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One-dimensional Hardy inequalities with weights and remainder terms are studied. The
corresponding optimal constants are discussed. Then by the process of symmetrization,
Hardy inequalities with remainder terms in high-dimensional Sobolev spaces are ob-
tained. This result gives a positive answer to the Brézis-Vázquez conjecture.

1. Introduction

In 1919, Hardy [7] proved the following inequality:

∫∞
0

∣∣u(t)
∣∣p

tp
dt ≤

(
p

p− 1

)p ∫∞
0

∣∣u′(t)∣∣pdt, u∈ C1
0(0,∞), (1.1)

where 1 < p < +∞. The readers can refer to [8] for the proof of this inequality. The best
constant (p/(p− 1))p in the above inequality was given by Landau [10].

It is pointed out in [9] that, in 1933, Leray [11] proved the following two inequalities:

∫
R2\B1(0)

|u|2
|x|2 ln2 |x|dx ≤ 4

∫
R2\B1(0)

|Du|2dx, (1.2)

∫
Rn

|u|2
|x|2 dx ≤

(
2

n− 2

)2∫
Rn
|Du|2dx, (1.3)

where u ∈ H1
0 . Shen [13] obtained (1.2) for a bounded domain Ω ⊂ BR(0) with ln2 |x|

replaced by ln2R/|x|. In 1995, Peral and Vázquez [12] showed that (2/(n− 2))2 is the
best constant in (1.3).

In 1980, Shen [14] proved if ψ and φ satisfy (φ1/pψ1−1/p)′ = (p− 1)ψ, then

∫∞
0
ψ(t)

∣∣u(t)
∣∣pdt ≤

(
p

p− 1

)p ∫∞
0
φ(t)

∣∣u′(t)∣∣pdt (1.4)

for u ∈ C1
0(0,∞). Moreover, if ψ and φ also satisfy φ(0)ψp−1(0) = 0, then the above in-

equality is also true for u∈ C1(0,∞), see [16].
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It is proved in [15] that for p > 1,

∫
Rn

|u|p
|x|p dx ≤

(
p

n− p

)p ∫
Rn
|Du|pdx, u∈W1,p

0 (Rn). (1.5)

Garcı́a Azorero and Peral Alonso [5] proved (1.5) by using a different method. Similar
to [12], it is showed that (p/(n− p))p is the best constant.

For Hardy inequalities with remainder terms, Brézis and Vázquez [4] proved recently
that there exists a constant C > 0, depending only on n and Ω, such that

∫
Ω
|Du|2 dx ≥

(
n− 2

2

)2∫
Ω

u2

|x|2 dx+C
∫
Ω
|u|2 dx, ∀u∈H1

0 (Ω). (1.6)

They asked whether the two terms on the right-hand side of (1.6) are just two terms of a
series. Recently, Gazzola et al. [6] generalized (1.6) to the case of n > p. They proved that

∫
Ω
|Du|p dx ≥

(
n− p

p

)p ∫
Ω

|u|p
|x|p dx+C

∫
Ω
|u|p dx, ∀u∈W1,p

0 (Ω). (1.7)

Another generalized form of (1.6) given by Adimurthi et al. [1] is

∫
Ω
|Du|p dx ≥

(
n− p

p

)p ∫
Ω

|u|p
|x|p dx+C

k∑
j=1

∫
Ω

|u|p
|x|p

( j∏
i=1

ln(i) R

|x|

)2

dx. (1.8)

Our paper is organized as follows. In Section 1, we study one-dimensional Hardy in-
equalities with any weights and the corresponding optimal constants. We prove that the
constant (p/(p− 1))p (p > 1) is the best constant in the inequality. Meanwhile, we give
the relation between the weights in the Hardy inequalities, from which we can determine
the other weight if one of the weights is given.

In Section 2, we deal with one-dimensional Hardy inequalities involving any weights
and remainder terms (p ≥ 2). We also study the optimal constant in this inequality.
We point out that the Hardy inequalities can be generalized in two different forms, see
Theorem 3.3 (or Corollary 3.4) and Theorem 3.5 (or Corollary 3.6).

