operator, i.e., 0 < p(t) < Ct?,
[P'(®)] < Kt, and |q(t)] < M for some positive constants C, K, and M,
and all ¢ sufficiently large.

Before proving the other two second-order results, we give, in Theorem
2.2, conditions under which perturbation conditions for maximal operators
are equivalent to those for minimal operators. The theorem is stated for
operators of any order, and the key hypothesis is that the higher-order operator
is limit-point at co. This result simplifies the proofs of the next two theorems
since it suffices to consider only minimal operators.

The differential expression

£yl = (=1)"[poy™1® + (=" p1y® D1V 4 ... 4 pyy,

—00 <a <t <b < oo, (where pg, p1, ... , pn are real-valued functions) is
said to be regular at a if a > —oc and if the functions 1/pyg, p1, ... , p are
Lebesgue integrable in every interval [a, 8], B < b. Otherwise, £ is singular
at a. Following usual terminology, £ is said to be limit-point at oo if its
deficiency index equals n, i.e., the number of square-integrable solutions of
£[y] = Ay, Im(A) # 0, is n.

In Theorem 3.1, unrestricted growth of p and g is allowed with g being the
dominant term in the sense of (3.2) and (3.3). For example, the situation in
which p(¢) =t* and g(¢) = K tP for some constants K > Oand o < 8 + 2
is included as a special case, as is the situation p(¢) = ¢ and q(¢t) = Ke?'
with « < B. We give perturbation conditions on by and b; which involve
integral averages over intervals of length 8./p(#)/q(z) for some sufficiently
small § > 0. The pointwise (sufficient) conditions in Everitt and Giertz [6, pp.
322-324] are recovered as a special case.

The last theorem, Theorem 4.1, deals with the case in which p(¢) = *
(o > 2) dominates g in the sense of (4.3), e.g., q(t) = M1tP with B<oa-—2.
As in Theorem 2.1, the perturbation conditions involve integral average
conditions of by and b; over intervals of length 8¢ for some sufficiently
small § > 0. Theorems 2.1, 3.1, and 4.1 overlap in the case that L is an Euler
operator.
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The proof of Theorems 3.1 requires a different approach from that used

in Theorem 2.1. First, L[y]? is computed and a separation inequality of the
form

[e¢] o0 o0 o0
a [Ciytre [TpayPec [Tents [ L
a a a a
(y € D(Lo))is used. The separation inequality, used in proving Theorem 3.1,
is derived in Everitt and Giertz [6, Theorem 1]. The proofs of Theorems 3.1
and 4.1 also rely on Theorem A, a special case of Theorem 2.1 in Brown and
Hinton [4] on sufficient conditions for weighted interpolation inequalities.
In concluding §4 we show that Theorem 4.1 applies to the energy operator
of the hydrogen atom, i.e.,

L0+ 1
L] = —y”+[ 1Dy V<x)] 3

on 0 < x < 1, and give (for £ > 1/2) necessary and sufficient conditions
that V(x) is a relatively bounded (compact) perturbation of the operator
—y" +£(£ + 1)x~2y. This application does not seem to have appeared in the
literature.

Since self-adjoint operators for differential expressions are determined
by restricting the domain of the maximal operator, a relatively bounded
(compact) perturbation of the maximal operator is automatically a relatively
bounded (compact) perturbation of such self-adjoint operators. For this
reason, perturbation theorems for differential expressions are most useful
when proved for maximal operators.

The authors express their appreciation to Mike Shaw for correcting an
error in the proof of Theorem 2.2.

2 A p DOMINANT CASE AND AN EQUIVALENCE

Specializing the results of [2] to the second-order case yields the theorem
below. This result is a case of p dominant and “small” in the sense of

1P/ < kJ/p(@).

THEOREM 2.1 Let I = [a, 00). Suppose p and q are real-valued functions
satisfying p € ACroc(I), ¢ € L*®°(), p > 0on I, and

P )| < Ky/p@)
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a.e. on I for some positive constant K. Let L, B; be the maximal operators
associated with the differential expressions

Lyl =—(py) +qy
and
vyl =Y  (j=0,1),
respectively, where each bj € Lioc(I). For j = 0,1 and § > 0, define

1 t+8m |bj(T)|2
Vp®) Ji p(v)

Then the following hold for j =0, 1.
(i) Bj is L-bounded if and only if b; € L% (I) and

loc

gjyg(t) = dt (tel

sup gj,s(f) < o0,
a<t<oo
for some § € (0, 1/2).
(ii) B; is L-compact if and only if b; € L%OC(I) and

t1—1->nolo gj,s() =0,

for some § € (0,1/2).

Proof This result is the special case of [1, Theorem 1.3] and [2, Theorem
1.2] in which p = n = 2,5(t) = /p@t), w = 1, ¢ = 0, a9 = g,
ay=—p'//p,anda; = —1. (In this case, W = 1, P, = p' fori =0, 1, 2,
and Np = 1.) O

Remark 2.1 Since amaximal operator is an extension of a minimal operator,
Theorem 2.1 also holds if L and B; are replaced by the minimal operators
corresponding to £ and v;, respectively.

