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For a function f holomorphic and bounded, fl < 1, with the expansion

f (z) ao + akZ.

k=n

in the disk D {Izl < 1}, n >_ 1, we set

F(z, f) (1 -Izl2)lf’(z)l/(1 -If(z)12),
A la, I/(1 -la01), and T(z) zn(z + A)/(1 + Az).

Goluzin’s extension of the Schwarz-Pick inequality is that

r(z, f) _< r(Izl, r), z D.

We shall further improve Goluzin’s inequality with a complete description on the equality
condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove
a similar result in terms of the Poincar6 metric.
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1 INTRODUCTION

Let D {Izl < 1}, let/ be the family of all the holomorphic functions

f D D, and let .T" be the family of f 6 B univalent and f(D) D.
For f 6 3 and z 6 D we set

(1 -Izl2)lf’(z)l
r(z,f)--

1-lf(z)
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The Pick version of the Schwarz inequality, or simply, the Schwarz-Pick
inequality then reads that

1-’(z, f) < 1

everywhere in D. Furthermore,

For f B we set

z(z + F(O, f))
dPl (z) z D.

1 + 1-’(0, f)z

The case n 1 of G. M. Goluzin’s theorem [1, Theorem 3], [2, p. 335,
Theorem 6], then reads that

1-’(z, f) _< r(Izl, (I)1) (1.1)

at each z D. Since for E in [3] we have

1-’(0, f)(1 + Izl) + 21zlE(z, f) 12
r’(Izl, (I)1), (1.2)

1 + Iz + 2I"(0, f)Izl

our former result [3, Theorem 1 is actually arediscovery of (1.1). The present
author regrets overlooking (1.1) of Goluzin. However, we dare to note the
following two items.

(I) The equality condition described in [3, Theorem 11 is more detailed
than Goluzin’s.

(II) The proof of [3, Theorem 1] is quite different from Goluzin’s; it
depends on a further analysis of r (z, f) in [3, Theorem 2].

Goluzin, loc. cit., actually obtained a result under the condition that

f(k) (0) Zkf(z) f(O) +
k

z D,
k=n

(1.3)

for f e B, where n _> 1 and, possibly, f(n)(0) --O.
The purpose of the present paper is to extend the cited result for f of (1.3)

with a complete description for the equality condition.
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2 EXTENSION

For f /3 with the expansion (1.3) we set

If()(0)l
n!(1 -If(0)le)"

As will be seen, 0 < A < 1. We furthermore set

1, for A=I;
B If(n+l)(o)[

for A < 1.
(n + 1)!(1 -If(0)12)(1 A2)

We shall observe that 0 < B < 1. Set

zk(z + A)
:(z) (k O, 1, 2,... ),

l+Az

z(z + )P(z) , and
I+Bz

Rn(z)
]Zln(1 .0(Izl)2)(1 l"([z[, *))

1 n(IZl)2
(for n > 1 of (1.3)),

for z D. For f /3 with (1.3) one can prove that F(0, f) F(0, n).
Furthermore, Rn (z) >_ 0 and Rn (0) O.

Set Gz(z) zz, z D, and

.T’z {T o Gz; T ’}, ) 1, 2,...

so that .T" .T’I. Note that for f / with (1.3), the n-th derivative of

f(z) f(0) at z 0 is f(n) (0) Hence, for f /3 with (1.3) to be in
1 f (0)f (z) 1- ]f (0)
n, it is necessary and sufficient that A 1. We further note that

F(z, f) F(Izl, Gz)

for f ’ and z D.
For a D we set

[ i’
if a=0;

E(a) a
-v-Tr; 0<r < 1 if a#0.

lal



348 S. YAMASHITA

THEOREM 1
inequality

For f 13 with the Taylor expansion (1.3) we have the

F(z, f) < r(Izl, dn) gn(z) (2.1)

at each z D. The equality in (2.1) holds at a point z 7 0 if and only if
either f is in .T’n or f is ofthe specifiedform

f(w) T(wnS(w)) (2.2)

in D, where T, S " and S(a) O, a D. For f ’n the equality holds
in (2.1) everywhere in D, whereasfor f of(2.2), the equality in (2.1) holds
at each point z E(a).