In Section 3, using the results established in Sections 1 and 2, we obtain Hardy in-
equalities with remainder terms in high-dimensional Sobolev spaces by the process of
symmetrization. The remainder terms are allowed to be the combination of (1.6) and
(1.8). This result gives a positive answer to the Brézis-Vázquez conjecture. Moreover, we
obtain the expression of C. We also generalize the results to the case of n= p. Finally, for
n > p or n= p, we obtain the Hardy inequalities with another kind of remainder terms.
This shows that the Brézis-Vázquez conjecture is also true for n≥ p ≥ 2.

2. Hardy inequality with general weights

If a∈ (0,+∞), we define

X = { f ∈ C1[0,a] | f (a)= 0
}

, X0 =
{
f | f ∈ C1

0[0,a]
}

, (2.1)
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where C1
0[0,a] is the set of functions f (x)∈ C1[0,a] with f (0)= f (a)= 0. If a= +∞, we

define

X = { f ∈ C1[0,+∞) | supp f is bounded
}

, X0 =
{
f | f ∈ C1

0(0,∞)
}

, (2.2)

where C1
0(0,∞) is the set of functions f ∈ C1(0,∞) with supp f being bounded. Let

‖ f ‖1,p,φ =
(∫ a

0
φ(r)

∣∣ f ′(r)∣∣pdr
)1/p

p > 1, (2.3)

where φ ∈ C1[0,a] with φ(0) = 0 and φ(t) > 0 for t > 0 and a is allowed to be +∞. We

denote the completion of X and X0 with respect to the above norms by W
1,p
φ and W

1,p
0,φ ,

respectively.

Theorem 2.1. Assume f is a nonincreasing function. Then the following hold.

(i) For any f ∈W1,p
φ ,

∫ a
0
ψ(r)

∣∣ f (r)
∣∣p dr ≤

(
p

p− 1

)p ∫ a
0
φ(r)

∣∣ f ′(r)∣∣p dr (2.4)

if φ(r) and ψ(r) satisfy

(
φ1/pψ1−1/p)′ = (p− 1)ψ (2.5)

and limr→0φ(r)ψp−1(r) = 0. On the other hand, if φ(r) and ψ(r) satisfy (2.5) but

limr→0φ(r)ψp−1(r) 
= 0, then (2.5) is true for any f ∈W1,p
0,φ .

(ii) Assume that φ ≥ rα in some neighborhood of r = 0 for α > p − 1. If a = ∞ and

f ∈W
1,p
φ , then the constant (p/(p− 1))p in (2.4) is the best constant but is never

achieved.

Proof. (i) For the completeness, we repeat the proof as follows. Let a = +∞ and f ∈ X
with f (r)= 0 if r ≥ R > 0. Integrating by parts and applying (2.5), we have

−p
∫ R

0
| f |p−1| f |′φ1/pψ1−1/pdr =−

∫ R
0

(| f |p)′φ1/pψ1−1/pdr = (p− 1)
∫ R

0
ψ| f |pdr.

(2.6)

Therefore, by the Hölder inequality, we get

(p− 1)
∫ R

0
ψ| f |pdr ≤ p

(∫ R
0
ψ| f |pdr

)(p−1)/p(∫ R
0
φ| f ′|pdr

)1/p

. (2.7)

This gives the result. Other cases can be proved similarly.
(ii) What we need to prove is

inf
f∈X

∫∞
0 φ| f ′|pdr∫∞
0 ψ| f |pdr

=
(
p− 1
p

)p
. (2.8)



210 General Hardy inequalities

We insert in (2.4) the function

fε(r)=




(∫∞
ε
φ−1/(p−1)dr

)1−1/p

, 0≤ r < ε,

(∫∞
r
φ−1/(p−1)dr

)1−1/p

, ε ≤ r < K ,

a0r + b0, K ≤ r < K + 1,

0, r ≥ K + 1,

(2.9)

where K is a constant, a0 and b0 satisfy

a0N + b0 =
(∫∞

K
φ−1/(p−1)dr

)1−1/p

=: CK , a0(N + 1) + b0 = 0. (2.10)

Thus, a0 =−CK and b0 =−CK (K + 1). Direct calculation shows that

∫∞
0
φ
∣∣ f ′ε ∣∣pdr =

(
p− 1
p

)p(
ln
∫∞
K
φ−1/(p−1)dr− ln

∫∞
ε
φ−1/(p−1)dr

)

+
∫ K+1

K
φ
∣∣a0

∣∣pdr.