TueoreM 2.2 Consider the differential expressions £ = Y ¢ a;(t)D' and
m= Z;:é bj(t)D/, where eacha;, b; € Lfoc(a, 00). Let Lo, Mg and L1, M
be the corresponding minimal and maximal operators, respectively. Suppose
£ and m are symmetric. Let £ be regular at a and limit-point at co. Then M
is a relatively bounded (relatively compact) perturbation of L1 if and only if
M, is a relatively bounded (relatively compact) perturbation of L.
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Proof First suppose My is Lo-bounded. Then D(Lo) €S D(Mp) and there
exists C; > 0 such that

IMoyll = C1 (IIyll + ILoy1D) @D

for all y € D(Lg). First we show that D(L;) € D(Mj). Let y € D(Ly).
Since £ is regular at a and limit-point at oo (see Naimark [10, p. 31]),

D(Ly) =D(Lo)® S

where L is the adjoint of Lo and S is a finite-dimensional space of C" (a, 00)
functions with compact support. Since £ is symmetric, L = L;. Therefore,

D(Ly) = D(Lg) & S. 2.2)
Hence there exists yo € D(Lo) and y. € C (a, 00) such that
y=y0+Ye. (2.3)

Thus ||my|| < |imyoll + ||myc||l. The first term on the right side is finite
because yo € D(Lyg) € D(Mp). The second term on the right is finite
since yc ,0 < j < n —1, are continuous functions with compact support
and b; € L% (a, 00). Hence my € L%(a, 00), and so y € D(M)). Since
y € D(L1) was arbitrary, we have shown that D(L1) € D(My).

Next we show that there exists a constant C such that

IMiyll < C iyl + ILiylD

for all y € D(Ly). Let y € D(L;). Write y as in (2.3). Before proceeding
further, we state and prove a lemma.

LemMma 2.1  Let X and S be subspaces of a Banach space B, where X is
closed, S is finite-dimensional, and X N S = {0}. Then there exists a constant
K > Osuchthat ||x + s|| > K||s|| forallx € X and s € S.

Proof The proof is by contradiction. Suppose no such K exists. Then there
exist sequences {x,} C X and {s,} C S with [|s,|| = 1 for all n such that
X + 80l > Oasn — oco.Let C = {s € S : ||s]]| = 1}. Then C is closed
and bounded. Since S is finite-dimensional, C is compact. Therefore, {s,}
has a convergent subsequence which we relabel as {s;}. So there exists s*
such that ||s¢ — s*| = 0 as £ — oo. Note that ||s*|| = 1 and

lxe = xmll = llxe + ¢ — 5S¢ + S — Sm — Xm ||

< llxe + sell + lise = smll 4 llsm + Xm .
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By hypothesis, the first and last terms on the right side approach 0 as £ — oo
and m — o0, respectively. Since {s;} is convergent, ||s¢ — su|| — O as
£, m — oo. Therefore, {x,} is Cauchy. Since X is closed, there exists x* € X
such that |jx; — x*|| = 0 as £ — oco. We have

G +s¢) — (% + 5™ < llxg — x| + llse — 5™l > 0

as £ — oo. Hence x; + s¢ — x* + s*. By hypothesis, x; + s¢ — 0. Since
limits in B are unique, x* +s* = 0. Finally, since XN S = {0}, x* = s* = 0,
which contradicts ||s*|| = 1. This completes the proof of Lemma 2.1. m}

Returning to the proof of the theorem, an application of Lemma 2.1 (with

X = graph of L; with graph norm ||y||z. = llyll + |L1yll, and S as in (2.2))
yields the existence of a constant k for all y as in (2.3),

Iyl + 0Lyl = lIyliz = kllyeliz = kllycll. (24

Since a linear operator acting on a finite-dimensional space is bounded,
there exists C> > 0 such that

M1yl < Callyell 2.5)

for all y. € S. By hypothesis, D(Lg) € D(Mp). Thus since My C M,
Miyo = Moyo. So My = Miyo + Miy. = Moyo + M1y.. Now, use of
(2.1), (2.5), and (2.4) produces

Myl < lIMoyoll + iM1ycll < Ci(llyoll + iLoyoll) + Callyll
C
< Ci(llyoll + I Loyol) + —IE- Lyl + ILyylI- (2.6)

Note that

1 1
Ilyoll =11y = yell < Iyl + llyell = (1 + E) Iyl+ 1Lyl @27)

where the last bound follows from (2.4). Since yp € D(Lg) and Ly C L,
Loyo = Liyo. Thus [[Loyoll = IILiyoll = IIL1(yo + yo) — Liyell =
IL1y — Liycll < L1yl + lIL1yc|l. Since L; is a bounded operator when
acting on the finite-dimensional space S, there exists C3 > 0 independent of
ye suchthat [ L1y.|| < C3|ly.|l. Another application of (2.4) and substitution
in the previous estimate gives |Loyoll < ||L1y| + % [yl + IL1yll]. Use
of this bound and (2.7) in (2.6) yields ||M1y|| < C (Jiyll + ||IL1y]|) for some

constant C independent of y € D(L1). Since y € D(L1) was arbitrary, M
is Li-bounded.
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Now suppose My is Lo-compact. Then D(Lo) €S D(Mp) and {f,} C
D(Lg) with || full + ILo fnll < C for all n implies that {M f,,} contains a
convergent subsequence. To show that M; is Lj-compact, suppose {y,} C
D(Ly) with ||y,|| < Cy and ||L1y,ll < C3 for all n. Since Lp-compactness
of My implies Lo-boundedness of My, M; is Li-bounded by the first part
of the proof. Therefore, D(L;) € D(Mj). By (2.3), yn» = Yno + Ync
where y,0 € D(Lg) and y,c € S. So M1y, = Miyno + Miyn.. Since
yno € D(Lg) € D(Mp) and My C My, Miyno = Moyno. Therefore,
My, = Moyno + M1ync. Since Ly C Ly, Loyno = L1yno. By hypothesis,
{L1y,)} is bounded in L?(a, 00). Thus

