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Let a = (a;);2, be a strictly increasing sequence of natural numbers and let s be a space
of Lebesgue measurable functions defined on [0,1). Let {y} denote the fractional part of
the real number y. We say that a is an s{* sequence if for each f € ol we set An(f,x) =
(1/N) Zfilf({a,-x}) (N =1,2,...), then limy_. AN(f,x) = folf(t)dt, almost everywhere
with respect to Lebesgue measure. Let V,(f,x) = (O n1 lAN+1(fox) — An(f,x)[9)V1 (g >
1). In this paper, we show that if a is an (L?)* for p > 1, then there exists D, > 0 such that
if || f1l, denotes (fol |f ) [Pdx) VP, IVa(f5)llg < Dgll fll, (g > 1). We also show that for
any (L')* sequence a and any nonconstant integrable function f on the interval [0, 1),
Vi(f,x) = oo, almost everywhere with respect to Lebesgue measure.

1. Introduction

Let a = (a;);2, be a strictly increasing sequence of natural numbers and let s be a space
of Lebesgue measurable functions defined on [0,1). Let {y} denote the fractional part of
the real number y. Following Marstrand [3] we say that a is an s4* sequence if for each
f € o we set

N

ANAD) = 3 f(la)) (N =12,0.), (1)

i=1

then

1
lim Ax(f, ) = L F(oydt, (1.2)

almost everywhere with respect to Lebesgue measure. We know that any strictly increas-
ing sequence of integers (a,),; is a C* sequence where C denotes the space of continuous
functions on [0,1). This is because of Weyl’s theorem [9] that for any strictly increasing
sequence of integers (a,), the fractional parts ({a,x}),-, are uniformly distributed mod-
ulo one for almost all x with Lebesgue measure. On the other hand as shown in [3], the
sequence a, = n(n=1,2,...)isnotan (L*)*. There are however examples of sequences of
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integers that are (L?)* p > 1 and indeed (L' (logL)*)*. These are constructed by primarily
ergodic means [3, 4, 5, 6, 8]. Here of course L? denotes the space of functions f such that
the norm ”f”P = fol | f (x)|Pdx is finite and L' (log, L) denotes the space of L' functions
such that fo | f1(log, | f1)*~!(x)dx is finite. As usual log, x denotes logmax(1,x). While it
is possible to pose many of the questions considered in this subject and indeed this paper
for many Banach spaces of measurable functions s, they are perhaps primarily of interest
in the context of L? spaces and perhaps L! (log, L)¥. Note that

Span( Ups; L) QL(log+L)d§Ll, (1.3)

where the inclusions are strict in both cases for each d = 1. Here Span(A) denotes the
linear space spanned by the set A. A natural question which arises is whether if (1.2) is
known for a particular sequence a = (a,),-; and a particular function f anything can
be said about the rate at which the averages (Ax(f,x))y-, converge to fo f(t)dt almost
everywhere. Using [1, Theorem 1] and the Denjoy-Koksma inequality [2] it can be shown
that if f is of bounded variation, for any strictly increasing sequence of integers (a,)y—;,
then given € > 0,

An(f,x) = Llf (t)dt+O(N~"2(logN)***), (1.4)

almost everywhere with respect to Lebesgue measure. As standard, for two sequences,

(fa)p=1 and (gn);=1> by fu = O(gs) we mean there exists a constant C > 0 such that | f,,| <
Clgn| for all n > 1. The class of functions of bounded variation is however quite restrictive
and if we look at a broader class of functions, problems arise. For instance, it can be shown
that there exist sequences of integers a = (a,),-; for which (1.2) is true for all elements f
of some L1 class, but for which for any null sequence (b,),-;,

1
w(f0) = | fode+0(b), (1.5)

almost everywhere with respect to Lebesgue measure fails to be true for some f in L* [7].
This means that assuming (1.2) to get more information about the sequence
(An(f,x))3-1 as N tends to infinity, we will have to consider something other than point-
wise convergence. We could, for instance, consider norm convergence, that is, ask if it
were true that

1
An(fox) - L Fodi| =o. (1.6)

lim ‘

N—-ox
p

Using Lemma 2.2 below and the dominated convergence theorem, (1.6) follows immedi-

ately from (1.2) if a = (a,),-, is an (LP)* sequence and hence is not of much additional
interest. However (1.6) implies that

lim [[An (f) = An ()], =0. (1.7)
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It is (1.7) which admits a nontrivial refinement. One can prove that for a particular a =
(an)y-, and a particular p > 1ifais (LP)*, then (1.7) follows from (1.2) without recourse
to the rather sophisticated Lemma 2.2. To see this argue as follows. First note that, in light
of the bounded convergence theorem if g is in L%, then (1.2) implies that

