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HUALIANG ZHONG, ANDRÉ BOIVIN, AND TERRY M. PETERS

Received 23 June 2005; Accepted 16 October 2005

We discuss the stability of complex exponential frames {eiλnx} in L2(−γ,γ), γ > 0. Specif-
ically, we improve the 1/4-theorem and obtain explicit upper and lower bounds for some
complex exponential frames perturbed along the real and imaginary axes, respectively.
Two examples are given to show that the bounds are best possible. In addition, the growth
of the entire functions of exponential type γ (γ > π) on the integer sequence is estimated.
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1. Introduction

Complex exponentials capable of function reconstruction can be derived from various
sources and they may serve as a Riesz basis, or provide series representations such as the
Fourier series. As natural generations of Riesz bases by allowing redundancies, frames
provide another powerful reconstruction approach. Suppose {λn}, n∈ Z, is a sequence of
distinct complex numbers. We say that the set of exponential functions {eiλnt} is a frame
over an interval (−γ,γ) if there exist positive constants A and B, which depend exclusively
on γ and the set of functions {eiλnt}, such that

A≤
∑

n

∣
∣
∣
∫ γ
−γ g(t)eiλntdt

∣
∣
∣

2

∫ γ
−γ
∣
∣g(t)

∣
∣2
dt

≤ B (1.1)

for every function g(t) ∈ L2(−γ,γ), where n ∈ Z. In this case, {λn} is called a frame se-
quence and A and B are called the bounds of the frame. If A= B, the frame is called tight
and if A= B = 1, it is called a Parseval frame.

The Paley-Wiener space P is the Hilbert space of all entire functions of exponential
type at most π that are square integrable on the real axis. The inner product on P is given
by ( f ,g) = ∫∞−∞ f (x)ḡ(x)dx for f ,g ∈ P. From Paley-Wiener theorem, P is isometrically
isomorphic to L2[−π,π], that is, for each f ∈ P, there is a function φ ∈ L2[−π,π] such
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that f (z)= (1/
√

2π)
∫ π
−π φ(t)eiztdt and ‖ f ‖ = ∫ π−π |φ|2dφ. Consequently, the frame condi-

tion (1.1) is equivalent to

Ã‖ f ‖ ≤
∑

n

∣
∣ f
(
λn
)∣
∣2 ≤ B̃‖ f ‖ (1.2)

for any function f ∈ P, where Ã= A/2π and B̃ = B/2π.
An optimal estimation of the bounds of a frame is important in many frame applica-

tions, and they often play a decisive role in speeding the convergence of reconstruction
algorithms. For example, when |λn−n| ≤ δ < L, good estimates for the lower and upper
bounds of an exponential frame can be obtained in terms of L (see Theorem 1.1 below).

It was shown by Paley and Wiener that eiλnt is a Riesz basis if L= 1/π2. This was later
shown to hold for L= ln2/π by Duffin and Eachus [5, page 43] and then for L= 1/4 by
Kadec (see [11, page 38]). For exponential frames, a similar result independently obtained
by Balan [1] and Christensen [4] can be stated as follows.

Theorem 1.1. Suppose {eiλnt} is a frame for L2(−γ,γ) with bounds A, B, where {λn} are
real. Set

L(γ)= π

4γ
− 1
γ

arcsin

{
1√
2

(

1−
√

A

B

)}

. (1.3)

If the real sequence {μn} satisfies |μn− λn| ≤ δ < L(γ), then {eiμnt} is a frame for L2(−γ,γ)
with bounds

A

{

1−
√

A

B
(1− cosγδ + sinγδ)

}2

, B(2− cosγδ + sinγδ)2. (1.4)

Since L(γ) > L0(γ)= (1/γ) ln(1 +
√
A/B), Theorem 1.1 is an improvement of the earlier

result of Duffin and Schaeffer [6] where the variation of the sequence {λn} was shown to
be bounded by L0(γ). It also extends Kadec’s 1/4-theorem from Riesz bases to frames.
This result has been employed in the construction of the solution space of some Sturm-
Liouville equations [7].

