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We are concerned with the oscillatory and nonoscillatory behavior of solutions of even-
order quasilinear functional differential equations of the type (|y(n)(t)|α sgn y(n)(t))(n) +
q(t)|y(g(t))|β sgn y(g(t))= 0, where α and β are positive constants, g(t) and q(t) are pos-
itive continuous functions on [0,∞), and g(t) is a continuously differentiable function
such that g′(t) > 0, limt→∞ g(t)=∞. We first give criteria for the existence of nonoscilla-
tory solutions with specific asymptotic behavior, and then derive conditions (sufficient as
well as necessary and sufficient) for all solutions to be oscillatory by comparing the above
equation with the related differential equation without deviating argument.
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uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

We consider even-order quasilinear functional differential equations of the form

(∣∣y(n)(t)
∣
∣α sgn y(n)(t)

)(n)
+ q(t)

∣
∣y
(
g(t)

)∣∣β sgn y
(
g(t)

)= 0, (A)

where
(a) α and β are positive constants;

(b) q : [0,∞)→ (0,∞) is a continuous function;

(c) g : [0,∞)→ (0,∞) is a continuously differentiable function such that g′(t) > 0,
t ≥ 0, and limt→∞ g(t)=∞.

By a solution of (A) we mean a function y : [Ty ,∞)→ R which is n times continu-
ously differentiable together with |y(n)|α sgn y(n) and satisfies (A) at all sufficiently large
t. Those solutions which vanish in a neighborhood of infinity will be excluded from our
consideration. A solution is said to be oscillatory if it has a sequence of zeros clustering
around∞, and nonoscillatory otherwise.
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2 Quasilinear functional differential equations

The objective of this paper is to study the oscillatory and nonoscillatory behavior of
solutions of (A). In Section 2 we begin with the classification of nonoscillatory solutions
of (A) according to their asymptotic behavior as t→∞. It suffices to restrict our consid-
eration to eventually positive solutions of (A), since if y(t) is a solution of (A), then so
is −y(t). Let P denote the totally of eventually positive solutions of (A). It will be shown
that it is natural to divide P into the following two classes:

P(I)= P
(
I0
)∪P

(
I1
)∪···∪P

(
I2n−1

)
,

P(II)= P
(
II1
)∪P

(
II3
)∪···∪P

(
II2n−1

)
,

(1.1)

where P(I j), j ∈ {0,1, . . . ,2n− 1}, and P(IIk), k ∈ {1,3, . . . ,2n− 1}, consist of solutions
y(t) satisfying

lim
t→∞

y(t)
ϕj(t)

= const > 0,

lim
t→∞

y(t)
ϕk−1(t)

=∞, lim
t→∞

y(t)
ϕk(t)

= 0,

(1.2)

respectively. Here the functions ϕi(t), i= 0,1, . . . ,2n− 1, are defined by

ϕi(t)= ti (i= 0,1, . . . ,n− 1), ϕi(t)= tn+(i−n)/α (i= n,n+ 1, . . . ,2n− 1). (1.3)

Moreover, we will give the integral representations for positive solutions belonging to
each of these two classes. Next, In Section 3 we will give necessary and sufficient condi-
tions for the existence of positive solutions belonging to the class P(I) as well as sufficient
conditions for the existence of positive solutions belonging to the class P(II).

In Section 5 we derive criteria for all solutions of (A) to be oscillatory. Our derivations
depend heavily on oscillation theory of even-order nonlinear differential equations

(∣∣y(n)(t)
∣
∣α sgn y(n)(t)

)(n)
+ q(t)

∣
∣y(t)

∣
∣β sgn y(t)= 0 (B)

recently developed by Tanigawa in [7]. Comparison theorems which will be established
in Section 4 enable us to deduce oscillation of an equation of the form (A) from that of a
similar equation with a different functional argument.

We note that oscillation properties of second-order functional differential equations
involving nonlinear Sturm-Liouville-type differential operators have been investigated by
Kusano and Lalli [2], Kusano and Wang [4], and Wang [9]. Moreover, in a recent paper
by Tanigawa [6] oscillation criteria for fourth-order functional differential equations

(∣∣y′′(t)
∣
∣α sgn y′′(t)

)′′
+ q(t)

∣
∣y
(
g(t)

)∣∣β sgn y
(
g(t)

)= 0 (C)

have been presented.

2. Classification and integral representations of positive solutions

Our purpose here is to make a detailed analysis of the structure of the set P of all possible
positive solutions of (A).
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Classification of positive solutions. Let y(t) be an eventually positive solution of (A)
on [t0,∞), t0 ≥ 0. Then, we have the following lemma which was proved by Tanigawa
and Fentao in [8] and which is a natural generalization of the well-known Kiguradze
lemma [1].