(2.11)

Since ψ(r)= φ−1/(p−1)(
∫ a
r φ

−1/(p−1)dr)−p (see Proposition 2.3), we have

∫∞
0
ψ
∣∣ fε∣∣p =

∫ ε
0 ψ(r)dr(∫ a

ε φ
−1/(p−1)dr

)1−p + ln
∫∞
K
φ−1/(p−1)dr− ln

∫∞
ε
φ−1/(p−1)dr

+
∫ K+1

K
ψ
∣∣a0r + b0

∣∣pdr.

(2.12)

By l’Hospital law,

lim
ε→0

∫ ε
0 ψ(r)dr(∫∞

ε φ−1/(p−1)dr
)1−p = lim

ε→0

ψ(ε)

(1− p)
(∫∞
ε φ−1/(p−1)dr

)−p
φ−1/(p−1)(ε)

= 1
1− p

.

(2.13)

Therefore, we complete our proof since
∫∞
ε φ−1/(p−1)dr →∞ as ε→ 0. �

Remark 2.2. If φ= rn−1, n > p, the function f (r)= (
∫∞
r φ−1/(p−1)dr)1−1/p does not belong

to W
1,p
φ (0,∞). But if

∫∞
0 φ−1/(p−1)(

∫∞
r φ−1/(p−1)dr)pdr <∞, then f (r) ∈W

1,p
φ (0,∞) and

f (r) is an extremal function.

Before we close this section, we discuss the relation (2.5).
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Proposition 2.3. Assume that φ and ψ satisfy (2.5). If φ is given, then
(i) ψ(r) = φ−1/(p−1)(

∫ a
r φ

−1/(p−1)dr)−p if φ(r) ≥ rα in some neighborhood of r = 0 for
some α > p− 1;

(ii) ψ(r) = φ−1/(p−1)(
∫ r

0 φ
−1/(p−1)dr)−p if φ(r) ≤ rα in some neighborhood of r = 0 for

some α < p− 1. In this case, (2.4) is true for f ∈W1,p
0,φ ;

(iii) ψ(r) = r−1(lna′/r)−p for some a′ > a, a <∞ if φ(r) = rα in some neighborhood of
r = 0 with α= p− 1.

If ψ is given, then
(i) φ(r) = (p− 1)ψ1−p(

∫ r
0 ψ dr)p if φ(r) ≥ rα in some neighborhood of r = 0 for some

α >−1;
(ii) φ(r) = (p− 1)ψ1−p(

∫ a
r ψ dr)p if φ(r) ≥ rα in some neighborhood of r = 0 for some

α <−1. In this case, (2.4) is true for f ∈W1,p
0,φ ;

(iii) φ(r)= (p− 1)r p−1(lna′/r)−p for some a′ > a, a <∞ if φ(r)= rα in some neighbor-
hood of r = 0 with α=−1.

3. Hardy inequality with remainder terms

In this section, we are mainly concerned with the case φ(r)= rα, α > p− 1 (a= +∞), and
the case φ(r)= rα, α= p− 1 (a < +∞), in some neighborhood of r = 0, which often occur

in higher-dimensional Hardy inequalities. In these two cases, (2.4) is true for f ∈W1,p
φ .

We introduce an identity.