It follows from a result of Verblunsky (see [10] and [3]) that after rescaling, the imag-
inary parts of the characteristic roots of the delay-differential equation y′(t)= ay(t− 1)
tend to 1/4. So if the value of the above L(γ) could be enlarged, more characteristic
roots would satisfy the condition on the frame sequence in Theorem 1.1, which could
give a better approximation to the solution of the delay-differential equation in a finite-
dimensional Hilbert space. Interested readers may refer to [2] for details. Motivated by
this consideration, we will improve Theorem 1.1 and evaluate the bounds of complex
exponential frames perturbed along the real and imaginary axes, respectively.

2. Explicit bounds

Theorem 2.1. Suppose {λn} is a frame sequence of real numbers for L2(−π,π) with bounds
A, B. Let {ρn} be a real sequence satisfying 0 < θ ≤ |ρn − λn| ≤ δ, and let σ ≥ 0 satisfy
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Table 2.1

A/B θ L0 L L̃

0.76 0.20 0.1995 0.2211 0.2234

0.15 0.10 0.1042 0.1074 0.1099

(1 + σ)(sinπθ/πθ) < 1. Then {eiρnt} is a frame over L2(−π,π) with bounds

A

{

1−
√

A

B
(1− cosπδ + sinπδ)− σ

1 + σ

(

1−
√

A

B

)}2

,

B
{

1 + (1− cosπδ + sinπδ)
1 + σ

1− σ

}2
(2.1)

provided that δ satisfies

δ < L̃= 1
4
− 1
π

arcsin

{
1

(1 + σ)
√

2

(

1−
√

A

B

)}

. (2.2)

Theorem 2.1 shows that L(γ) obtained in Theorem 1.1 is not optimal if A 	= B. Table
2.1 shows the numeric differences among L0, L, and L̃, defined in [6], Theorems 1.1 and
2.1, respectively.

Before proving Theorem 2.1, we first introduce a perturbation theorem given in [4]
for general frames.

Theorem 2.2. Let { fi}∞i=1 be a frame for a Hilbert space H with bounds A, B. Let {gi}∞i=1 be
a sequence in H . Assume there exist nonnegative constants μ1, μ2, and μ such that max(μ1 +
μ/
√
A,μ2) < 1, and

∥
∥
∥
∥
∥

n∑

i=1

ci
(
fi− gi

)
∥
∥
∥
∥
∥
≤ μ1

∥
∥
∥
∥
∥

n∑

i=1

ci fi

∥
∥
∥
∥
∥

+μ2

∥
∥
∥
∥
∥

n∑

i=1

cigi

∥
∥
∥
∥
∥

+μ

( n∑

i=1

∣
∣ci
∣
∣2
)1/2

(2.3)

for all c1,c2, . . . ,cn. Then {gi}∞i=1 is a frame with bounds

A

(

1− μ1 +μ2 +μ/
√
A

1 +μ2

)2

, B

(

1 +
μ1 +μ2 +μ/

√
B

1−μ2

)2

. (2.4)

Proof of Theorem 2.1. Let n∈N and ck ∈ C, k = 1,2, . . . ,n, be arbitrary. Set δk = ρk − λk,
and set

U =
∥
∥
∥
∥
∥

n∑

k=1

ck
(
eiρkx − eiλkx

)
∥
∥
∥
∥
∥
. (2.5)

The conditions on δ and σ imply that σ ∈ [0,1). Consequently,

U ≤
∥
∥
∥
∥
∥

n∑

k=1

cke
iλkx
(
1− (1 + σ)eiδkx

)
∥
∥
∥
∥
∥

+ σ

∥
∥
∥
∥
∥

n∑

k=1

cke
iρkx

∥
∥
∥
∥
∥
. (2.6)
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Expanding 1− (1 + σ)eiδkx in the system {1,cosnx, sin(n− 1/2)x}∞n=1, we obtain

1− (1 + σ)eiδkx =
(

1− (1 + σ)
sinπδk
πδk

)

+ (1 + σ)
∞∑

τ=1

(−1)τ2δk sinπδk
π
(
τ2− δ2

k

) cos(τx)

+ (1 + σ)i
∞∑

τ=1

(−1)τ2δk cosπδk

π
((
τ − 1/2

)2− δ2
k

) sin
{(

τ − 1
2

)

x
}

.