Each f(w) T(wn+l) Un+l is of the form (2.2) with S(w) w.
However, one can observe that f 9rn+l for f of (2.2) if and only if a 7 0.

Goluzin’s cited extension for f 6/3 of (1.3) is that

1-’(z, f) _< r(Izl, ), (2.3)

an inequality weaker than (2.1). The inequality (2.1) implies (2.3). Further-
more, as will be observed, Rn (z) =-- 0 if and only if f 6 9rn or f is of the
form (2.2). Again the equality condition for (2.3) in Goluzin’s is not complete
enough.

Let .T"n+l be the family of all functions T1... Tn+l, products of Tg 6

’, k 1, n -t- 1, n > 1. Then f of (2.2) is in -n+l. For the proof we
e(w -a)

let S(w) , le[ 1, and T(b) 0. The equation wnS(w) b,
1 -w

or,
ewn (w a) b(1 w) 0 (2.4)

has exactly n + 1 roots, Cl, c2,’"Cn-t-1, say, in D. Actually, on the circle

{Iwl 1} we have

lewn(w a)l Iw al I1 -wl > Ib(1 -w)l.

The Rouch6 theorem on the equation yields that the equation (2.4) has the
same number of roots as that of ton (w a) 0 in D. It is now easy to have
the expression

n+l
W--Ck

f(w)
1 -6-w’k=l
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for a constant 8, I1 1.
The converse is true in case n 1; see [3] where -2. However, for

n > 1, we have f 6 .-n+l which is not of the form (2.2). For example,

n+2 kw- 1
f(w)-- H k-w

k=2

is in ."n-4-1. Suppose that f is of the form (2.2). Then f’ (0) 0. On the other
hand,

f’(0)
(n + 2)

k=2

This is a contradiction.

3 PROOF OF THEOREM 1

LEMMA For each f B and at each z c= D, one has

Izl + If(0)l
If(z)l .<. (3.1)

1 + If(0)llzl
The equality in (3.1) at a point z 7 0 holds ifand only if f .. For f
with f(a) O, the equality in (3.1) holds at all points z E(a).

Proof It follows from the Schwarz lemma that

f (z) f (0)
_< Izl, z 6 D. (3.2)

1 f(0)f(z)
On the other hand,

If(z)l- If(0)l f(z) f (O)
< z 6 D. (3.3)

1 -If(O)llf(z)l 1 f(O)f(z)

Combining (3.2) and (3.3) one has (3.1). The equality in (3.1) at z 7 0 holds
if and only if f 6 .T" from (3.2) and Re (f(O)f(z)) [f(O)f(z)[ with

If(z)l _> If(0)l from (3.3). Thus, in case f 6 5r with f(0) 0, the equality
in (3.1) holds in the whole D, whereas in case f 6 " with f(a) 0, a - 0,
the equality in (3.1) holds for z with

f(z) E(-f(O))f3 {w; Iwl > If(0)l}.

Hence the equality in (3.1) holds at all points z E(a).
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Proof of Theorem 1
the equality holds at z 0.

Set
1

g(w)
1/On

and

To prove (2.1) we may suppose that z 5 0 because

f(w) f(0)
1 f(O)f(w)

h(w) tong(to), w D,

so that ]g(0)l A and, in case g /3, one has F(0, g) B.
In case A 1 or [g(w)[ 1, we conclude that f 6 .T’n for which the

equality in (2.1) holds at each point of D.
In case A < 1, we can apply (1.1) to g 6 B to have

F(z, g) r(Izl, ) Q(Izl), (3.4)

whence

h’(z) nh(z)
Zn zn+ Ig’(z)l

Q(Izl) (Izl 2n -Ih(z)l2)
Iz12(1 -Izl2)

so that
Q (r) (r2n p2)np

Ih’(z)l _< +
r rn (1 r2)

wherelzl=randlh(z)l=p, O<r < 1, O<p< 1.
It now follows from (3.5) that

(3.5)

1-’(Z, f) F(Z, h) nr "+-
Q(r)(r2n p2)

rn (1 r2)<
1 r2 1 r2 1 p2

F(p).

