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A time-scale version of the Hardy inequality is presented, which unifies and extends well-
known Hardy inequalities in the continuous and in the discrete setting. An application in
the oscillation theory of half-linear dynamic equations is given.

1. Introduction and preliminaries

One gets more than two hundred papers when searching by the keywords “Hardy” and
“inequality” in the review journals Zentralblatt für Mathematik or Mathematical Re-
views. Almost half of these publications appeared after 1990. In the absolute majority,
these papers deal with various generalizations, extensions and improvements of the well-
known Hardy inequality (HI) presented in monograph [8] (both in the continuous and
in the discrete setting), namely, for example, HI in several variables, weighted HI, in-
equalities of Hardy’s type involving certain transforms and forms, HI involving higher
order derivatives, HI on certain manifolds, in various spaces, and many others. Many re-
lated topics can be also found when one looks for inequalities involving functions and
their integrals and derivatives. Recall that the classical HI in integral form, discovered by
Hardy, reads as

∫∞
0

(
1
t

∫ t

0
f (ξ)dξ

)α
dt ≤

(
α

α− 1

)α∫∞
0

f α(t)dt, (1.1)

where α > 1 and f is a measurable nonnegative function, and its discrete version essen-
tially takes the same form with sums instead of integrals. Let us mention at least a few
papers [5, 11, 15], among many others dealing with various types of HI’s, and nice mono-
graphs [12, 13, 14]. All above facts seem to prove that there is no possibility of a last word
on Hardy inequality.

What we offer in our paper is unification and extension of the classical Hardy integral
inequality and the discrete Hardy inequality by means of the theory of time scales. This
main result is presented in Section 2, together with some comments. In Section 3, we
give an application of our extension of the Hardy inequality in the oscillation theory
of half-linear dynamic equations. More precisely, we examine oscillatory properties of
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a generalized Euler dynamic equation. Those results turn out to be new even in the special
linear case. The questions how the graininess of the time scale affects the (non)oscillation
of the equation, as well as some other related topics, are also discussed there.

Before we present our main result, let us recall some essentials about time scales. In
1988, Hilger [9] introduced the calculus on time scales which unifies continuous and
discrete analysis. A time scaleT is an arbitrary nonempty closed subset of the real numbers
R. We define the forward jump operator σ by σ(t) := inf{s∈ T : s > t}, and the graininess
µ of the time scale T by µ(t) := σ(t)− t. A point t ∈ T is said to be right-dense, right-
scattered, if σ(t)= t, σ(t) > t, respectively. We denote f σ := f ◦ σ . For a function f : T→R
the delta derivative is defined by

f ∆(t) := lim
s→t,σ(s) �=t

f σ(s)− f (t)
σ(s)− t

. (1.2)

Here are some basic formulas involving delta derivatives: f σ = f + µ f ∆, ( f g)∆ = f ∆g +
f σg∆ = f ∆gσ + f g∆, ( f /g)∆ = ( f ∆g − f g∆)/ggσ , where f , g are delta differentiable and
ggσ �= 0 in the last formula. A function f : T → R is called rd-continuous provided it
is continuous at all right-dense points in T and its left-sided limits exist (finite) at all
left-dense points in T. The classes of real rd-continuous functions and real piecewise rd-
continuously delta differentiable functions on an interval I will be denoted by Crd(I ,R)
and C1

p(I ,R), respectively. For a,b ∈ T and a delta differentiable function f , the Cauchy

integral is defined by
∫ b
a f ∆(t)∆t = f (b)− f (a). For the concept of the Riemann delta in-

tegral and the Lebesgue delta integral, see [3, Chapter 5]. Note that the definition of the
Riemann delta integrability is similar to the classical one for functions of a real vari-
able, and that the Lebesgue delta integral is the Lebesgue integral associated with the so-
called Lebesgue delta measure. Every rd-continuous function is Riemann delta integrable,
and every Riemann delta integrable function is Lebesgue delta integrable. Throughout,
for convenience, when we speak about a delta integrability, we mean the integrability