IL1ynoll = IL1Yn — Liynell < IL1ynll 4+ | L1Yncll
C Cc
= G+ Cliynell = Co+ Lliynll = G2+ €,

for some positive constants C and k, where we have used the fact that L1 is
bounded when acting on the finite-dimensional space S, Lemma 2.1 (as in
(2.4)), and the hypothesis that {y, } is bounded. Therefore { L1y,0}, and hence
{Loyno} is bounded in L?(a, 00). Since My is Ly-compact, { Myy,o} contains
a convergent subsequence {Moyn,0}. Sinci M, is a bounded operator on S,
IMi1yn;cll < Cllynell < (C/B)llyn; |l < C, where the last two inequalities
follow from Lemma 2.1 and boundedness of {yn}. Therefore, {M1yn,} is
bounded in a finite-dimensional subspace of L?(a, 00) and hence contains
a convergent subsequence. So {M1y,} contains a convergent subsequence.
Therefore, Mj is Lj-compact.
Next suppose that M, is Lj-bounded. Then D(L;) € D(M;) and

1Myl < Cliyll + 1 L1yID (2.8)

for all y € D(L;). First we show that D(Lg) S D(Mp). Let y € D(Lyo).
Then, by a theorem in Naimark [11, p. 68], there exists {yx} C CZ(a, 00)
such that yy — y and Loyx — Loy as k — 00. Since Lo C L1, (2.8) holds
for y, — y for each k:

My — Myl < C (llyk — yll + IL1 e — WD

= C (llyk — yll + IILoyx — Loyll)
It follows that My, — M;y. Since order(m) < order(l), the functions y; €
C?(a, 0o) are smooth enough (specifically, Cé"l(a, o0)) that yr € D(Mp).
Since My C My, Moyr = Miyx; and so Moyy — M;y. Therefore, {y}
and {Moyx} are convergent. Since M) is a closed operator, y € D(Mp) and
Moyyr — Myy. Therefore, D(Lo) € D(Mp).
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Since Ly C L1, (2.8) holds for all y € D(Ly), i.e., M1yl < C(llyll +
[Loyll) for all y € D(Lg). Since D(Lg) € D(Mp) and My C M,
Miy = Moy for y € D(Lo). Hence Moyl < C(llyll + lILoyll) for all
y € D(Lg). Therefore, My is Lo-bounded.

Finally, suppose M; is Lj-compact. Then D(L;) € D(M;) and if
{fn} € D(Ly) with

Ifall + L1 full = € (2.9

for all n, then {M; f,} contains a convergent subsequence. Since Li-
compactness of M implies L{-boundedness of M, My is Lo-bounded by
the proof of the previous part. Therefore, D(Lo) S D(Mp). Suppose {y,} €
D(Lo) with [[yx|l + l[Loyall < C for all n. Since Lo < Ly, {y.} S D(L1)
and Loy, = L1y,. Hence (2.9) holds with f, replaced by y,. Therefore,
{M1y,} contains a convergent sequence. Since {y,} € D(Lg) S D(Mp)
and My C My, it follows that {Mpy,} contains a convergent subsequence.
Therefore, My is Lo-compact. O

3 A gDOMINANT RESULT

The following theorem establishes relative boundedness and compactness of
perturbations when g dominates p in the sense of (3.2) and (3.3).

THeorREM 3.1 Let I = [a,00). Let p and q be ACioc(I) real-valued
functions such that p > Qon I,

q(t) = K, (3.1
1P ()] < A1v/p(Dg (@) (3-2)

and
pPOYG ®)] < A2q(0)*? (3.3)

fort € I and some positive constants K, A1, and Ay with Ay < 1.

Let L, B;j be the maximal operators associated with the differential
expressions

Lyl =—(py") +qy

and
vyl =by"  (j=0,1)
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respectively, where each bj € Lioc(I). For j =0, 1 and § > 0, define

_ /q(t 48,/ 53 b (t)[?
gj.s(t) = ) / p(t)fq(‘c)z‘ dr. 34

Then the following hold for j = 0, 1.
(i) Bj is L-bounded if and only if b; € Lloc(I) and

sup gjs(t) < o0 3.5)

a<t<oo

for some § € (0,1/(A; + Ap)).
(ii) Bj is L-compact if and only if b; € LIZOC(I) and

lim g;5(t) =0 (3.6)
t—>00

for some § € (0,1/(A1 4+ Az)).

The following theorem is a special case of Theorem 2.1 in Brown
and Hinton [4]. It gives sufficient conditions for weighted interpolation
inequalities.

THEOREM A  Let I = [a,00) and 0 < j < 1. Let N, W, and P be positive
measurable functions such that N € Lio(I) and w1l Pl e Lo (D).
Suppose there exists gy > 0 and a positive continuous function f = f(t) on
I such that

1 t+ef
S1(€) := sup lfm DT, . (P) [ f N]} <o
tel f t

and

. 1 t+ef
S2(e) := sup lf_ijt,e(W) [_37 f N]} <00

tel

for all & € (0, 89), where T, ((P) = % ft’+8f P~ with a similar definition
Sor Tt (W). Then there exists K > 0 such that for all ¢ € (0, o) and 'y € D,

[ Ny <K [8_2j32(8) f Wiyl* + 22D 81 (e) / PIy”F],
I 1 I

where D = {y : y' € ACioc(I), [; WIy|* < 00, and [, P|y"|* < o0}.
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Proof of Theorem 3.1 From Dunford and Schwartz [5; XIII 6.14], L is
regular at ¢ and limit-point at co. In view of Theorem 2.2, it suffices to prove
the result for minimal rather than maximal operators. Let Lo and B; o denote
the minimal operators associated with £ and v;, respectively.