Lemma 3.1. Assume that u1 ∈ C1[0,a], u1(a) = 0, 0 < φ1 ∈ C[0,a], 0 < h1 ∈ C1(0,a],
(h2

1)′ = φ−1
1 , and h−1

1 (0)= 0. Let u1 = h1u2. Then,

∫ a
0
φ1
∣∣u′1∣∣2

dr =
∫ a

0
φ1
∣∣h′1∣∣2

u2
2dr +

∫ a
0
φ1h

2
1

∣∣u′2∣∣2
dr. (3.1)

Proof. We have u′1 = h′1u2 +h1u
′
2. Thus,

2
∫ a

0
φ1u2u

′
2h1h

′
1dr =

∫ a
0
φ1u2u

′
2(h2

1)′dr = u2
2

2

∣∣∣∣
a

0
= 0. (3.2)

So the result follows.
Define

λ1(φ)= inf
u∈X

∫ a
0 φ|u′|2dr∫ a
0 φ|u|2dr

, X = {u∈ C1[0,a] | u(a)= 0
}
. (3.3)

We have the following Poincaré inequality:

λ1(φ)
∫ a

0
φ|u|2dr ≤

∫ a
0
φ
∣∣u′∣∣2

dr. (3.4)

�
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Corollary 3.2. Assume that ui, hi satisfy ui = hiui+1, where h1(0)= 0, 0 < hi ∈ C1(0,a],
(h2

i )
′ = φ−1

i , and φi+1 = φ1
∏i

j=1h
2
j for i= 1, . . . ,k. Then,

∫ a
0
φ1
∣∣u′1∣∣2

dr ≥
k∑
i=1

∫ a
0
φ1

∣∣∣∣h′ihi
∣∣∣∣

2

u2
1dr + λ1

(
φk+1

)∫ a
0
φ1
∣∣u1

∣∣2
dr. (3.5)

Proof. Applying the method of iterations in Lemma 3.1, and terminating the iteration
process by (3.4), we can finish our proof. �

Theorem 3.3. Assume f ∈W1,p
φ is nonincreasing. If φ and ψ satisfy (2.5), then for p ≥ 2,

4(p− 1)
p2

∫ a
0
φ1

∣∣∣∣( f p/21

)′∣∣∣∣
2

dr +
(
p− 1
p

)p ∫ a
0
ψ| f |pdr ≤

∫ a
0
φ| f ′|pdr, (3.6)

where φ1 = φh2(−h′)p−2, h satisfies

−h
′

h
= p− 1

p

(
ψ

φ

)1/p

, h > 0, (3.7)

and f1 = f /h.

Proof. Let f ∈ X and f = f1h. Then f ′ = f ′1 h+h′ f1 ≤ 0 since f ′ ≤ 0. As a result,

f ′1 h
h′ f1

≥−1. (3.8)

Therefore, in view of the inequality

(1 + x)p ≥ 1 + px+ (p− 1)x2, p ≥ 2, x ≥−1, (3.9)

and (3.7), we have

I :=
∫ a

0

[
φ| f ′|p−

(
p− 1
p

)p
ψ| f |p

]
dr

=
∫ a

0
φ|−h′|p∣∣ f1∣∣p

(
1 +

f ′1 h
h′ f1

)p
−
(
p− 1
p

)p
ψ|h|p∣∣ f1∣∣pdr

≥
∫ a

0
φ|−h′|p∣∣ f1∣∣p

[
p
f ′1 h
h′ f1

+ (p− 1)
(
f ′1 h
h′ f1

)2
]

:= I1 + I2.

(3.10)

On the other hand,

I1 = p
∫ a

0
φ(−h′)p∣∣ f1∣∣p f ′1 h

h′ f1
dr

= p
∫ a

0
φ
∣∣ f1∣∣p−1

f ′1 (−h′)p−1h dr =−
∫ a

0
f
p

1

(
φh(−h′)p−1)′dr = 0

(3.11)

because

(
φh(−h′)p−1)′ = Cψ(p−1)/php

(
p
h′

h
φ1/p + (p− 1)ψ1/p

)
= 0. (3.12)
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For I2, we have

I2 := (p− 1)
∫ a

0
φh2(−h′)p−2 f

p−2
1

∣∣ f ′1 ∣∣2
dr

= 4(p− 1)
p2

∫ a
0
φh2(−h′)p−2

∣∣∣∣( f p/21

)′∣∣∣∣
2

dr.
(3.13)