in some of the above senses. The integration by parts formula reads
∫ b
a f ∆(t)g(t)∆t =

f (b)g(b)− f (a)g(a)−∫ ba f σ(t)g∆(t)∆t, and an improper integral is defined as
∫∞
a f (s)∆s=

limt→∞
∫ t
a f (s)∆s. Note that we have

σ(t)= t, µ(t)≡ 0, f ∆ = f ′,
∫ b

a
f (t)∆t =

∫ b

a
f (t)dt, when T=R, (1.3)

while

σ(t)= t+ 1, µ(t)≡ 1, f ∆ = ∆ f ,
∫ b

a
f (t)∆t =

b−1∑
t=a

f (t), when T= Z. (1.4)

Many other information concerning time scales and dynamic equations on time scales
can be found in the books [2, 3].

In some of the computations below we will use the estimates

∫∞
a

∆s(
σ(s)

)α ≤
∫∞
a

ds

sα
≤
∫∞
a

∆s

sα
, (1.5)
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which are proved in the next lemma. Note that these estimates are trivial when T = R.
Also, it is easy to see them when

T= {tk : k ∈N0
}

with 0 < t0 < t1 < t2, lim
k→∞

tk =∞ (1.6)

(in particular, T=N), see [3, Lemma 5.55], or

T=
∞⋃
i=0

[
ai,bi

]
with 0 < ai < bi < ai+1, i∈N0. (1.7)

However, in general case, they have not been proven yet. Note that similar observations
as in the next lemma can be done without difficulties when the integrals are taken over
finite intervals, and also when the integrand is replaced by a nonincreasing function.

Lemma 1.1. Let α > 1 be a constant. Then estimates (1.5) hold on any time scale which is
unbounded above and contains a positive number a.

Proof. Denote [a,∞)T := {t ∈ T : t ≥ a}, where T is a particular time scale, which is un-
bounded above. We prove only that I ≤ Ĩ , where I := ∫∞a s−αds and Ĩ := ∫∞a s−α∆s, since the
other inequality can be proven analogously. If Ĩ =∞ (which may indeed happen), then
there is nothing to prove. Otherwise, suppose by a contradiction that there exist a time
scale T̃ unbounded above and a∈ T̃ such that I > Ĩ , where Ĩ is taken over [a,∞)T̃, which
implies I − ε > Ĩ for a suitable positive ε. On the other hand, by virtue of the definition of
the delta Riemann integrability, there exists a time scale TD containing a and satisfying
(1.6), such that |Ĩ − ID| < ε/2, where ID := (TD)

∫∞
a s−α∆s (here the delta integral is taken

over [a,∞)TD). Thus we get Ĩ + ε < I ≤ ID < Ĩ + ε/2, a contradiction. �

The following statement will be useful in proving the main results. For the proof see,
for example, [16]; note that the Young inequality plays a crucial role there.

Lemma 1.2 (Hölder’s inequality on time scales). Let α > 1, β be the conjugate number of
α, and f , g be delta integrable on [a,b]. Then

∫ b

a

∣∣ f (t)g(t)
∣∣∆t < (

∫ b

a

∣∣ f (t)
∣∣α∆t)1/α(∫ b

a

∣∣g(t)
∣∣β∆t)1/β

, (1.8)

unless either f , g are proportional, or at least one of the functions is identically zero.

2. Main result

Throughout this section we assume that T is unbounded above. Our main result reads as
follows.

Theorem 2.1 (Hardy inequality on time scales). Let α > 1 be a constant, a function f be
nonnegative and such that the delta integral

∫∞
a ( f (s))α∆s exists as a finite number. Denote
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F(t) := ∫ ta f (s)∆s. Then

∫∞
a

(
Fσ(t)

σ(t)− a

)α
∆t <

(
α

α− 1

)α∫∞
a

(
f (t)

)α
∆t, (2.1)

unless f ≡ 0. If, in addition, µ(t)/t→ 0 as t→∞, then the constant is the best possible.