In Everitt and Giertz [6, Theorem 1], the separation inequality

o0 o0 o0 o0

[ iere [Tparrc [Cenes [T izt 6
a a a a

valid forall y € D(Lo) and some positive constants Cj and C, is established.

Their proof uses (3.3) and shows that C; = 1 + w and C; = w where

w = 1 — A,. Thus we have for all y € D(Ly) that

[o¢] o0 o0 o 2

[ty rata [Traore [T s [P 6

a a a a

To make use of (3.8) in subsequent calculations, we will estimate
L2 p?1y"1? in terms of [;°g2|y|* and [;° |(py')'|*, where y € D(Lo).
Note that (py')' = py” + p'y’, and so L2 PPy 1= [ 1y =Py <
2/ 1eyY12 + [;° 1P’y 2] by the inequality | — B> < 2(la|* + |BI%).
Use of (3.2) gives

o 2 2 o 2 2 e 2
f PP <2 f (pyY 12 + 242 f palylP. (39
a a a

Next we will estimate the last integral in terms of fa°° g?|y|* and the integral
on the left. We apply Theorem A with N = pg, W = qz, P = p2, j=1,

and g9 and f = f(¢) to be chosen below. By the definitions of S; and S; in
Theorem A,

_ 2L( t+€fi)i e }
so=slr L[ 5%) 7 [ e

S 1 1 t+8f1 1 t+ef
2‘8>-§2?{3«‘zﬁ(f, ?)J/, ""}'

Basic estimates are obtained from the following lemma in [4, pp. 575-576].

and
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Lemma 3.1 Let s and w be positive, ACioc(I) functions such that |s'(¢)| <
Ny and |s()w'(t)| < Myw(¢) a.e. on I for some constants Ny and My. Then
forfixedt € I,0 <¢ < -1;1,3, andt <t <t + es(t), we have that

(1 —eNg)s(t) < s(r) < (1 +&Np)s(t)
and

exp (_%%) w(t) < w(r) < exp (%)) w(®).

Note that if p and ¢ are constant functions, then the choice f = /p/q
implies that S; = S, = 1. Of course, p and g need not be constant functions.
However, this choice of f and Lemma 3.1 (with s = f and w = p or q)
imply that p(r) and g () are nearly constant fort < v < t + ¢f and ¢
sufficiently small. Thus for f = 4/p/q, we have

1 _ _ 1 _
If'| = Ep l/zp’q 1/2—5p1/2q 3/2q’ <N
by (3.2) and (3.3), where Ny = (A1 + A3)/2. Also,
/ /
LP_\ _ 1,
p «/Pq

/ /
‘f_qF‘/?;'Z'sAz-
q q*

Let0 < & < g9, where ¢ = 1/Ny = 2/(A; + A2). Then by Lemma 3.1, we
have for fixedt € T andt <t <t + €f(?),

(1 —eNo) f(t) < F(x) < (1 +&No) f(£), (3.10)
—A A
exp (Tvo“l) p(®) < p(x) < exp (7\7(1)) p@), (3.11)
and
—A A
exp (703) q(t) < q(r) < exp (—Ié) q(). (3.12)

It follows that S;(¢) < Cp and S3(¢) < C, for some positive constants C
and C;. By Theorem A, for each ¢ € (0, &), there exists a constant C > 0

such that
2 *© 2112 *° 21312
palyl SCf q°lyl +£/ Pyl

a a

[o¢]

a
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for all y € D(L) and hence for all y € D(Lg). Use of this estimate in (3.9)
gives (1 — 2A%e) [ p2ly"|> < 2C A2 [° g*|y> + 2 [ |(py')'|* for all
y € D(Lp). Choose ¢ > O such that ¢ < 1 /ZA%. Then there exist positive
constants K; and K, such that

® o a2 = 2
f Pyl SKI/ q-lyl +K2f Iyl (3.13)

a a a
for all y € D(Loy).
(i) Sufficiency. Suppose (3.5) holds for some § = (0, 1/(A; + A2)). Fix
Jj € {0, 1}. To prove that B; o is Lo-bounded, we will employ Theorem A
again. To be specific, choose N = lbjlz, W =¢q? P = p? & = 6, and
f = +/p/q. By (3.11) and (3.12), we have for 0 < ¢ < §, using f = f(2),
p = p(t), etc, that

Sie) < C [2(2 CERERY
1(e) = Csu ‘——f }
At p?ef Ji !

tel
20-0) pig2-i 1 rtef (bi(r)?
SCmp[f P 1 1b; ()| ]

tel

P e fli p@ig@

for some constants C and C. By the definition (3.4) of g; 5 and the choice of
f,forall e € (0, 6),

C C
Si(e) < — supg;s(t) < — (3.14)
€ tel £
where the last inequality holds by (3.5) for some constant C; > 0. Similarly,
1 1 pig*> C C
S2(¢) < Csu {~— — —— &8s = —supgjs(1) = — (3.15)
e (g ¥ e et VY=

for some constant C, > 0 and all ¢ € (0, §). By Theorem A, there exists a
constant K > 0 such that for all ¢ € (0, §) and y € D(Ly),

oo [o¢] [e¢]
[T 0r <k fewit [Ty et [T pye)

‘ ‘ ‘ (3.16)
where we have used (3.14) and (3.15). Since j = 0or 1,3 —2j > 0 and
so the coefficient of the last integral in (3.16) can be made arbitrarily small
by choosing ¢ € (0, 8) sufficiently small. This observation and (3.13) imply
that for any &1 € (0, ), there exists a constant M > 0 such that

o )12 o 2 2 i 2
/ Ity st 21l +elf py'Y
a a a
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for all y € D(Ly). It follows from this estimate and the separation inequality
(3.8) that Bj g is Lo-bounded.