This completes our proof. �

Corollary 3.4. Assume f ∈W1,p
φ is nonincreasing. If φ and ψ satisfy (2.5), then for p ≥ 2,

4(p− 1)
p2

[
λ1
(
φi+1

)∫ a
0
φ
(
− h′

h

)p−2

f pdr +
k∑
i=1

∫ a
0
φ1

∣∣∣∣h′ihi
∣∣∣∣

2( f
h

)2

dr

]

+
(
p− 1
p

)p ∫ a
0
ψ| f |pdr ≤

∫ a
0
φ| f ′|pdr,

(3.14)

where h satisfies (3.7), φ1 = φh2(−h′)p−2, h1(0) = 0, 0 < hi ∈ C1(0,a], (h2
i )
′ = φ−1

i , and
φi+1 = φ1

∏i
j=1h

2
i for i= 1, . . . ,k.

Proof. In fact, denote f
p/2

1 = u1 in (3.6), then by (3.5), we can complete our proof. �

Theorem 3.5. Assume f ∈W1,p
φ is nonincreasing. If φ, ψ satisfy (2.5), then for p ≥ 2,

∫ a
0
φhp

∣∣ f ′1 ∣∣pdr +
(
p− 1
p

)p ∫ a
0
ψ| f |pdr ≤

∫ a
0
φ| f ′|pdr, (3.15)

where f1 = f /h and −h′/h= ((p− 1)/p)(ψ/φ)1/p.

Proof. Similar to Theorem 3.3, applying the following inequality instead of (3.9),

(1 + y)p ≥ 1 + py + |y|p, y >−1, (3.16)

we can prove that

∫ a
0
φ| f ′|pdr−

(
p− 1
p

)p ∫ a
0
ψ| f |pdr ≥

∫ a
0
φhp

∣∣ f ′1 ∣∣pdr. (3.17)

�

Corollary 3.6. Assume f ∈W1,p
φ is nonincreasing. Then for p ≥ 2,

λ1
(
φk+1

)∫ a
0
φ| f |pdr +

(
p− 1
p

)p ∫ a
0

(
ψ +

k∑
i=1

ψi∏i
j=1h

p
j−1

)
| f |pdr ≤

∫ a
0
φ| f ′|pdr,

(3.18)

where h0 = h, φi+1 = φihpi , and φi, ψi satisfy −h′i /hi = ((p− 1)/p)(ψi/φi) for i= 1, . . . ,k.
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Proof. Since f ′ ≤ 0, h > 0, and h′ < 0, we have f ′1 = (h f ′ +h′ f )/h2 ≤ 0. Therefore we can
apply (3.15) again. Set φ1 = φhp and f2 = f1/h1, then

∫ a
0
φ1
∣∣ f ′1 ∣∣pdr ≥

(
p− 1
p

)p ∫ a
0
ψ1
∣∣ f1∣∣pdr +

∫ a
0
φ1h

p
1

∣∣ f ′2 ∣∣pdr

≥
(
p− 1
p

)p ∫ a
0
ψ1
| f |p
hp

dr + λ1
(
φ2
)∫ a

0
ψ1h

p
1

∣∣ f2∣∣pdr

=
(
p− 1
p

)p ∫ a
0

ψ1

hp
| f |pdr + λ1

(
φ2
)∫ a

0
φ1h

p
1
| f |p
h
p
1hp

dr

=
(
p− 1
p

)p ∫ a
0

ψ1

hp
| f |pdr + λ1

(
φ2
)∫ a

0
φ| f |pdr,

(3.19)

which shows that the corollary is true when k = 1 due to Theorem 3.5. For any k, we can
prove our result by the induction argument. �

4. Hardy inequalities in Sobolev spaces

We denote e(k) = e...
e (k times)

, ln(1) = ln, and ln( j) = ln ln( j−1) for j ≥ 2. W
1,p
0 (Ω) is the com-

pletion space of C∞0 (Ω) with respect to the norm ‖u‖ = |u|p + |Du|p.