Proof. Without loss of generality we may suppose that f (a)>0. Denote ϕ(t)=F(t)/(t−a).
For convenience we skip the argument t sometimes in the computations. Then

(
ϕσ
)α− α

α− 1

(
ϕσ
)α−1

f = (ϕσ
)α− α

α− 1

(
ϕσ
)α−1(

(t− a)ϕ
)∆

= (ϕσ
)α− α

α− 1

(
ϕσ
)α−1

ϕσ − α

α− 1

(
ϕσ
)α−1

(t− a)ϕ∆

= −1
α− 1

(
ϕσ
)α− α

α− 1

(
ϕσ
)α−1

(t− a)ϕ∆

(2.2)

at t ≥ a. Further, there exists η(t) between ϕ(t) and ϕσ(t) such that [(ϕ(t))α]∆ =
α(η(t))α−1ϕ∆(t). Since µ(t)sgnϕ∆(t) = sgn(ϕσ(t)− ϕ(t)) and ϕ is nonnegative, we have
α(ϕσ)α−1ϕ∆ ≥ αηα−1ϕ∆ = (ϕα)∆ at t ≥ a. Using this estimate, we obtain from (2.2)

(
ϕσ
)α− α

α− 1

(
ϕσ
)α−1

f ≤− 1
α− 1

(
ϕσ
)α− 1

α− 1

(
ϕα
)∆

(t− a)

=− 1
α− 1

[
ϕα(t− a)

]∆
.

(2.3)

Integrating, we get

∫ t

a

(
ϕσ(s)

)α
∆s− α

α− 1

∫ t

a

(
ϕσ(s)

)α−1
f (s)∆s≤− 1

α− 1

(
ϕ(t)

)α
(t− a)≤ 0 (2.4)

for t ≥ a. Hence, by the Hölder inequality on time scales (Lemma 1.2),

∫ t

a

(
ϕσ(s)

)α
∆s≤ α

α− 1

∫ t

a

(
ϕσ(s)

)α−1
f (s)∆s

≤ α

α− 1

(∫ t

a

(
f (s)

)α
∆s
)1/α(∫ t

a

(
ϕσ(s)

)α
∆s
)1/β

(2.5)

for t ≥ a. Dividing by the last factor on the right (it is positive), and raising the result to
the αth power, we get

∫ t

a

(
ϕσ(s)

)α
∆s≤

(
α

α− 1

)α∫ t

a

(
f (s)

)α
∆s (2.6)

for t ≥ a. Now, let t tend to ∞ to obtain (2.1), except that we have “less than or equal to”
in place of “strictly less than.” In particular we see that

∫∞
a (ϕσ(t))α∆t is finite. Next we
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show that “strictly less than” in (2.1) holds unless f ≡ 0. Return to (2.5) and replace t by
∞ to get

∫∞
a

(
ϕσ(s)

)α
∆s≤ α

α− 1

∫∞
a

(
ϕσ(s)

)α−1
f (s)∆s

≤ α

α− 1

(∫∞
a

(
f (s)

)α
∆s
)1/α(∫∞

a

(
ϕσ(s)

)α
∆s
)1/β

.

(2.7)

There is a strict inequality in the second place unless f α and (ϕσ)α are proportional, that
is, unless f (t)= Cϕσ(t) for t ≥ a, where C is independent of t. It can be shown that C = 1.
Indeed, if a is right-scattered, then

ϕσ(a)= Fσ(a)
σ(a)− a

= µ(a)F(a)
µ(a)

= f (a), (2.8)

while if a is right-dense, we have

ϕσ(a)= ϕ(a)= lim
t→a+

F(t)
t− a

= lim
t→a+

f (t)= f (a). (2.9)

Since f = Cϕσ and f (a) �= 0, we get C = 1. This is possible only when f is a constant. But
if f were a nonzero constant function, this would be inconsistent with the convergence
of
∫∞
a ( f (s))α∆s. Hence

∫∞
a

(
ϕσ(s)

)α
∆s <

α

α− 1

(∫∞
a

(
f (s)

)α
∆s
)1/α(∫∞

a

(
ϕσ(s)

)α
∆s
)1/β

, (2.10)

and (2.1) follows from (2.10) in the same way as (2.6) does from (2.5).
Now we prove that the constant factor is the best possible provided µ(t)/t→ 0 as t→∞.