Necessity. For the proof of necessity of (3.5), we work with maximal op-
erators. Suppose B; is L-bounded. Fix j € {0, 1} and é € (0, 1/(A; + A2)).
Let ¢ be a function in C3°(R) such that ¢ = 1 on [0, 1] and support
(@) = [-2, 2]. Define for ¢t > a

ho(t) = ¢ (1), h1(t) =19 (). (3.17)

Then h; € C(R) and h{ () = 1 on [0, 1] for j = 0, 1. For each r > a,
define

hi (@) =8 f(r) hjw), t=>a, (3.18)
where .
SRS AT Sy
Then _
hﬁ,’r)(ﬂ =1, r=<t=<r+8f), (3.19)
and
support(h; ;) = [r — 28f(r), r +28f (r)]. (3.20)

By the definition of B;, (Bjh),,)(t) = b;()h) (1), t > a,and so
bj = thj,r on[r,r +48f()].
Thus for r > a, we have (by the definition (3.4))

q(r) fr+8 f—g—; |bj |2 /r+8f(r) IB h
s === -
p) Jr pig*1 = () pig*”

r+8f(r) )
< - - |Bjhj, |
f@r) pr)iqr)* fr T
for some constant C > 0, where we have used (3.11) and (3.12). Now, by
the definition of f = 4/p/q,

C

00) = Fomerggy |, 1 = oy 1t
(3.21)
for r > a. By the hypothesis that B; is L-bounded, we obtain

C
V8is(r) = o) (I1Rj- I + LR A1) (3.22)

for r > a and a different constant C. Estimates for the terms in the graph
norm of ;,, are given in the following lemma.
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Lemma 3.2  Let p and q be positive, ACiocla, 00) functions such that (3.2)
and (3.3) hold. Let f = \/p/q. Foreachr > a, define h; , as in(3.18). Then
there exist positive constants C1, Cp, C3, and C4 such that for r > a and
j=0orl,

I .1l < C1f(r)/H1/2, (3.23)
lghj |l < C2f (r)*12q (), (3.24)
Pk}, ) Il < Caf @)/ H12q (), (3.25)
and
LA, |l < Caf ) TH2q(r). (3.26)

Proof of Lemma 3.2 Fixr > a, and j € {0, 1}. By (3.20) and the change
of variable u = (¢t — r)/3f (r),

) 00 ) r+28f(r) 2i 0i )
s =/ |k, (®)|°dt =f 8V f () |hj ()| dt
a r—28f(r)

2
= 8% f(r)¥ f | )81 (rdu = Cf (r)2+!
-2

for some positive constant C which is independent of r. (Note that
f _22 |k (u) |2du is finite since h ; is continuous on R.) This establishes (3.23).
Next we use (3.11) and (3.12) to estimate
e} r+28f(r)
lghj 1> = / a1k, (OPdt = f q(@®)*8% £ (1) |y w)*dt
a r—28f(r)
r428£ ()

< Cf(r¥q(r)? f |k (u)|*dt

r—28f(r)
2
=Cr¥q0r)? | |h;@)Psf(r)du = C f(r)¥q(r)?
-2 J

for some positive constants C and C independent of 7. So (3.24) holds.
Since (x + B)* < 2(a? + B2),

o) )17 = Iph}, + p'h) 1P < 2liphf, I* + 21 p'h; 112

r+28f(r) ) )
<2 pri, obar
r—=28f(r)

r+28f(r) ) )
+2/ ATp(q@)|h; ()| "dt
r—=28f(r)
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by (3.2). Note that b}, = &/ f(r)fh;.(u)‘;—'; = §/-1 f(r)f-lh;.(u) and
K] (1) = 8/72 f(r)/ =2k} (w). By (3.10), (3.11), and (3.12), we obtain (for
some constants K and K, independent of r)

r+28f(r)

19k, 1P < Kip2 50 [ U

r=28f(r
r+28f(r)

+ Kap()a f07I2 [ I wrdr

r—28f(r
2

= Ka8p(r)* f(r) ¥ 73 / . |1 () Pdu

2
+ Kaspg @) f 0 [ 0P
< ClpM*fFO¥ 3 + pryg() F(r)* 1

where C is a constant independent of r. Since f = /p/q, we find that
I(ph} )1 < 2CF 1)+ q(r)*. Hence (3.25) holds.
By the action of L and an inequality used earlier,

ILRjAN? = || = (PR}, + qhjrI* < 201(pR; ) I + 2llqh; 1.

By (3.24) and (3.25), thisimplies that || Lk; | < 2(C3+C3) f (r)> T1q(r)*.
This establishes (3.26) and completes the proof of Lemma 3.2. o

Returning to the proof of Theorem 3.1, use of (3.23) and (3.26) in (3.22)

yields
ccC
&) < q(—r; +CCy 327

forallr > a.Byhypothesis, g is bounded away from 0. Hence g; 5 is bounded
above on [a, co). Therefore, (3.5) holds for any 8 € (0, 1/(A; + A2)). This
establishes the necessity of (3.5) for L-boundedness of B;.

(ii) Sufficiency. Suppose (3.6) holds for some § € (0, 1/(A; + Ap)). It
suffices to show that Bj o (j = 0, 1) is Lo-compact (by Theorem 2.2). Fix
Jj €1{0,1}. For y € D(Ly) and each positive integer N > a, define

Bjolyl = bjy? onla, N],
R . —_ j!
7.0 {0 on [N, c0l.
Set
Vi(N)= sup gjs().