Theorem 4.1. Let 0∈Ω⊂ BT(0)⊂Rn, and n > p ≥ 2. Then for any u∈W1,p
0 (Ω),

(p− 1)(n− p)p−2

pp

( k∑
i=1

∫
Ω

|u|p
|x|p(∏i

j=1 ln( j)R/|x|)2 dx+ 4λ
(
φk+1

)∫
Ω

|u|p
|x|p−2 dx

)

+
(
n− p

p

)p ∫
Ω

|u|p
|x|p dx ≤

∫
Ω
|Du|p dx,

(4.1)

where φk = r
∏k

j=1 ln( j)R/r with R= e(k−1)T .

Proof. For x 
∈Ω, define u(x) = 0. Let |u|∗ be the symmetric decreasing rearrangement

of function |u|. Now observe that for any u∈W1,p
0 (Ω), |u|∗ ∈W1,p

0 (BT(0)) with |u|∗ > 0
and radially nonincreasing, and hence inequality (3.6) holds for |u|∗. We know that

∫
Ω
|Du|p dx =

∫
ωn

∫ T
0
|Du|prn−1r drdω, (4.2)

where ωn denotes the area of the unit ball in Rn. Taking f = |u|∗ in Theorem 3.3, we
obtain

4(p− 1)
p2

∫ a
0
φ1

∣∣∣∣( f p/21

)′∣∣∣∣
2

dr +
(
p− 1
p

)p ∫ a
0
ψ| f |pdr ≤

∫ a
0
φ| f ′|pdr, (4.3)
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where φ1 = φh2(−h′)p−2. Choose u1 = f
p/2

1 and φ = rn−1 in Corollary 3.2. Then ψ =
((n− p)/p)prn−p−1 by Theorem 2.1, and h= r1−n/p by (3.7). By the definition in Corollary
3.2, we see that φ1 = ((n− p)/p)p−2r, h1 = (ln R/r)1/2, φ2 = ((n− p)/p)p−2r ln R/r, h2 =
(ln(2)R/r)1/2, and so on. Noting that φ1|u1|2 = ((n− p)/p)p−2| f |prn−1/r p−2, we obtain

(p− 1)(n− p)p−2

pp

( k∑
i=1

∫ a
0

| f |prn−1

r p
(∏i

j=1 ln( j)R/r
)2 dr + 4λ

(
φk+1

)∫ a
0

| f |prn−1

r p−2 dr

)

+
(
n− p

p

)p ∫ a
0
| f |prn−1/r pdr ≤

∫ a
0
| f ′|prn−1dr.

(4.4)

Integrating both sides of the above inequality with respect to ωn, we know that our
theorem holds for |u|∗. It is well known that the symmetrization does not change the
Lp-norm, it decreases gradient norm and increases the integrals

∫
Ω (|u|p/|x|p)dx and∫

Ω (|u|p/|x|p(lnR/|x|)2)dx, and so on. Therefore we complete our proof. �

When p = 2 in Theorem 4.1, we have the following theorem.

Theorem 4.2. Let 0∈Ω⊂ BT(0)⊂Rn. Then for any u∈W1,p
0 (Ω),

1
4

k∑
i=1

∫
Ω

|u|p
|x|p(∏i

j=1 ln( j)R/|x|)2 dx+ λ
(
φk+1

)∫
Ω
|u|2 dx

+
(
n− 2

2

)2∫
Ω

|u|2
|x|2 dx ≤

∫
Ω
|Du|2 dx,

(4.5)

where φk = r
∏k

j=1 ln( j)R/r with R= e(k−1)T .

Proof. This theorem can be proved by using Corollary 3.2 and the symmetrization pro-
cess. �

Remark 4.3. Inequality (4.5) gives a positive answer to the Brézis-Vázquez conjecture,
that is, λ(φk+1)

∫
Ω |u|2 dx and ((n− 2)/2)2

∫
Ω (|u|2/|x|2)dx are two terms of a series indeed.

Similarly, Theorems 4.1 and 4.2 show the correctness of the conjecture of Brézis and
Vázquez.