Put

f (t)=




0 for t ∈ [a,a′),

(t− a)−1/α for t ∈ [a′,b],

0 for t ∈ (b,∞),

(2.11)

where a < a′ < b. Then
∫∞
a ( f (t))α∆t = ∫ σ(b)

a′ (∆t/(t− a)) and

Fσ(t)=
∫ σ(t)

a
f (s)∆s=

∫ σ(t)

a′

∆s

(t− a)1/α

≥
∫ t

a′

ds

(s− a)1/α
= α

α− 1

[
(t− a)(α−1)/α− (a′ − a)(α−1)/α]

(2.12)

for t ∈ [a′,b]. Hence

Fσ(t)
t− a

≥
(

α

α− 1

)
1− ((a′ − a)/(t− a)

)(α−1)/α

(t− a)1/α
, (2.13)
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which implies

(
Fσ(t)
t− a

)α
≥
(

α

α− 1

)α 1− εt
t− a

, (2.14)

t ∈ [a′,b], where εt → 0 as t→∞. Consequently,

∫∞
a

(
Fσ(t)

σ(t)− a

)α
=
∫ σ(b)

a′

(
Fσ(t)

t+µ(t)− a

)α
∆t

≥
∫ σ(b)

a′

(
Fσ(t)
t− a

)α( t− a

t− a+µ(t)

)α
∆t

≥
(

α

α− 1

)α(
1− δb

)∫∞
a

(
f (t)

)α
∆t,

(2.15)

where δb → 0 as b→∞. Hence any inequality of the type

∫∞
a

(
Fσ(t)

σ(t)− a

)α
∆t <

(
α

α− 1

)α
(1− ε)

∫∞
a

(
f (t)

)α
∆t, (2.16)

with ε > 0, fails to hold if f is chosen as above and b is sufficiently large. �

Remark 2.2. (i) If one wants to have a Hardy inequality on a finite segment, then simply
take a function f which is eventually trivial. However, note that, for instance, in [18] the
result is presented for the classical integral Hardy inequality (T = R) showing that the
constant on the right-hand side can be lowered somehow (depending on a, b) provided
the integrals are taken over a real interval [a,b], 0 < a < b <∞.

(ii) There is an open problem to find out whether the constant in Theorem 2.1 is the
best possible also on other time scales than just those satisfying limt→∞µ(t)/t = 0. Nev-
ertheless, the inequality itself works on any time scale. In the next section, we will see
that the problem of the best possible constants can be related to the problem of oscilla-
tion of certain half-linear dynamic equation. Certain connections with a Wirtinger type
inequality are also mentioned there.

3. Application to a generalized Euler dynamic equation

Throughout this section we assume that T is unbounded above. Consider the generalized
Euler dynamic equation

[
Φ
(
y∆
)]∆

+
γ(

σ(t)
)αΦ(yσ)= 0, (3.1)

where Φ(x) = |x|α−1 sgnx with α > 1. This equation is a special case of the well studied
half-linear dynamic equation

[
r(t)Φ

(
y∆
)]∆

+ p(t)Φ
(
yσ
)= 0, (3.2)

where p,r ∈ Crd([a,∞),R) with r(t) �= 0. In [1, 16, 17], it was shown that although a
solution space of (3.2) is homogeneous and not generally additive, many properties (like
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Sturmian theory) known from the theory of linear dynamic equations extend to (3.2).
Note that (3.2) reduces to the linear Sturm-Liouville equation (r(t)y∆) + p(t)yσ = 0 when
α= 2.