N<t<oo
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By hypothesis,
lim ¢;(N)=0
N—>oo l//J ( )

and (3.5) holds. Hence Bj o is Lo-bounded by (i). So D(Lo) C D(Bj ). For
y € D(Lo),

0 2
I1Bj.oly] — R nIYIll = {/N ijy(f)lz} (3.28)

by the definition of R; y.
Next we apply Theorem A on the interval [N, oo] in the same manner used
to derive (3.16). As in the proofs of (3.14) and (3.15), we find that

S1(e) =C1 sup gjs(t) = C1y;(N)

N<t<oo

and
$2(8) < G2y (N)

for some positive constants C; and C; and all ¢ € (0, 8). It follows that there
exists a constant K > 0 such that for all ¢ € (0, 8) and y € D(Lo),

o0 A 3 o0
[ by 2 <K {s—zfcw,-(m / aly)?
N
. a w
+ 82(2_1)C11/fj(N)/ p2|y//|2}
X *© 21,12 * N2
< Cyj(N) PP+ 1y
a a

for some constant C > 0, where the last inequality holds by (3.13). Now by
the separation inequality (3.8) and the definition of the graph norm || - ||, we
have

b y9 2 < Cyry (N) / ILoy]P < Cy; (V) Iy

for some constant C > 0 (independent of N) and all y € D(L¢). Combining
this inequality with (3.28) yields

| Bj,oly] — Rj Y]l <C \/m 50
= J

yeD(Lo) Iyliz
y#0

as N — oo. Therefore, Rj y — Bj,0 as N — oo withrespectto || - ||L.
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Next we show that each R; y is Lo-compact. Because the argument is
standard, we give only a brief sketch here. Let {y;} be an Ly-bounded
sequence. Clearly, {yx} is bounded in L%*(a, N). An application of Theorem A
yields that {y;} and {y;} are equicontinuous on [a, N]. By the Arzela-Ascoli
Theorem, {y} has a subsequence {yx,} such that {yx,} and { y,’cm} converge
uniformly on [a, N]. This fact, combined with the hypothesis that b; <
leoc (a, 00), implies that {R; n yx,} is a Cauchy sequence in L?(a, N). Since
{yx} was an arbitrary Lo-bounded sequence, each R;y is Lo-compact.
So Bj ¢ is the uniform limit of Lg-compact operators. Therefore, Bj ¢ is
Lo-compact.

Necessity. Fix j € {0, 1}. Suppose B; o is Lo-compact and that (3.6)
does not hold for any § € (0,1/(A; + A2)). We show that this leads to
a contradiction. By hypothesis, for any § € (0, 1/(A1 + Az)), there exists
& > 0 and a sequence {r;} C R such that r, - oo and

gjs(re) > ¢

forall £ > 1. Fix 8§ € (0,1/(A1 + Ay)). Define 4, as in (3.18). Then by
(3.21), we have that for some constant C > 0,

¢ 2
00 = Forrigege ot

forall £ > 1. Forr,t € [a, 00), define

ojr(t) = Whj”(t)'
Then forall £ > 1,
& < C||Bj00jr,II” (3.29)
and
2
llojr 17 = f(mzj—ﬂq(m)gllhj,n Iz <M

for some constant M > 0 by Lemma 3.2 and (3.1). (See (3.22) and (3.27).)
Thus the sequence {07/, } is Lo-bounded. Since B; o is Lo-compact, { Bj 00 ,, }
has a subsequence converging to some yo € L2(a, o0). Since the supports of
the oj , tend to infinity as » — 00, this implies yo = 0 thereby contradicting
(3.29). O
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Everitt and Giertz consider the operators R and Ty defined by

Riyl=ir(ry)’ (v € D(R))

and
Tolyl=—(py) +qy (y € D(Tp))

with D(R) = {y € L*(a, o) : y = ACl[a, 00), R[y] € L*(a, ), y(a) =
0,ry € L*(a, 00)}and D(To) = {y € L*(a, 00) : ¥’ € ACiccla, 00), Toly] €
L%(a, 00), y(a) = 0}. They prove that the pointwise conditions

Ir®I* < Cipt)q (), r@)* < Caq@t), ¥ (@) < C3q(t)

(for some positive constants Cy, C, and C3 and ¢ € [a, 00)) are sufficient
for R to be Ty-bounded. By identifying bg = i rr’ and by = i r?, we find
that their result is a special case of Theorem 3.1. Furthermore, Theorem
3.1 generalizes the sufficient pointwise conditions of Everitt and Giertz to
integral average conditions which are necessary and sufficient for relative
boundedness of B; with respect to L.

ExampLE 3.1 Let p(f) =%, q(t) = Kt#,anda = 1, where a, 8, and K are
constants with K > 0. Then (3.2) and (3.3) are each equivalenttoo < S+ 2.
Assume that this relationship between o and B is satisfied. Also, assume that
K > p2.Then Ay < 1, where A is the constant in (3.3). From (3.4), we
have (up to multiplicative constants)

4812 |b 2
_ 0(7)|
g05(t) = 177" /, =

and (@—p)/2
t+48t Ibl(t)l2

Tatp drt.

g1a(0) = 1402 [

t
For example, by Theorem 3.1, By, B; are L-bounded if |by ()| < Cot? and
|b1(2)] < C1t@+P)/2 for some positive constants Co and C; and ¢ € [1, 00).
o

ExampLe 3.2 Let p(t) = e* and q(t) = Kef witha < B and K >
B%e@~P)% Then (3.2) and (3.3) hold with A; < 1. By definition,

1+ ()R
- 0 ()]
g0,5() = B0/ /t e dt
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and (@—p)t/2
o
t+d8e lbl (‘E) |2

c@tBr dr

g18(t) = e(ﬁ—“)t/zf
t
(up to multiplicative constants). For example, by Theorem 3.1, By, B; are

L-compact if |bo(z)] < Coe®®~®" and |b;(t)] < C1e@+F=" for some
positive constants Co, C1, and ¢ and all ¢ € [a, 00). |

4 A p DOMINANT CASE WITH p LARGE

In the next theorem, we consider the situation in which p(t) = t* and
lg(#)| < Mt*2 for some constants « > 2 and M > 0, ¢ € [a, 00).