(2.7)

Since ‖cos(τx)φ(x)‖ ≤ ‖φ‖ and ‖sin{(τ− 1/2)x}φ(x)‖ ≤ ‖φ‖, it follows that

U ≤
∥
∥
∥
∥
∥

n∑

k=1

{

1− (1 + σ)
sinπδk
πδk

}

cke
iλkx

∥
∥
∥
∥
∥

+ (1 + σ)
∞∑

τ=1

∥
∥
∥
∥
∥

n∑

k=1

2δk sinπδk
π
(
τ2− δ2

k

) cke
iλkx

∥
∥
∥
∥
∥

+ (1 + σ)
∞∑

τ=1

∥
∥
∥
∥
∥

n∑

k=1

2δk cosπδk
π
(
(τ− 1/2)2− δ2

k

) cke
iλkx

∥
∥
∥
∥
∥

+ σ

∥
∥
∥
∥
∥

n∑

k=1

cke
iρkx

∥
∥
∥
∥
∥
.

(2.8)

Since σ satisfies 1 + σ < πθ/ sinπθ, then we have
∣
∣
∣
∣1− (1 + σ)

sinπδk
πδk

∣
∣
∣
∣≤ 1− (1 + σ)

sinπδ
πδ

,

∣
∣
∣
∣

2δk sinπδk
π
(
τ2− δ2

k

)

∣
∣
∣
∣≤

2δ sinπδ
π
(
τ2− δ2

) ,

∣
∣
∣
∣

2δk cosπδk
π
(
(τ− 1/2)2− δ2

k

)

∣
∣
∣
∣≤

2δ cosπδ
π
(
(τ− 1/2)2− δ2

) .

(2.9)

Considering that

∥
∥
∥
∥
∥

n∑

k=1

akcke
iλkx

∥
∥
∥
∥
∥
≤√B

( n∑

k=1

∥
∥akck

∥
∥2
)1/2

≤√B sup
∣
∣ak
∣
∣

( n∑

k=1

∥
∥ck
∥
∥2
)1/2

, (2.10)

we obtain

U ≤√B
{

1− (1 + σ)
sinπδ
πδ

+ (1 + σ)
∞∑

τ=1

2δ sinπδ
π
(
τ2− δ2

)

+ (1 + σ)
∞∑

τ=1

2δ cosπδ
π
(
(τ − 1/2)2− δ2

)

}( n∑

k=1

∥
∥ck
∥
∥2
)1/2

+ σ

∥
∥
∥
∥
∥

n∑

k=1

cke
iρkx

∥
∥
∥
∥
∥

=√B
{

1− (1 + σ)
sinπδ
πδ

+ (1 + σ)sinπδ
(

1
πδ
− cotπδ

)

+ (1 + σ)cosπδ tanπδ
}( n∑

k=1

∥
∥ck
∥
∥2
)1/2

+ σ

∥
∥
∥
∥
∥

n∑

k=1

cke
iρkx

∥
∥
∥
∥
∥

=√B{1 + (1 + σ)(sinπδ− cosπδ)
}
( n∑

k=1

∥
∥ck
∥
∥2
)1/2

+ σ

∥
∥
∥
∥
∥

n∑

k=1

cke
iρkx

∥
∥
∥
∥
∥

,

(2.11)
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which implies that 1 + (1 + σ)(sinπδ − cosπδ) > 0. Now assuming μ1 = 0, μ2 = σ , and
μ=√B{1 + (1 + σ)(sinπδ− cosπδ)} in Theorem 2.2, we see that for {eiρkx} to be a frame
over L2(−π,π), we only require μ <