Next we examine oscillatory properties of (3.1). Before we will do this, let us recall
some useful concepts and statements. We start with the definition.

Definition 3.1. (i) We say that a solution y of (3.2) has a generalized zero at t in case y(t)=
0. We say y has a generalized zero in (t,σ(t)) in case r(t)y(t)y(σ(t)) < 0 and µ(t) > 0. We
say that (3.2) is disconjugate on the interval [a,b], if there is no nontrivial solution of (3.2)
with two (or more) generalized zeros in [a,b].

(ii) Equation (3.2) is said to be nonoscillatory (on [a,∞)) if there exists c ∈ [a,∞) such
that this equation is disconjugate on [c,d] for every d > c. In the opposite case (3.2) is said
to be oscillatory (on [a,∞)). Oscillation of (3.2) may be equivalently defined as follows.
A nontrivial solution y of (3.2) is called oscillatory if it has infinitely many (isolated)
generalized zeros in [a,∞). By the Sturm type separation theorem, which extends to (3.2),
see [16], one solution of (3.2) is (non)oscillatory if and only if every solution of (3.2) is
(non)oscillatory. Hence we can speak about oscillation or nonoscillation of (3.2).

Next we present a very important tool in the oscillation theory of (3.2), namely the
so-called variational principle.

Proposition 3.2 [16]. Equation (3.2) is nonoscillatory if and only if there exists a∈ T such
that

�(ξ)=
∫∞
a

{
r
∣∣ξ∆∣∣α− p

∣∣ξσ∣∣α}(t)∆t > 0 (3.3)

for every nontrivial ξ ∈U(a) (the class of the so-called admissible functions), where

U(a) := {ξ ∈ C1
p

(
[a,∞),R

)
: ∃b > a with ξ(t)= 0 if t �∈ (a,b)

}
. (3.4)

The following statement is an extension of the well-known Sturm comparison theo-
rem. Along with (3.2) consider

[
R(t)Φ

(
z∆
)]∆

+P(t)Φ
(
zσ
)= 0, (3.5)

where R and P are subject to the conditions imposed on r and p, respectively.

Proposition 3.3 [16]. Assume that R(t) ≥ r(t) and p(t) ≥ P(t) for all large t. If (3.2) is
nonoscillatory, then (3.5) is nonoscillatory.

Now we present an extension of nonoscillation criterion known from the theory of
linear second-order differential equations.

Proposition 3.4 [16]. Suppose that∫∞
a
p(s)∆s is convergent, (3.6)

r(t) > 0,
∫∞
a
r1−β(s)∆s=∞. (3.7)
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Further assume that

lim
t→∞

µ(t)r1−β(t)∫ t
a r

1−β(s)∆s
= 0. (3.8)

If

−2α− 1
α

(
α− 1
α

)α−1

< liminf
t→∞ �(t)≤ limsup

t→∞
�(t) <

1
α

(
α− 1
α

)α−1

, (3.9)

where

�(t) :=
(∫ t

a
r1−β(s)∆s

)α−1∫∞
t
p(s)∆s, (3.10)

then (3.2) is nonoscillatory.

The following oscillatory criterion is of Hille-Wintner type.

Proposition 3.5 [16]. Let (3.7) hold and
∫∞
a p(s)∆s=∞. Then (3.2) is oscillatory.

If
∫∞
a p(s)∆s converges, then the following oscillatory criterion may be used.

Proposition 3.6 [1]. Suppose that (3.7) and (3.6) hold with p(t) ≥ 0. If there exists a
constant M > 0 such that

µ(t)r1−β(t)≤M for all large t, (3.11)

liminf
t→∞ �(t) >

1
α

(
α− 1
α

)α−1

, (3.12)

where � is defined by (3.10), then (3.2) is oscillatory.