1
lim || Ay (g) - L g(t)dt

=0. (1.8)

p

Now if we are given € > 0, there exists a natural number n = n(e,g) such thatif N > nand
k is a positive integer, then

lim [|An1k(g) = An(g)ll, =0. (1.9)
Now consider a general function f in L?. Notice that for each N = 1,

AN (I, < 1 £, (1.10)

Suppose we are given € >0 and g is an L* function with || f — g, < €/3. Then

||AN+1(f)_AN(f)||P

(1.11)
< [lAn(f) = An @], + [[An+1(f) = Anar @], + AN+ (9) — AN (@),
which is less than € if N > n(€,g). Thus (1.7) is proved.
Let
o0 1/q
Vy(f.x) = ( > [Anu(f,x) — An(f>x) |q> (g=1). (1.12)
N=1

Our refinement of (1.7) is the following theorem.

THEOREM 1.1. Suppose a = (a,)5-; is an (LP)* sequence for each p > 1, then if ¢ > 1, then
there exists a constant Dy > 0 such that

[Va(fs )l = Dglifll, (g>1). (1.13)
When ¢q = 1, this seems to break down.

THEOREM 1.2. Forany (L')* sequence a = (a,)n_, and any nonconstant integrable function

f defined on [0,1),
Vi(f,x) = oo, (1.14)

almost everywhere with respect to Lebesgue measure.

Let M = (M;);2; denote a strictly increasing sequence of integers and let

® 1/q
Vo(f,M,x) = ( > A, (F>%) = Ap, (%) |‘1> (g=1). (1.15)
N=1
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It would be interesting to know if Theorem 1.1 can be generalised to show that for each
M and q > 1 there exists D}, > 0 such that

By a modification of the proof of Theorem 1.1, the author has verified the special case
of (1.16) where M; =~ t* for p > 1. For two sequences (a;);~; and (b¢){2,, a; = by means
ar = O(b;) and b; = O(ay) as t tends to infinity. Henceforth in this paper C refers to a
constant, not necessarily the same on each occurrence.

2. Proof of Theorem 1.1

From the definition of Ax(f,x) we have

(Awni () = An(f0) = 577 (F () = A(£.)). (2.1)

So using the [1(Z) triangle inequality,

1/q 1/g
SED)) (=) L,

N=1

Vq(f,x)s<

X Gi(f,x)+ Ga(f,x).

For a subset A of [0, 1), we use |A| to denote its Lebesgue measure. We use the following
lemma [6].

LEmMA 2.1. Suppose a = (a,),_, is an (LP)* sequence, then there exists C > 0 such that if
fisin LP, then if

N
Mof @) =sup| <" fl{aed))|, (2.3)
N=>1 k=1
lxe[0,1): Mf(x):>a}| < a%nfnp. (2.4)

Before we proceed we need another lemma. Recall that
I fllo =inf{M: |{x:|f(x)| >M}| =0} (2.5)

LemMA 2.2. Suppose f is in LP([0,1)) and that (2.4) holds with p > 1 and p" > p, then
there exists C such that

IMafll, < ClIfllp- (2.6)
Proof. First notice that by the way || - || norm is defined there exists C such that
IMafllo < Cllf Il (2.7)

Lemma 2.2 now follows in light of the Marcinkiewiez interpolation theorem [10, page
111]. O
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Notice that there exists C > 0 such that

Gaf (x) = CM(f)(x). (28)

This means that G, inherits the estimates of M f so

G2 fll, <Cllfll, (p>1). (2.9)
We now show that for p > 1
G fll, < CILfIlp- (2.10)
Set
f{arx}) = ex(x) + fi(x), (2.11)
where

ex(x) = f({arx}) I f(tap) <(k41))5
fi(x) = f ({axx I f(taep)> (k1))

with I4 denoting the indicator function of the set A. This means by Minkowski’s inequal-
ity that

(2.12)

Gif(x) < B f(x) + Bof () (2.13)
where
&ﬂ@=<2(“”ffﬁ &ﬂm=(2(ﬂwﬁﬁw. (2.14)
o ntl S \n+l
We therefore know that

G fIl, < 1B fIl, +[1B2£1l,» (2.15)
hence our result is proved if we show that there exists C, > 0 such that
IBifll, < Cpll f1I, (2.16)

for each i = 1,2. We prove something slightly stronger. That is, we show that

1
[{x € X:Bif(x) = A}| stWf'dx. (2.17)