It will be convenient to make use of the symbols Li, i = 1,2, . . . ,2n− 1, to denote the
“quasiderivatives” generating the differential operator L2ny = (|y(n)|α sgn y(n))(n):

Liy = y(i), i= 1,2, . . . ,n− 1,

Liy =
(∣∣y(n)

∣
∣α sgn y(n))(i−n)

, i= n,n+ 1, . . . ,2n,

Li+1y =
(
Liy
)′

, i= 1,2, . . . ,n− 2, n,n+ 1, . . . ,2n− 1,

Lny =
∣
∣(Ln−1y

)′∣∣α sgn
(
Ln−1y

)′
, L0y = y.

(2.1)

Lemma 2.1. If y(t) is a positive solution of (A) on [t0,∞), then there exist an odd integer
k ∈ {1,3, . . . ,2n− 1} and a t1 > t0 such that

Liy(t) > 0, t ≥ t1, for i= 0,1, . . . ,k− 1,

(−1)i−kLi y(t) > 0, t ≥ t1, for i= k,k+ 1, . . . ,2n− 1.
(2.2)

We denote by Pk the subset of P consisting of all positive solutions y(t) of (A) satisfying
(2.2). The above lemma shows that P has the decomposition

P = P1∪P3∪···∪P2n−1. (2.3)

Since Liy(t), i∈ {0,1, . . . ,2n− 1}, are eventually monotone, they tend to finite or infi-
nite limits as t→∞, that is,

lim
t→∞Liy(t)= ωi, i∈ {0,1, . . . ,2n− 1}. (2.4)

One can easily show that if y ∈ Pk for k ∈ {1,3, . . . ,2n− 1}, then ωk is a finite nonnegative
number and the set of its asymptotic values {ωi} falls into one of the following three cases:

ω0 = ω1 = ··· = ωk−1 =∞, ωk ∈ (0,∞), ωk+1 = ωk+2 = ··· = ω2n−1 = 0,

ω0 = ω1 = ··· = ωk−1 =∞, ωk = ωk+1 = ··· = ω2n−1 = 0,

ω0 = ω1 = ··· = ωk−2 =∞, ωk−1 ∈ (0,∞), ωk = ωk+1 = ··· = ω2n−1 = 0.
(2.5)



4 Quasilinear functional differential equations

Observing that by L’Hospital’s rule, we have, for every j ∈ {1,2, . . . ,2n− 1}, that

lim
t→∞

y(t)
ϕj(t)

= const≥ 0 or∞⇐⇒ lim
t→∞Lj y(t)= const≥ 0 or∞, (2.6)

equivalent expressions for these classes of positive solutions of (A) are the following:

(i) lim
t→∞

y(t)
ϕk(t)

= const > 0,

(ii) lim
t→∞

y(t)
ϕk(t)

= 0, lim
t→∞

y(t)
ϕk−1(t)

=∞,

(iii) lim
t→∞

y(t)
ϕk−1(t)

= const > 0,

(2.7)

where ϕ0(t), . . . ,ϕ2n−1(t) are defined by (1.3). Note that these functions are particular
solutions of the unperturbed equation L2ny(t) = 0. Observing that cases (i) and (iii)
are of the same category, it is natural to classify P broadly into the two classes P(I) =
P(I0)∪ P(I1)∪ ··· ∪ P(I2n−1) and P(II) = P(II1)∪ P(II3)∪ ··· ∪ P(II2n−1) consisting,
respectively, of

P
(
I j
)=

{
y ∈ P : lim

t→∞
y(t)
ϕj(t)

= const > 0
}

,

P
(
IIk
)=

{
y ∈ P : lim

t→∞
y(t)

ϕk−1(t)
=∞, lim

t→∞
y(t)
ϕk(t)

= 0
}
.

(2.8)

Integral representations for positive solutions. We will establish the existence of eventually
positive solutions for each of the above classes P(I) and P(II). For this purpose a crucial
role will be played by integral representations for P(I j) and P(IIk) types of solutions of
(A) established below.

Let y(t) be a positive solution of (A) such that y(t) > 0, y(g(t)) > 0 on [t0,∞). Let us
first derive an integral representation of the solution y(t) from the class P(I j), j ∈ {0,
1, . . . ,2n− 1}.

If j ∈ {n,n+ 1, . . . ,2n− 1}, then we integrate (A) 2n− j times from t to ∞ and then
integrate the resulting equation j times from t0 to t to obtain

(i) for j ∈ {n+ 1,n+ 2, . . . ,2n− 1},

y(t)= ζ(t)+
∫ t

t0

(t−s)n−1

(n−1)!

[

ξj(s) + (−1)2n−j−1
∫ s

t0

(s−r) j−n−1

( j−n−1)!