Now we are ready to examine (3.1). Denote γα := [(α− 1)/α]α.

Claim 3.7. If γ ≤ γα, then (3.1) is nonoscillatory.

Proof. First assume γ = γα. Let a ∈ T be positive, and f be a function such that ξ(t) =∫ t
a f (s)∆s is admissible, which means that ξ belongs to the class U(a) defined in Proposi-

tion 3.2. Clearly ξ∆(t)= f (t). We have

�(ξ)=
∫∞
a

{∣∣ξ∆(t)
∣∣α− γα(

σ(t)
)α ∣∣ξσ(t)

∣∣α}(t)∆t

=
∫∞
a

{∣∣ f (t)
∣∣α− γα(

σ(t)
)α
∣∣∣∣
∫ σ(t)

a
f (s)∆s

∣∣∣∣
α
}

(t)∆t

≥
∫∞
a

{∣∣ f (t)
∣∣α− γα(

σ(t)− a
)α
(∫ σ(t)

a

∣∣ f (s)
∣∣∆s)α

}
(t)∆t.

(3.13)

Now the last expression is positive by (2.1) provided f is nontrivial, which is our case, if
we assume that ξ �≡ 0. Hence, (3.1) is nonoscillatory by Proposition 3.2. To show that (3.1)
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is nonoscillatory when γ < γα, use the Sturm type comparison theorem (Proposition 3.3)
and the fact that (3.1) with γ = γα is nonoscillatory. �

Remark 3.8. (i) Note that if 0 < γ < γα, then nonoscillation of (3.1) follows also from
Proposition 3.4 (the case γ ≤ 0 can be treated by using the comparison theorem since it is
very easy to find a (nonoscillatory) solution of the equation [Φ(y∆)]∆ = 0, whose solution
space has a linear structure). However, some additional assumptions are needed. Indeed,
(3.7) is clearly fulfilled. Since (1.5) holds, p(t) = γ(σ(t))−α satisfies (3.6). Further, (3.8)
in case of (3.1) requires µ(t)/t → 0 as t →∞. Finally to show that (3.9) is satisfied, we
compute

�(t)= (t− a)α−1
∫∞
t

γ(
σ(s)

)α∆s≤ (t− a)α−1
∫∞
t

γ

sα
ds

= γ

α− 1

(
t− a

t

)α−1

≤ γα
α− 1

− ε,

(3.14)

which holds for large t and suitable positive ε. Note that if γ = γα, then nonoscillation
of (3.1) cannot be detected by the above criterion. Comparing the result obtained by
using the Hardy inequality with this one, we see that the former one does not require any
additional assumptions.

(ii) Claim 3.7 can be perhaps proved by means of the fact that the existence of u such
that (ruuσ)(t) > 0 and uσ(t){[r(t)Φ(u∆(t))]∆ + p(t)Φ(uσ(t))} ≤ 0 (in a neighborhood of
∞) is equivalent to nonoscillation of (3.2), since we conjecture that the function u(t) =
t(α−1)/α satisfies the inequality [Φ(y∆)]∆ + (γα/(σ(t))α)Φ(yσ) ≤ 0, and this would imply
nonoscillation of (3.2) with γ = γα.

(iii) The proof of the Hardy inequality via the variational principle is another open
problem. We conjecture that the Hardy inequality can be viewed as a necessary condition
for nonoscillation of (3.1) with γ = γα (more precisely, as a necessary condition for the
existence of certain positive nondecreasing solution of the above mentioned Euler type
inequality).

It remains to examine (3.1) when γ > γα.

Claim 3.9. Assume that µ is bounded. If γ > γα, then (3.1) is oscillatory.