Tueorem 4.1 Let I = [a,00). Let L, B; be the maximal operators
associated with the differential expressions
Lyl = -y +qy .1
and
vyl =by?  (j=0,1), 42)

respectively, where a > 0, a > 2, q is a real-valued Lioc(I) function such
that

lg(t)] < Mt*™% (@<t < o00) (4.3)

for some sufficiently small positive constant M, and each b; € Lioc(I). For
Jj=0,1andé > 0, define

1 /t+8t Ib] (r)IZ

gis) =~ dt
tJi

20+j-2) 7
Then the following hold for j = 0, 1.
(i) Bjis L-bounded if and only if b; € L% (I) and

loc

sup gjs(t) < o0 “4.4)

a<t<oo

for some § € (0, 1/2).
(ii) Bj is L-compact if and only if b; € LIZOC(I) and

lim g;5(t) =0 (4.5)
t—>00

for some § € (0, 1/2).
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Proof We first consider the case ¢ = 0. Then £ is a one-term operator
which is limit point (£[y] = O has the non L?(a, o0) soltuion y = 1). Thus
by Theorem 2.2 it suffices to prove the result for the minimal operators Lg
and B; o associated, respectively with £ and v;.

Let y € C°(a, o0) be real valued. Since (t*y)" = t*y" 4+ ot~ 1y we
have after an integration by parts that

[o.¢] o0
[ty = [T v 2y y 4 e
a a

o0 o0
a a
from which we conclude that
oo o0
[ ey s [Ty @7
a a

since ¢ > 1. On the other hand, the Hardy inequality ([8, pp. 245-246]) gives
that for y # —1,

by ) 4
/[;tu)(t)dt_m

for all w € AC[a, b] such that w(a) = w(b) = 0. Applying (4.8) to
w=y and y =2« — 2 gives

f 20! Z(y )2 ( 1)2/ tla(y//)Z (49)

Substitution of (4.9) into (4.6) and simplifying yields that

(4.6)

b
/ Y20 ()2 dt (4.8)

f ” 24 (y")? < Qa — 1)2 f oo[(r“y’)’]z. (4.10)

Again employing the lemma of Everitt and Giertz [6, p. 313], we have that
(4.10) holds for all y € D(Lo).

(1) Sufficiency. Suppose (4.4) holds for some § € (0, 1/2). Fix j € {0, 1}.
We will apply Theorem A with N = |b;|?, W = 124 P = 12 gy = §,
and f(t) =t.For 0 < ¢ < 8, we have (by Lemma 3.1) for some constant
Ci,

; 1 C
Si(e)<Cy sup {ﬂ@"’t‘z“t““*f’”;gj,a(r)}=;2 sup {gj5(t)} <00

ast<oo a<t<oo
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by (4.4). Similarly, for 0 < ¢ < § and some constant C3,

o1 | C
S2(e) < C2 sup t_2]mf2(“+’—2)—gj,s(t)}= =2 sup {gja(0)}<oo.
a<t<oo ter & € a<t<oo

Hence by Theorem A, there exists K > O such thatforalle € (0,8) and y €
C(a, 00), [ 1bjy P> < K{e271 [ 124 |y|2 4 £3721 [ 22|y %)
for j = 0,1. Applying the Hardy-type inequality (4.8) twice to the
middle integral produces [° 12 74|y|? < (2“—_3)%?%—_—1)7 [ 121y"|? for
y € C§°(a, 00). Thus for a different constant K > 0,

oo . o
[ e <k [ ey
a a
for all y € C3°(a, 00). By (4.10), we have for all y € C{°(a, 00) that,

o0 o0
I1Bjoyl* = f by < KQa—1)? / 1*yY' P = KQa—1)|Loy|*.
¢ ‘ @4.11)

To extend (4.11) to functions in D(Ly), let u € D(Lg). Then there exists a
sequence {u,} of C3°(a, 0o) functions such that u, — u and Loun, — Lou.
Replacing y in (4.11) by u,, —un,, we see that { Bj ou, } is a Cauchy sequence in
L?(a, o). Since Bj o is a closed operator, this implies that Bj ou, — Bj ou.
Hence, by replacing y in (4.11) by u,, and lettingn — oo, we have established
that (4.11) holds for functions in D(Lg). Therefore, B; ¢ is Lo-bounded.

Necessity. As in the proof of necessity in Theorem 3.1 (i), we will work
directly with maximal operators. Fix j € {0, 1} and § € (0, 1/2). Suppose
B; is L-bounded. For each r > a, define the function k; , as in (3.18) with
the exception that f is replaced by f(r) = r. Then

hi @) =8rihjw), t=a, (4.12)

where u = (t — r)/8r and h; is defined by (3.17). Also, (3.19), (3.20) hold
for the choice f(r) =r.