Theorem 4.4. Let 0∈Ω⊂ BT(0)⊂Rn, n= p ≥ 2. Then for any u∈W1,p
0 (Ω),

4(p− 1)p−1

pp
λ1
(
φk
)∫

Ω

|u|p
|x|p−2 ln(p−2)R/|x| dx

+
(p− 1)p−1

pp

k∑
j=2

∫
Ω

|u|p
|x|p lnp R/|x|∏ j

i=2

(
ln(i)R/|x|)2 dx

+
(
p− 1
p

)p ∫
Ω

|u|p
|x|p lnp R/|x| dx ≤

∫
Ω
|Du|p dx,

(4.6)

where φk = r
∏k

j=1 ln( j)R/r and R= e(k−1)T .



216 General Hardy inequalities

Proof. Taking φ= r p−1, ψ = 1/r(lnR/r)p, h= (lnR/r)(p−1)/p, φ1 = ((p− 1)/p)p−2r lnR/r,
and h1 = (ln(2)R/r)1/2, we can complete our proof by Theorem 3.3 and Corollary 3.2 and
using the symmetrization process similar to Theorem 4.1. �

Similar to Theorems 4.1 and 4.4, by using Theorem 3.5 instead of Theorem 3.3, we
can obtain the following two theorems.

Theorem 4.5. Let 0∈Ω⊂ BT(0)⊂Rn, n > p ≥ 2. Then for any u∈W1,p
0 (Ω),

λ1
(
φk+1

)∫
Ω
|u|p dx

+
(
n− p

p

)p ∫
Ω

(
|u|p
|x|p +

k∑
j=1

|u|p
|x|p∏ j

i=1

(
ln(i)R/|x|)p

)
dx ≤

∫
Ω
|Du|p dx,

(4.7)

where φk = ((n− p)/p)2r
∏k−1

j=1(ln( j)R/r) and R= e(k−1)T .

Theorem 4.6. Let 0∈Ω⊂ BT(0)⊂Rn, n= p ≥ 2. Then for any u∈W1,p
0 (Ω),

λ1
(
φk+1

)∫
Ω
|u|p dx+

(
p− 1
p

)p ∫
Ω

k∑
j=1

|u|p
|x|p∏ j

i=1

(
ln(i)R/|x|)p dx ≤

∫
Ω
|Du|p dx, (4.8)

where φk = r p−1
∏k

i=1(ln( j)R/r)p−1 and R= e(k−1)T .

Remark 4.7. The above theorems show that the Brézis-Vázquez conjecture is true for
n≥ p ≥ 2.

Now we consider the following weighted eigenvalue problem with a critical singular
weight

−div
(|Du|p−2Du

)
+µ

|u|p−2u

|x|p( lnR/|x|)p = λ|u|p−2u f (x), x ∈Ω,

u= 0, x ∈ ∂Ω,
(4.9)

where n= p ≥ 2, 0 < µ < (p/p− 1)p, and λ∈R. We look for a weak solution u∈W1,p
0 (Ω)

of this problem and study asymptotic behavior of the first eigenvalues for different singu-
lar weights as µ increases to (p/(p− 1))p, after which the operator Lµ is no more bound
from below. Let

λ1( f ,µ)= inf
u∈W1,p

0 (Ω)
u
=0

∫
Ω

(|Du|p−µ|u|p/|x|p)dx∫
Ω |u|p f dx

(4.10)

and denote λ1( f )= λ1( f , (p/(p− 1))p).
For f (x)∈ L∞loc(Ω \ {0}) with f (x) > 0, let Lp(Ω, f ) be the set of all real-valued mea-

surable functions u(x) defined on Ω such that f (x)|u(x)|p is integrable over Ω. We define
the norm in Lp(Ω, f ) as |u|pp, f =

∫
Ω f (x)|u|p dx.
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Theorem 4.8. The above problem admits a positive weak solution u ∈W
1,p
0 (Ω), corre-

sponding to the first eigenvalue λ1( f ,µ). Moreover, as µ increases to (p/(p− 1))p, λ1( f ,µ)→
λ1( f )≥ 0 for all f ∈�p and the limit λ1( f ) > 0, where

�p =
{
f : Ω−→R+

∣∣∣ f ∈ L∞loc

(
Ω \ {0}), limsup

|x|→0
f (x)|x|p

(
ln

1
|x|
)p(

ln(2) 1
|x|
)2

< +∞
}
.