Proof. We apply Proposition 3.6. Condition (3.11) in the case of (3.1) reads as µ(t)≤M,
which clearly holds. To show that (3.12) is fulfilled, we use the boundedness of µ, although
it suffices µ(t)/t→ 0 as t→∞, and we proceed as follows:

�(t)= (t− a)α−1
∫∞
t

γ(
σ(s)

)α∆s≥ (t− a)α−1
∫∞
t

γ

(s+M)α
∆s

≥ (t− a)α−1
∫∞
t

γ

(s+M)α
ds= γ

α− 1

(
t− a

t+M

)α−1

≥ γα
α− 1

+ ε,

(3.15)

which holds for large t and suitable positive ε. �
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Remark 3.10. (i) There is an open problem to prove that (3.1) oscillates when γ > γα on
any time scale unbounded above, and not only on T with bounded µ. In other words,
we would like to know whether there exists an unbounded time scale, on which (3.2) is
nonoscillatory for some γ > γα; such a result is not expected from the differential/differ-
ence equations case. The related fact which we are interested in is whether γα is indeed
a critical time-scale-invariant constant—this will be discussed in the second part of this
section.

(ii) As we could see above, there are some connections between the Hardy inequality
and the generalized Euler dynamic equation (via the variational principle), and so we
expect that the problem with oscillation, mentioned in part (i) of this remark, is closely
related to the problem of proving that the constant in (2.1) is the best possible on any
time scale.

(iii) There is a criterion similar to Proposition 3.6, see [16], where (3.11) and the non-
negativity of p are not required. However, the constant on the right-hand side of (3.12)
is replaced by (larger) 1.

One can ask why just (σ(t))α appears in (3.1). Why not tα, or something else? To dis-
cuss this question, first recall some known results on linear equations. Note that, for ex-
ample, in [4, 10], oscillatory properties of the Euler type linear equation

y∆∆ +
γ

tσ(t)
yσ = 0 (3.16)

are studied. In [4], it is shown that (3.16) is oscillatory provided γ > 1/4. In [10], the
author uses the Wirtinger type inequality on time scales, to show that (3.16) is nonoscil-
latory provided

0 < limsup
a→∞



(

sup
t≥a

σ(t)
t

)1/2

+

{(
sup
t≥a

µ(t)
t

)
+

(
sup
t≥a

σ(t)
t

)}1/2



2

= 1
γ
=:

1
γ̄
<∞.

(3.17)
More precisely, the inequality

∫ b

a

∣∣G∆(t)
∣∣(uσ(t)

)2
∆t ≤Ψ

∫ b

a

G(t)Gσ(t)∣∣G∆(t)
∣∣ (u∆(t)

)2
∆t, (3.18)

which holds for a positive monotone G, and an admissible u, is applied with G(t) = 1/t
in the variational principle. The number Ψ, depending on the interval, is defined by

Ψ :=


(

sup
t∈[a,b]κ

G(t)
Gσ(t)

)1/2

+

[(
sup

t∈[a,b]κ

µ(t)
∣∣G∆(t)

∣∣
Gσ(t)

)
+

(
sup

t∈[a,b]κ

G(t)
Gσ(t)

)]1/2



2

, (3.19)

where κ cuts a possible isolated maximum of [a,b]. Note that if G(t)= 1/t, then Ψ reduces
to the expression in the brackets in (3.17) with a relevant interval, and (3.18) becomes

∫ b

a

1
tσ(t)

(
uσ(t)

)2
∆t ≤Ψ

∫ b

a

(
u∆(t)

)2
∆t, (3.20)
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where Ψ≥ 4; Ψ may be strictly greater than 4 even when T= Z. Compare (3.20) with the
Hardy inequality where α= 2, that is, with

∫∞
a

1(
σ(t)− a

)2

(
Fσ(t)

)2
∆t ≤ 4

∫∞
a

(
F∆(t)

)2
∆t. (3.21)

Note also that “α-degree” extensions of a Wirtinger inequality were stated in [6] for the
continuous case, and in [7] for the discrete case, together with nonoscillatory criteria—as
applications, of a similar type as Proposition 3.4, for half-linear differential and difference
equations, respectively. A time-scale version which would unify these inequalities is an
open question so far. One can observe that γ̄ in (3.17) cannot be greater than 1/4, and
that (3.16) is nonoscillatory for γ ≤ γ̄. In fact, if T=R or T= Z (differential or difference
equations case, resp.), then γ̄ = 1/4, which is well-known critical constant. However, we
can see that if a graininess is suitably large, then the constant γ̄ is strictly less than 1/4, and
we do not know how to determine the oscillatory behavior of (3.16) when γ ∈ (γ̄,1/4],
using this criterion.