√
A. This means that

sinπδ− cosπδ <
1

1 + σ

{√
A

B
− 1

}

. (2.12)

Thus δ < L̃= 1/4− 1/π arcsin{(1/(1 + σ)
√

2)(1−√A/B)} and the bounds of the frame
now follow directly from Theorem 2.2. This completes the proof. �

The sequence considered in Theorem 2.1 is perturbed along the real axis. Perturbation
results along the imaginary axis were established by Duffin and Schaeffer [6]. Here we first
explicitly specify their upper and lower bounds, and then illustrate their accuracy.

Theorem 2.3. Let λn = αn + iβn be a complex sequence with αn, βn real, |βn| < β. If {eiαnt}
is a frame over an interval (−γ,γ) with bounds A and B, and f (z) is an entire function of
exponential type γ with 0 < γ ≤ π, f ∈ L2(−∞,∞), then

Ae−2γβ ≤
∑∞

n=−∞
∣
∣ f
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

≤ B

{

e−βγ +

√
B

A

(
1− e−βγ

)
}2

e2γβ. (2.13)

Before giving the proof of this theorem, we state two lemmas directly cited from [6].

Lemma 2.4. If f (z) is an entire function of exponential type γ and f ∈ L2(−∞,∞), then

∫∞

−∞

∣
∣ f (k)(x)

∣
∣2 ≤ γ2k

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx. (2.14)

If we choose ρ= (γ/M)1/2, then Lemma 2.5 in [6] can be expressed as follows.

Lemma 2.5. Let {eiσnt} be a frame over the interval (−γ,γ), 0≤ γ ≤ π, with bounds A and
B. If {μn} is a sequence satisfying |μn− σn| ≤M for some constant M, then for any function
f in the Paley-Wiener space,

∑
n∈N

∣
∣ f
(
μn
)∣
∣2

∑
n∈N

∣
∣ f
(
σn
)∣
∣2 ≤

{

1 +

√
B

A

(
eγM − 1

)
}2

. (2.15)

Lemma 2.6. Let {eiλnt} be a frame over the interval (−γ,γ) with bounds A and B. Then for
any given ε > 0, there exists δ > 0 such that when |μn− λn| < δ for all n∈N,

(1− ε)A <

∑
n

∣
∣ f
(
μn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

< (1 + ε)B (2.16)

for all entire functions f (z) of exponential type γ with f ∈ L2(−∞,∞).
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Proof of Lemma 2.6. Given ε1 > 0, suppose |μn − λn| < δ where δ > 0 satisfies that |(B/
A)(eγδ − 1)2| < ε1, and choose ρ = {γ/δ}1/2. Then with the Taylor’s series expansion of f
at z = λn, we have

∣
∣ f
(
μn
)− f

(
λn
)∣
∣2 ≤

{ ∞∑

k=1

∣
∣ f (k)

(
λn
)∣
∣2

k!

}{
∑
∣
∣μn− λn

∣
∣2k

k!

}

≤
{ ∞∑

k=1

∣
∣ f (k)

(
λn
)∣
∣2

ρ2kk!

}{ ∞∑

k=1

(ρδ)2k

k!

}

.

(2.17)

Since f (k)(z) is an entire function of type γ, and since {eiλnt} is a frame over the interval
(−γ,γ), we can combine the property of the upper bound B of the frame with Lemma 2.4
to generate the following inequalities:

∞∑

n=−∞

∣
∣ f
(
μn
)− f

(
λn
)∣
∣2 ≤ {eγδ − 1

}
{ ∞∑

k=1

1
ρ2kk!

∞∑

n=−∞

∣
∣ f (k)(λn

)∣
∣2
}

≤ {eγδ − 1
} ∞∑

k=1

B

ρ2kk!