Note that Q(r) > 0 for r > 0. For each r, 0 < r < 1, the function F(p)
is strictly increasing for p, 0 < p < rn. To prove this, we consider the
numerator of the derivative F (p), that is,

o(p)
n p2_ 2Q(r)(1- r2n) n- rn(1 r2 p-k- -.r

Since the product of the roots of the equation qg(p) 0 is 1, at most one root

is in the interval 0 < p < rn
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Goluzin, loc. cit., proved that

1 ) 2(1 r2n)
O(r) n rn + - rn_l(1 r2

>0

for 0 < r < 1. Hence

g)(rn) --rn-1 n rn + > rn-1
rn rn_l(1 t7. (r) > O.

Since qg(0) > 0, and qg(rn) > 0 we thus conclude that the equation
0(p) 0 has no root in the interval 0 < p < rn, so that p(p) > 0 for
all p, 0 < p < rn Therefore F (p) > 0 for 0 < p < rn.
We now apply our Lemma to g to have

p --Ih(z)]-- r"lg(z)l <_ rn"
r+A
1-bAr

< rn (3.6)

Hence
(rn.(r +__A))F(z, f) < (1- r2)F
\ 1-t- Ar

(3.7)

This is just (2.1).
The equality in (3.7) holds if and only if those in (3.4) and in (3.5) for

rn (r + .A) and furthermore the equalityP= 1-bAr

r+A
Ig(z)l , (3.8)

1-t- Ar

all hold at the same time. The equality (3.8) is valid if and only if

g , g(a) --0, and z E(a). (3.9)

The equality in (3.4) holds in the whole D for g .T’; in this case
Q(lz[) 1. To prove that the equality in (3.5) holds under (3.9) for

rn (r nt- A) and for z E(a), we setP= l4-Ar

e(w -a)
g(w) --, lel-- 1.

1 -Bw
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In case a 0, we have A Ig(0)l 0 and h(w) Ewn+l. Hence the
rn (r + A) rn. In case a 7 0, we have forequality in (3.5) holds for p 1 + Ar

az -i-a--jr (0 < r < 1) of E(a) that

a
g(z) -(a-lg(z)l

so that

h’()
Zn

Hence

and g’(z) lg’(z)l,

g’ 1 nh(z) n
-Ig(z)l +1 (z)l and ’-Ig(z)l,
r Zn+l r

h’(z) nh(z)
Zn zn-t-1

h’(z)
Zn

rn (r + A)We thus have the equality in (3.5) for p 1 + Ar because F(z, g) 1.

Remark We can further improve (2.1) for f .T’n. For this purpose we
apply Theorem 1 to g B in the proof of Theorem 1 to have

F(z, g) _< Q1 (Izl), (3.10)

where Q1 (Izl) is the right-hand side of (2.1) applied to the present g. We
then follow the lines in the proof of Theorem 1 replacing (3.4) with (3.10).
The resulting inequality in terms of f is rather complicated.

4 POINCAR METRIC

Adomain f2 in the plane C {Izl < +ec} is called hyperbolic ifits boundary
in C contains at least two points. Each hyperbolic domain has the Poincar6
metric e(z)ldzl. Namely,

1/Pa(z) (1 -Iw12)14(w)l, z 4(w),

for a holomorphic, universal covering projection b from D onto f2; the choice
ofb and w is immaterial as far as z q(w) is satisfied. The Poincar6 distance

dfl(Zl, z2) of Zl and z2 in 2 is the minimum of all the integrals ].. P(z)ldzl
along the rectifiable curves , connecting Zl and z2 within f2. Given Zl and ze
in D, for each tOl D with Zl b(Wl) we have we D with z2 b(w2)
such that

df2(Zl, z2) dD(Wl, w2).
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Let fl and E be hyperbolic domains in C, and let f f2 --+ E be

holomorphic. For c 6 f2 and n > 1 we suppose that

f (z) f (c) + E f(k) (c)
(Z c)k

k
k’-n

(4.1)

in a disk of center c contained in f2. Again, f(n)(c) 0 is admissible. Set

Ax(z) 7-- log P(z) and Ali(Z) -z-- log Pr,(f(z))
oZ oZ

for z 6 f2. Set
Pz(f(c)) [f(n)(c)[

A(c) e(c)n It!