The Marcinkiewiez interpolation gives (2.16). The bound (2.10) follows from (2.16). We
first prove (2.16) with i =1,

H({xGX:Blf(x)>/;}>S;Ll;)(ni)) dx=C\~ qz(ﬂ 1)’1J016n(x)‘idx

(2.18)
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which, as
1 ©
J el(x)dx < CJ Y {x € X:eu(x) > y}|dy, (2.19)
0 0
is
EZ( 1 )qjmyq”l{xeX-ux)w}ldy (2.20)
= \nvt) U Hon ' ‘

The map x — {a,x} preserves, Lebesgue measure on [0, 1), that is, for any Lebesgue mea-
surable set A in [0,1),

Al = | {x: {a.x} € A}|. (2.21)
From this it follows that f; f({a,x})dx = [} f(x)dx for any L! function f. The identity
is evident where f = I, for some Lebesgue measurable A and for simple f by taking
linear combinations. The case for general integrable f follows by approximating f by a

sequence of simple functions in L' norm. This and the definition of e,, tells us that (2.20)
is less than or equal to

C q A(n+1)
A (ﬁ) JO yH{xeX: f(x) >y} |dy (2.22)
n=0

which is less than or equal to

o q
A%Jo 2 (ﬁ) Yy Hx e X f(x) >y} dy. (2.23)

n=[y/A]

This is less than or equal

A%Jo yq_l(%> [{xeX:f(x)>yi|dy, (2.24)
and is equal to
%J: [{x: f(x) > yhdy (2.25)

which is equal to

1
cj F1()dy. (2.26)
0
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Because g > 1, this is finite and we have shown (2.16). We now show (2.16), i = 2. Here

u({Baf(x) >0}) = > | {x:en(x) >0} ] (2.27)

n=0

which using the fact x — {a,x} is Lebesgue measure preserving is less than or equal to

S Hx: f(x) >An+ 1}

< J: | x: f(x) > y} | dy (2.28)

1 1
<3| 11y

This completes the proof of Theorem 1.1.
The proof of Theorem 1.1 crucially uses the fact that G, (f,x) < CM, f (x). It is natural
to ask if

V,(f,x) < CM, f (x). (2.29)

It turns out this is not true in general. To see this argue as follows. We consider the se-
quence a = 2 (k = 1,2,...). For a natural number k and a set contained in [0,1) let

kB = {{kx} :x € B]. (2.30)
For a large natural number L let C denote the interval [(2F — 2)/2L, (21 — 1)/2%]. Note that
C,2'C,...,2¢8" V¢ (2.31)

are pairwise disjoint,

) 2l ifxe2@-DC 1<2 1<, (2.32)
x) = .
& 0 otherwise.
Note that

1< 1< ;

M, f(x) =sup |7 > f({2%}) | = sup —; > f({2*'x})
=1 lkfo =1 2 k=1
B 2l<N+1 B (2.33)
1 % 2l+l
= sup ?ZZ :—21 =2
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On the other hand if 2" < N < 2"*1 for x in C,

0 1/q
Vy(f>x) = (Z IANH(f,x)—AN(f,x)Iq)
N=0

© 1/q
= (Z |gN+1(x)—gN(x)|q)
N=0
2m g
= ( >. |gN+1(x)—gN(x)|q)
N=0
m 1/q
> ( |g2N+1(x)—gzN(X)|q>
N=0
m 2N+1 2N q Vq
(Z 2N 727N )
N=0
_ ml/q_

This tells us that (2.29) is not true in general.

3. Proof of Theorem 1.2
Let

1
E() = {x ex: ’ Flx) - JO Fx)dx

and note that

>8},
1

|An+1f(x) — AN f(x)] = m|AN+1f(x)—f({anX}) |.

(2.34)

(3.1)

(3.2)

Because a is (L!)*, there exists Ny(x) such that if N > Ny(x), for almost all x we have

‘ANf(x) - Llf(x)dx' < g.

Thus

1

A f) = A = | Anf ) - f (fanh) | - 5=

So if {a,x} is in E(J), we have

[ Ani(f,2) = An(f,0)| = 2(N8+ 1)

2(N+1)

(3.3)

(3.4)

(3.5)
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This means that

Vi(fx)= > ﬁ)@w)({anx})

NZN[](.X)
I (3.6)
x g ( 2. 1%2 (l% > XE(@)({anx})))
I=Np(x) n=Ny(x)
which for suitably large Ny (x) is greater than or equal to
0 (#(E(5))) s 1
2\ 2 = 09, (3.7)
2 2 e N T

as required.
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