∫∞

−∞

∣
∣ f (k)(x)

∣
∣2
dx

= B
(
eγδ − 1

)(
eγ

2/ρ2 − 1
)
∫∞

−∞

∣
∣ f (x)

∣
∣2
dx

≤ B

A

(
eγδ − 1

)2∑
n∈N

∣
∣ f
(
λn
)∣
∣2

< ε1

∞∑

n=−∞

∣
∣ f
(
λn
)∣
∣2
.

(2.18)

By Minkowski’s inequality, it follows that

(
∑

n∈N
∣
∣ f
(
μn
)∣
∣2
)1/2

≤ (1 + ε1/2
1

)
(
∑

n∈N
∣
∣ f
(
λn
)∣
∣2
)1/2

. (2.19)

Thus

∑
n∈N

∣
∣ f
(
μn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

=
∑

n∈N
∣
∣ f
(
μn
)∣
∣2

∑
n∈N

∣
∣ f
(
λn
)∣
∣2

∑
n∈N

∣
∣ f
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

≤
(

1 + ε1/2
1

)2
B. (2.20)

On the other hand,

(
∑

n∈N
∣
∣ f
(
λn
)∣
∣2
)1/2

≤
(
∑

n∈N
∣
∣ f
(
λn
)− f

(
μn
)∣
∣2
)1/2

+

(
∑

n∈N
∣
∣ f
(
μn
)∣
∣2
)1/2

≤ ε1/2
1

(
∑

n

∣
∣ f
(
λn
)∣
∣2
)1/2

+

(
∑

n∈N
∣
∣ f
(
μn
)∣
∣2
)1/2

.

(2.21)

It follows that

(
1− ε1/2

1

)2
(
∑

n∈N
∣
∣ f
(
λn
)∣
∣2
)

≤
∑

n∈N
∣
∣ f
(
μn
)∣
∣2
. (2.22)
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Therefore,

∑
n∈N

∣
∣ f
(
μn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

=
∑

n∈N
∣
∣ f
(
μn
)∣
∣2

∑
n∈N

∣
∣ f
(
λn
)∣
∣2

∑
n∈N

∣
∣ f
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

≥
(

1− ε1/2
1

)2
A. (2.23)

It is obvious that ε1 can be chosen such that both (1− ε1/2
1 )2 > 1− ε and (1 + ε1/2

1 )2 <
1 + ε hold for any given ε > 0. Thus the proof of the lemma is completed. �

Proof of Theorem 2.3. The second inequality can be obtained directly from the frame’s
definition and Lemma 2.5 if σn and μn in Lemma 2.5 are replaced by αn and λn, respec-
tively. For the first one, assuming f (z) is in the Paley-Wiener space, then as in [6] we

construct a new function f1 and a new sequence λ(1)
n = αn + iβ(1)

n with |β(1)
n | ≤ β/2, such

that

e−βγ
∑

n

∣
∣ f1
(
λ(1)
n

)∣
∣2

∫∞
−∞
∣
∣ f1(x)

∣
∣2
dx
≤
∑

n

∣
∣ f
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

. (2.24)

Next for any given ε > 0, there is δ > 0 defined in Lemma 2.6 such that |λ(K0)
n − αn| =

|β(K0)
n | ≤ |β/2K0| < δ for sufficiently large K0. Then Lemma 2.6 guarantees that

∑
n∈N

∣
∣ fK0

(
λ(K0)
n

)∣
∣2

∫∞
−∞
∣
∣ fK0 (x)

∣
∣2
dx

≥ (1− ε)A. (2.25)

Repeating the procedure for (2.24) K0 times, we obtain that

∑
n∈N

∣
∣ f
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

≥ e−γ(β+β/2+···+β/2K0−1)

∑
n∈N

∣
∣
∣ fK0

(
λ(K0)
n

)∣
∣
∣

2

∫∞
−∞
∣
∣ fK0 (x)

∣
∣2
dx

≥ (1− ε)Ae−2βγ

(2.26)

for an arbitrary ε > 0, which completes the proof. �

Corollary 2.7. Under the assumption of Theorem 2.3, if γ = π and |λn−n| < L for some
constant L, then

e−2βπ ≤
∑∞

n=−∞
∣
∣ f
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f (x)

∣
∣2
dx

≤ e2Lπ (2.27)

for all entire functions of exponential type π belonging to L2(−∞,∞).