1, forA(c) 1;
B(c) (R) (c)

for A (c) < 1
1 A(c)2’

where, in case n 1,

(R) (c)
P (f(c)) f"(c) + f,(c) AI I (C) tI (C)
P(c)2 2

and, in case n > 1,

O(c)
Pr (f(c))
PK2(c)n+l

f(n+l)(c) f(n)(C)
(n + 1)! (n 1)!

Ai(c)

as will be seen, 0 < A(c) < 1 and 0 _< B(c) < 1 (for n > 1 of (4.1)).
Furthermore, set

zk (z + A(c))
aPk, c(Z) (k--O, 1,2,...),

1 + A(c)z

z(z + B(c))
c(Z) and

1 + B(c)z

Izl (1 0, c(Izl)2) (1 r(Izl, c))
Rn,c(Z)

1 aPn, c(lZl)2
(for n > 1 of (4.1)),

forz D.
In particular, if fl E D and c 0, then we have

A=A(0), B=B(0), k=k,O, =0, and Rn =Rn,o.
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THEOREM 2 For a holomorphic function f 2 --+ E with the Taylor
expansion (4.1) we have the inequality

Pz(f(z))
P.(z)

If’(z)l F(tanhd(z, c), n,c) Rn,c(tanhd(z, c)) (4.2)

at each z .
For the equality in (4.2), see just after the proof.

Proof of Theorem 2 Let q and be universal coveting projections from
D onto fl and E, respectively, such that c q (0) and f(c) (0). Let F
be the single-valued branch of -1 o f o q in D such that F(0) 0. Since
q/(F(w)) f((w)), w D, we have

’(F(w))F’(w) f’((w))dp’(w),

"(F(w))F’(w)2+’(F(w))F"(w) f"((w))dp’(w)2-t_f’((w))dp"(w),

and for n > 2, we have, by induction,

(*) d- n"(F(w))F’(w)F(n-1)(w) + gr’(F(w))F(n)(w)

f(n) (( (to))b’(w)n --]-
n(n 1)

J ,’t’,,l1w, + (#),
2

where the terms containing

F’(w), F(n-2) (w)

appear in (*), and those containing

f’((w)), f(n-2) ((W))

appear in (#). We thus have

F(n).(O) f(n) (c) ’(0)n

n! n! ’(0)

actually, in case n > 1, we have F(k) (0) f(k)(c) 0 for 1 < k < n 1.
Consequently,

If()(0)l ez(f(c)) If()(c)l
n! P2 (c)n
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We now calculate
IF(n+l)(0)l
(n+ 1)!

In case n 1, it follows that

IF"(0)I bt (0)2
7’(0)

1 dp"(O) 1 litit(O) 2f" (c)
+

’ f’ (c) f’ (c)2 2 (0)2 1/rt (0)2

which, together with

1 "(0)
and AII(C)t(O)

1 "(0) f’(c),AI (c)’ (0)
2 ’(0) ap’ (0)

IF"(0)
shows that (R)(c). In case n > 1, it follows from 0 f(k)(c)

2
F(k)(0) (l_<k<n-1) that

IF(n/1) (0)1
(n+ 1)!

Ct(0)n+l f(n+l)(c) 1 "(0) f(n)(c)
(n+l)! 2’(0)2 (n--l)!

O(c).

Given z 6 2, we choose w 6 D with z (w) and dfz(z, c) dD(w, O)
arctanh w I. We apply now Theorem 1 to F at w D. Since

1-’(w, F)
Pr(f(z)) If’(z)l,
ea(z)

the requested (4.2) follows from (2.1) with wl tanh d(z, c).
One can give the equality conditions in terms of F to (4.2); they are

left as exercises. The formulation appears not to have a good geometric
interpretation. It is easy to see that the equality in (4.2) holds at z c.

In case f2 E D, the inequality (4.2) becomes

F(z, f) _< F ( ,dPn, c)
at each z 6 D. In this case, for n > 1,

A(c)
If(n)(c)l (1 -Icl2)n

n! 1 -If(c)l2’

and in case n 1,

O(c)
(1 Icl2)2
1 If(c)12

f" (c) f’(c) f (c) f’()2+2 1 --Ic[2 1 --[f(c)l2
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and in case n > 1,

O(c)
(1 Icl2)/
1 -If(c)lz

f(n+l)(c - f(n)(c
(n+l)! 1-lcl2 (n-l)!
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