(4.11)

First we prove the following lemma.

Lemma 4.9. If f ∈�p, then the embedding W
1,p
0 (Ω)↩Lp(Ω, f ) is compact.

Proof. If f ∈�p, we have

lim
ε→0

sup
x∈Bε(0)

f (x)|x|p
(

ln
1
|x|
)p(

ln(2) 1
|x|
)2

< +∞, (4.12)

and hence for sufficiently small ε,

f (x) <
C

|x|p( ln1/|x|)p( ln(2) 1/|x|)2 in Bε = Bε(0). (4.13)

Let um ⊂W
1,p
0 (Ω) be bounded. Then there exists a subsequence, still denoted by um,

um⇀ u in W
1,p
0 (Ω), um→ u in Lp. By (4.13), we have

∫
Ω

∣∣um−u∣∣p f (x)dx ≤ C
∫
Bε(0)

∣∣um−u∣∣p
|x|p( ln1/|x|)p( ln(2) 1/|x|)2 dx

+C
∫
Ω

∣∣um−u∣∣p dx.

(4.14)

By Theorem 4.4, we have

∫
Bε(0)

∣∣um−u∣∣p
|x|p( ln1/|x|)p( ln(2) 1/|x|)2 dx ≤ 1(

ln(2) 1/ε
)2

∫
Bε(0)

∣∣um−u∣∣p
|x|p∣∣ ln1/|x|∣∣p dx

≤ C(
ln(2) 1/ε

)2

∣∣Dum−Du∣∣pp −→ 0

(4.15)

as ε→ 0. Hence the proof follows. �

Proof of Theorem 4.8. We look for the critical points of the functional

Iµ(u)= 1
p

∫
Ω
|Du|p dx− µ

p

∫
Ω

|u|p
|x|p( lnR/|x|)p dx (4.16)

which is Gateaux differentiable and coercive on W
1,p
0 (Ω). We minimize this functional Iµ

over the manifold M = {u∈W1,p
0 (Ω) | ∫Ω f (x)|u|pdxdx = 1} and let λ1( f ,µ) be the infi-

mum. We can choose a special minimizing sequence um ∈M with Iµ(um)→ λ1( f ,µ) and
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component of DIµ(um) restricted to M tends to 0 strongly in W
−1,p′
0 (Ω). By Theorem 4.4

and µ < (p/(p− 1)), we know that {um} is a bounded sequence, hence we have for a sub-

sequence, still denoted by {um}, um→ u in W
1,p
0 (Ω), um⇀ u in Lp(Ω,|x|−p(lnR/|x|)−p),

and um → u in Lp(Ω). By Lemma 4.9, we have W
1,p
0 (Ω) is compactly embedded in

Lp(Ω, f ), hence u∈M. Further, um satisfies in D′(Ω)

−
(

div
(∣∣Dum∣∣p−2

Dum
)

+µ

∣∣um∣∣p−2
um

|x|p( lnR/|x|)p
)
= λm

(∣∣um∣∣p−2
um f

)
+ fm, (4.17)

where fm→ 0 inW
−1,p′
0 (Ω) and λm→ λ asm→∞. By Theorem 2.1 in [2], we haveDum→

Du almost everywhere in Ω. By Brézis-Leib Lemma [3], we have

λ1,µ( f ,µ)= ∣∣Dum−Du∣∣pp−µ∣∣um−u∣∣pp,|x|−p ln−p R/|x|

+ |Du|pp−µ|u|pp,|x|−p ln−p R/|x| + o(1)

≥
((

p− 1
p

)p
−µ

)
|u|pp,|x|−p ln−p R/|x| + λ1( f ,µ) + o(1),

(4.18)

hence we have Iµ(u) = λ1( f ,µ). By Theorem 2.1 in [2], we conclude that u is a weak
solution of (4.9) corresponding to λ= λ1( f ,µ). Similar to [1], we have λ1( f ,µ)→ λ1( f ).

�
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