By the definition of g; s,

1 r+4ér |bj(T.)|2 dr — 1 r+ér |thj,r(t)|2 g
T2a+j-2) r

gis) =7 | 22@+]-2)

1 r+6r 5
= 20+2j—3 f |Bjhj,(T)|"dT.
r r
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Now, after replacing the interval of integration by the larger interval [a, c0),

we obtain gj s(r) < ;mlm |Bjh;,,||>. Since Bj is L-bounded, there exists a

positive constant C such that for all » > a,

C
V8180 = =75 (Ihyrll + LA 1) @.13)

Next we state and prove the analog of Lemma 3.2 for the present setting.
Lemma 4.1 For j =0, 1 define hj , by (4.12). Letq = Oin (4.1). Then there
exist positive constants C1 and Cy such that forr > aand j =0or 1,

I .1l < Crrd /2 (4.14)
Js

and
ILRj ANl = %R}, || < Cor®+i =32, (4.15)

Proof of Lemma 4.1 Fixr > aand j € {0, 1}. Using the compact support
of hj ., we have

r4268r L o 2 .
W) 1 = 82 r2\h; ) Pdt = 8272 | b )28 r du = Cri+!
Js J 2 J

r—28r

for some positive constant C independent of r. (Recall that h;, defined by
(3.17), belongs to Ci°(a, o) and does not depend on r.) So (4.14) holds.
Next we estimate, using (4.7), that

N2 r+2ir 201, 2
heoH, )P < / 2! ()Pt

r—24r

~ r+24r
<Cr™ f
r—26r

2
dt

Lo 1
8r! h;/(u) 32—"2'

2
= Kr2t2—4 / I} )8 r du = Kr**+2I 7

for some positive constants C, c ,K,and K independent of r. This establishes
(4.15) and Lemma 4.1. O



398 T.G. ANDERSON and D.B. HINTON

We now continue with the proof of Theorem 4.1. By combining (4.14)
and (4.15) with (4.13), we find that /g; 5(r) < A1 + K for some positive
constants K1 and K7 and all» > a. Since o > 2, the right side can be bounded
above independently of r. Therefore, (4.4) holds for any § € (0, 1/2). Thus
(4.4) is necessary for the L-boundedness of B;.

(i1) The proof that (4.5) is necessary and sufficient for the L-compactness
of Bj is essentially the same as the proof of Theorem 3.1 (ii) and is therefore
omitted. This completes the proof of Theorem 4.1. m]

To allow for a g term we note that if g satisfies (4.3), then it is a bp
pertubation term satisfying (4.4) and is thus an L-bounded perturbation of
(t*y')'. Further the above proof shows from (4.11) that the relative bound is
proportional to M. Therefore the relative bound can be made less than one
by taking M sufficiently small. This fact, together with the following general
result, completes the proof of Theorem 4.1: If B is a relatively bounded
perturbation of A with relative bound b < 1, i.e., D(A) C D(B) and
[|Bx] < allx|| + b||Ax||, and C is a relatively bounded (relatively compact)
perturbation of A, then C is a relatively bounded (relatively compact)
perturbation of A + B. Note that if |g(t)] < Mt®, A < «a — 2, then it
is a by perturbation of (¢*y’)’ which is relatively compact. In this case there
is no restriction on M.

Finally, we apply Theorem 4.1 to the energy operator of the hydrogen atom

Liyl=—y"+ [e(e;; D, V(x)] y, 0O0<x<l (4.16)

where £ > 1/2. First we define a unitary transformation U from L?(0, 1)
onto L2(tg, 00), tg = 1/(2¢ — 1), by

U@ = z2(t) = x*y(x), t=x"2¢/2e-1). (4.17)

From the formulas in [3] it follows by straightforward calculations that if
K[zl=—-(P(®)2) + Qt)z, -=d/dt, th=<t < o0, (4.18)
where P(t) = x~* and Q(t) = V(x), t as in (4.17), then the minimal
operator Ly and maximal operator L; determined by (4.16) are unitarily

equivalent to the minimal operator Ko and maximal operator Ky determined
by (4.18), i.e., Ko = ULoU™!, K; = UL U~'. This means that relative
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boundedness (compactness) criteria for one operator translates into relative
boundedness (compactness) criteria for the other. Let By be the maximal
operator associated with multiplication by Q(¢) in L2 (%, 00), and let Cy be
the maximal operator associated with multiplication by V (x) in L%(0, 1).
Define,for0 <e < 1,0 <x <1,

1 pe
g:(x) = —/ u4|V(u)|2du,
X Jx(1—¢)

and set &g = 1 — (3/2)!=%. Let L, be the maximal operator associated
with (4.16) in the case V (x) = 0. We now show Cj is a relatively bounded
(compact) perturbation of L; if and only if V € L2 (0, 1) and

loc

sup g.(x) < o0 (lin% g:(x) = 0)

O<x<1

for some ¢ € (0, gg).

For the proof we apply Theorem 4.1 to K, = UL,U. Clearly Q €
L (t, 00) is equivalent to V € L2 (0, 1). Also with P(t) = x~# =

t4%/@2=D we have @ = 4£/(2¢ — 1) in Theorem 4.1 and the change of
variable u = [(2¢ — 1)7]/1~20 shows that

t+6t 2
1 f 12@F

gos(t) =~ . 2D

X
=52 f W |V )P 2 — 1)°u™ du
x(1—¢)

where g 1= 1 — (14+8)/0-20 ¢ := (204+3)/(2¢—1).Onx(1—¢) <u < x
we have
x\2¢t 1
1<{({- < —
- (u) ~(1-g)*

hence the boundedness of gos(f) on 1 < t < oo is equivalent to the
boundedness of g;(x) on 0 < x < 1. Similarly gos(t) — Oast — oo
if and only if g, (x) — 0as x — 0. This completes the proof.

In particular, a Coulomb type potential V (x) = ¢/x is arelatively compact
perturbation of L.
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