Proof. Actually, it suffices to prove the second inequality. In Lemma 2.5, if we set γ = π,
σn = n, and μn = λn, then from Parseval’s identity (Theorem 4.1), we know that A= B =
1. The conclusion of Lemma 2.5 immediately yields that

∑∞
n=−∞ | f (λn)|2/ ∫∞−∞ | f (x)|2dx ≤

e2Lπ , which completes the proof. �

Corollary 2.8. Suppose {λn = n+ iβn} is a sequence satisfying |βn| < β, then {eiλnt} is a
frame over (−π,π) with lower bound e−2πβ and upper bound e2πβ, respectively.



8 Complex exponential frames

Remark 2.9. In Corollary 2.8, the upper and lower bounds cannot be replaced by c1e2γβ

(c1 < 1) and c2e−2γβ (c2 > 1), respectively. It is obvious that c1e2γβ → c1 < 1 and c2e−2γβ →
c2 > 1 as β→ 0. But when β→ 0, λn → n, Theorem 2.3 implies that the upper and lower
bounds Bβ and Aβ satisfy Bβ → 1 and Aβ → 1. It forces that c1 = c2 = 1.

Remark 2.10. Two examples given in the next section show that the two exponents −2γβ
and 2γβ in Theorem 2.3 are best possible.

3. Two examples

Let y = cosha(π− x), 0≤ x ≤ 2π, then its Fourier expansion is

y = 2
π

sinhaπ

{
1

2a
+

∞∑

n=1

a

a2 +n2
cosnx

}

. (3.1)

It follows that
∑∞

n=1(a/(a2 + n2))cosnx = (π/2)(cosha(π − x)/ sinhaπ)− 1/2a. Since
cosnx is even, we may extend n to the negative infinity, and obtain that

∑∞
n=−∞(cosnx/a2 +

n2) = (π/a)(cosha(π − x)/ sinhaπ). Now set a = β with x = 0 and x = 2γ ≤ 2π, respec-
tively, then we have

∞∑

n=−∞

1
β2 +n2

= π

β

eπβ + e−πβ

eπβ− e−πβ
,

∞∑

n=−∞

cos2γn
β2 +n2

= π

β

eβ(π−2γ) + e−β(π−2γ)

eπβ− e−πβ
.

(3.2)

With the identities (3.2), we are going to evaluate the following two examples.

Example 3.1. Suppose g1(t) = eit and f1(z) = (1/2π)1/2
∫ γ
−γ g1(t)eiztdt. Then from the

function f1, it can be demonstrated that the exponent of the upper bound in Theorem 2.3
cannot be reduced.

In fact, f1 is an entire function of exponent type γ, and can be represented as f1(z)=
(1/2π)1/2(eγ(1+z)i− e−γ(1+z)i/(1 + z)i). Substituting z with λn = n+ iβ, we get that

∞∑

n=−∞

∣
∣ f1
(
λn
)∣
∣2 =

∞∑

n=−∞

1
2π

1
∣
∣1 + λn

∣
∣2

∣
∣eγ(1+λn)i− e−γ(1+λn)i

∣
∣2

=
∞∑

n=−∞

1
2π

1
(1 +n)2 +β2

∣
∣e−γβ+(1+n)γi− eγβ−(1+n)γi

∣
∣2

=
∞∑

n=−∞

1
2π

1
n2 +β2

(
e2γβ + e−2γβ− 2cos(2γn)

)

= 1
2π

{
(
e2γβ + e−2γβ)

∞∑

n=−∞

1
n2 +β2

− 2
∞∑

n=−∞

cos2γn
n2 +β2

}

.