Let us apply our results (Claims 3.7 and 3.9) to the linear case, that is, let us assume
α= 2. Then γα = 1/4, and we get that

y∆∆ +
γ(

σ(t)
)2 y

σ = 0 (3.22)

is nonoscillatory provided γ ≤ 1/4, and oscillatory for γ > 1/4 (however with µ bounded
in the latter case). In contrast to the results for (3.16), here we have a problem with the
case when µ is unbounded and γ > 1/4.

Now let us return to the question presented after Remark 3.10. We can see at the first
sight that there is a slight but significant difference between the coefficients of the second
terms of (3.16) and (3.22). The expression 1/(tσ(t)) in (3.16) may come from the fact that
(1/t)∆ =−1/(tσ(t)). However, the situation in the half-linear case is much more compli-
cated. We do not know how to extend this approach. On the other hand, our arguments
why we choose just (σ(t))2 (or, more generally, (σ(t))α) in the Euler type equation (3.22)
(in (3.1)) reflects the process of discretization. More precisely, when we use a usual dis-
cretization scheme to approximate the second derivative, then the discrete counterpart of
the equation y′′ + p(t)y = 0 is the difference equation ∆2yk + pk yk+1 = 0. We can see that
the unknown function y in the second term has an index k + 1. This suggests to take a
coefficient p with k + 1 as well, in order to get a “real” discrete counterpart, in our sense.
Consequently, we should consider equation y∆∆ + pσ(t)yσ = 0. This extends also to the
half-linear case. Another argument for why we have chosen just σ(t) in the coefficient of
(3.22) or (3.1) is that this matches the Hardy inequality.

We conclude this paper with an example showing what may happen when we consider
the equation

[
Φ
(
y∆
)]∆

+
γ

tα
Φ
(
yσ
)= 0 (3.23)

instead of (3.1), that is, σ(t) in the coefficient of (3.1) is replaced by t. First assume that
T is a time scale such that, for instance, µ(t) ≤M, M > 0, for all t ∈ T. Then we have,
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assuming 0 < γ < γα,

�(t)= (t− a)α−1
∫∞
t

γ

sα
∆s= (t− a)α−1

∫∞
t

γ

(s+M)α

(
s+M

s

)α
∆s

≤ (1 + ε1
)
(t− a)α−1

∫∞
t

γ

(s+M)α
∆s

≤ (1 + ε1
)
(t− a)α−1

∫∞
t

γ(
σ(s)

)α∆s≤ (1 + ε1
)
(t− a)α−1

∫∞
t

γ

sα
ds

= (1 + ε1
) γ

α− 1

(
t− a

t

)α−1

≤ γα
α− 1

− ε,

(3.24)

where t is large, and ε, ε1 are positive suitable constants. Hence (3.23) is nonoscilla-
tory by Proposition 3.4. Now pick a time scale such that

∫∞
a t−α∆t =∞, for example, let

T = {2αk : k ∈ N0}, (see [3, Chapter 5]). Let γ be the same as before. Equation (3.23)
is then oscillatory by Proposition 3.5. Thus we have an example showing that oscillatory
properties of (3.23) may be completely changed when one replaces a time scale by a differ-
ent one, leaving the form of the equation the same. In particular, there is no “important”
(time-scale-invariant) critical constant γα in (3.23).
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[6] O. Došlý, Oscillation criteria for half-linear second order differential equations, Hiroshima Math.
J. 28 (1998), no. 3, 507–521.
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