(3.3)



Hualiang Zhong et al. 9

From the identities of (3.2), we obtain that

∞∑

n=−∞

∣
∣ f1
(
λn
)∣
∣2 = 1

2π

{
π

β

(
e2γβ + e−2γβ

)(
eπβ + e−πβ

)

eπβ− e−πβ
− 2π

β

e(π−2γ)β + e−(π−2γ)β

eπβ− e−πβ

}

= e2γβ− e−2γβ

2β
.

(3.4)

By Plancherel’s theorem [11, page 85], we have
∫∞
−∞ | f1(x)|2dx = ∫ γ−γ |g1(t)|2dt = 2γ. It

follows that

∑∞
−∞
∣
∣ f1
(
λn
)∣
∣2

∫∞
−∞
∣
∣ f1(x)

∣
∣2
dx
= e2γβ− e−2γβ

4γβ
= Bβ. (3.5)

It implies that the γ in the upper bound of Theorem 2.3 cannot be replaced by γ− ε
for any ε > 0. Otherwise, there is a contradiction for any sufficiently large β.

Example 3.2. Suppose g2(t) = es+it (s > 0) and f2(z) = (1/2π)1/2
∫ γ
−γ g2(t)eiztdt. Then f2

can assume the lower bound of Theorem 2.3 for γ = 1.
Actually, since f2(z) = (1/2π)1/2(eγ(s+(1+z)i) − e−γ(s+(1+z)i)/s + (1 + z)i), by substitution

of z with λn = n+ iβ, we obtain that

∞∑

−∞

∣
∣ f2
(
λn
)∣
∣2 =

(
1

2π

)1/2 ∣∣e−γ(β−s)+(1+n)γi− eγ(β−s)−(1+n)γi
∣
∣2

∣
∣− (β− s) + (1 +n)i

∣
∣2 . (3.6)

Since (3.6) is similar to that in Example 3.1 except for that β is replaced by β− s, so we
obtain that

∞∑

−∞

∣
∣ f2
(
λn
)∣
∣2 = e2γ(β−s)− e−2γ(β−s)

2(β− s)
−→ 2γ (3.7)

as s→ β. On the other hand, since

∫∞

−∞

∣
∣ f2(x)

∣
∣2
dx =

∫ γ

−γ

∣
∣g2(t)

∣
∣2
dt = 2γe2s, (3.8)

it follows that
∑∞
−∞ | f2(λn)|2/ ∫∞−∞ | f2(x)|2dx→e−2β. Thus the lower bound can be achieved

when γ = 1.

4. Entire functions on integer sequence

Suppose f is in the Paley-Wiener space and is written as f (z) = (1/
√

2π)
∫ π
−π g(t)eiztdt

with g ∈ L2(−π,π). Then, from Plancherel’s theorem, we have

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx =

∫ π

−π

∣
∣g(t)

∣
∣2
dt. (4.1)

Consequently, Parseval’s identity can be expressed as follows [11, page 90].
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Theorem 4.1. Assume that f (z) is an entire function of exponential type at most π, and is
square integrable on the real axis, then

∞∑

n=−∞

∣
∣ f (n)

∣
∣2 =

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx. (4.2)

From Theorem 4.1 and (1.2), we know that {eint} is a tight frame in L2(−π,π) with
the bound A= 2π, but this is not true in L2(−γ,γ) if γ > π (see [6]). It therefore will be
interesting to find all the tight frames or Parseval frames in L2[−γ,γ]. We next consider
the space P(γ) consisting of all the entire functions of exponential type at most γ, γ > π.
The space P(γ) is then isomorphic to L2[−γ,γ]. For the functions in P(γ), Pólya and
Plancherel [8, 9] proved the following theorem.

Theorem 4.2. If f is an entire function of exponential type γ, then for any real increasing
sequence {λn} such that λn+1− λn ≥ δ for some δ > 0,

∞∑

n=−∞

∣
∣ f
(
λn
)∣
∣2 ≤ 4

(
eγδ − 1

)

πγδ2

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx, (4.3)

and in particular

∞∑

n=−∞

∣
∣ f (n)

∣
∣2 ≤ 4

(
eγ − 1

)

πγ

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx. (4.4)

While the coefficient in (4.4) depends on the exponential type γ, there are some entire
functions in P(γ), but out of the Paley-Wiener space P, which still have nice properties.

Theorem 4.3. For any entire function f (z) of exponential type γ > 0 satisfying
∫∞

−∞

∣
∣ f (x)

∣
∣2
dx <∞, (4.5)

there exists a constant c such that the function g(z)= f (z+ c) satisfies that

∞∑

n=−∞

∣
∣g(n)

∣
∣2 ≤ 4

π

∫∞

−∞

∣
∣g(x)

∣
∣2
dx <∞. (4.6)

Proof. Let f (z) be an entire function of exponential type γ > 0. Since | f |2 is subharmonic,
then for δ > 0 and w ∈R, we have

∣
∣ f (w)

∣
∣2 ≤ 1

πδ2

∫∫

|z−w|<δ

∣
∣ f (z)

∣
∣2
dxdy (4.7)

≤ 1
πδ2

∫ δ

−δ

∫ w+δ

w−δ

∣
∣ f (x+ iy)

∣
∣2
dxdy. (4.8)

Suppose k is a positive integer. Let δ = 1/2k and w = n+ 2 j/2k for j = 1, . . . ,2k−1. Then
it follows that

∣
∣
∣
∣ f
(

n+
2 j
2k

)∣
∣
∣
∣

2

≤ 1
πδ2

∫ δ

−δ

∫ (n+2 j/2k)+δ

(n+2 j/2k)−δ

∣
∣ f (x+ iy)

∣
∣2
dxdy (4.9)
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for j = 1, . . . ,2k−1. Set f j(z) = f (z + 2 j/2k). Then f j is an entire function of exponential
type γ, and we consequently have that

2k−1
∑

j=1

∞∑

n=−∞

∣
∣ f j(n)

∣
∣2 ≤ 1

πδ2

∫ δ

−δ

∫∞

−∞

∣
∣ f (x+ iy)

∣
∣2
dxdy

≤ 1
πδ2

∫ δ

−δ

(

e2γ|y|
∫∞

−∞

∣
∣ f (x)

∣
∣2
dx
)

dy

= e2γδ − 1
πγδ2

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx.

(4.10)

Choose f j0 from { f j} such that
∑∞

n=−∞ | f j0 (n)|2 ≤∑∞
n=−∞ | f j(n)|2 for j = 1, . . . ,2k−1,

then

2k−1
∞∑

n=−∞

∣
∣ f j0 (n)

∣
∣2 ≤ 22k

πγ

(
eγ/2

k−1 − 1
)∫∞

−∞

∣
∣ f (x)

∣
∣2
dx. (4.11)

Consequently,

∞∑

n=−∞

∣
∣ f j0 (n)

∣
∣2 ≤ 4

π

eγ/2
k−1 − 1

γ/2k−1

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx. (4.12)

Since (eγ/2
k−1 − 1)/γ/2k−1 → 1 as k→∞, we have obtained that

∞∑

n=−∞

∣
∣ f j0 (n)

∣
∣2 ≤ 4

π

∫∞

−∞

∣
∣ f (x)

∣
∣2
dx = 4

π

∫∞

−∞

∣
∣ f j0 (x)

∣
∣2
dx, (4.13)

which completes the proof of Theorem 4.3. �

Note. It will be interesting to know if the constant 4/π in Theorem 4.3 could be re-
placed by one as in Parseval’s identity.

References

[1] R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases, The Journal of Fourier
Analysis and Applications 3 (1997), no. 5, 499–504.

[2] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
[3] A. Boivin and H. Zhong, Completeness of systems of complex exponentials and the Lambert W

functions, to appear in Transactions of the American Mathematical Society.
[4] O. Christensen, Perturbation of frames and applications to Gabor frames, Gabor Analysis and

Algorithms: Theory and Applications (H. G. Feichtinger and T. Strohmer, eds.), Appl. Numer.
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