×
∫∞

r

(σ−r)2n−j−1

(2n−j− 1)!
q(σ)y

(
g(σ)

)β
dσ dr

]1/α

ds;

(2.9)
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(ii) for j = n,

y(t)= ζ(t) +
∫ t

t0

(t− s)n−1

(n− 1)!

[

ωn + (−1)n−1
∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr

]1/α

ds,

(2.10)

where

ξj(t)=
j−1∑

i=n
Li y
(
t0
)
(
t− t0

)i−n

(i−n)!
+ωj

(
t− t0

) j−n

( j−n)!
(n+ 1≤ j ≤ 2n− 1),

ζ(t)=
n−1∑

i=0

Liy
(
t0
)
(
t− t0

)i

i!
.

(2.11)

If j ∈ {0,1, . . . ,n− 1}, then first integrating (A) 2n− j(= n+ (n− j)) times from t to
∞ and then integrating j times from t0 to t, we have

(i) for j ∈ {1,2, . . . ,n− 1},
y(t)= ζ∗j (t)

+ (−1)2n−j−1
∫ t

t0

(t−s) j−1

( j−1)!

∫∞

s

(r−s)n−j−1

(n− j−1)!

[∫∞

r

(σ − r)n−1

(n− 1)!
q(σ)

(
y
(
g(σ)

))β
dσ
]1/α

dr ds;

(2.12)

(ii) for j = 0,

y(t)= ω0 + (−1)2n−1
∫∞

t

(s− t)n−1

(n− 1)!

[∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr
]1/α

ds, (2.13)

where

ζ∗j (t)=
j−1∑

i=0

Liy
(
t0
)
(
t− t0

)i

i!
+ωj

(
t− t0

) j

j!
(1≤ j ≤ n− 1). (2.14)

As regards y ∈ P(IIk), k ∈ {1,3, . . . ,2n− 1}, an integral representation is expressed by
(2.9)–(2.13) with ωj = 0 for j = k.

3. Nonoscillation criteria

It will be shown that necessary and sufficient conditions can be established for the exis-
tence of positive solutions from class P(I).

Theorem 3.1. Let j ∈ {0,1, . . . ,2n− 1}. There exists a positive solutions of (A) belonging to
P(I j) if and only if

∫∞

0
tn− j−1

[∫∞

t
sn−1q(s)

(
ϕj
(
g(s)

))β
ds
]1/α

dt <∞, j = 0,1, . . . ,n− 1, (3.1)

∫∞

0
t2n− j−1q(t)

(
ϕj
(
g(t)

))β
dt <∞, j = n,n+ 1, . . . ,2n− 1. (3.2)
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Proof (the “only if” part). Suppose that (A) has a positive solution y(t) of class P(I j).
Notice that since y(t) satisfies asymptotic relations (2.7)(i) and (iii), there exist positive
constants cj , Cj such that

cjϕj(t)≤ y(t)≤ Cjϕj(t), t ≥ t0. (3.3)

In deriving (2.9)–(2.13) we found the convergence of the integrals

∫∞

t0
t2n− j−1q(t)

(
y
(
g(t)

))β
dt <∞, for j = n,n+ 1, . . . ,2n− 1,

∫∞

t0
tn− j−1

[∫∞

t
sn−1q(s)

(
y
(
g(s)

))β
ds
]1/α

dt <∞, for j = 0,1, . . . ,n− 1.

(3.4)

These together with (3.3), show that the conditions (3.1) and (3.2) are satisfied.

(The “if” part.) We will distinguish two cases for j ∈ {0,1, . . . ,n− 1} and for j ∈ {n,
n+ 1, . . . ,2n− 1}.
Case 1. Let j ∈ {n,n+ 1, . . . ,2n− 1} and suppose that (3.2) is satisfied. Let c > 0 be an
arbitrarity fixed constant and choose t0 > 0 such that

∫∞

t0

t2n− j−1

(2n− j− 1)!
q(t)

(
ϕj
(
g(t)

))β
dt ≤A

[
( j−n)!

]β/α
[(

1+
j−n

α

)
···

(
n+

j−n

α

)]β
c1−β/α,

(3.5)

where

A= 2−β/α if 2n− j− 1 is even, A= 2−1 if 2n− j− 1 is odd. (3.6)

Define the constants k1 and k2 by

ki = ci
[
( j−n)!

]1/α(
1 + ( j−n)/α

)···(n+ ( j−n)/α
) , i= 1,2, . . . , (3.7)

where

c1 = c1/α, c2 = (2c)1/α if 2n− j− 1 is even,

c1 =
(
c

2

)1/α

, c2 = c1/α if 2n− j− 1 is odd.
(3.8)

Put t∗ =min{t0, inf t≥t0 g(t)}, and define

ϕ̃ j(t)=
⎧
⎨

⎩
ϕj
(
t− t0

)
, t ≥ t0

0, t ≤ t0.
(3.9)
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Let Y denote the set

Y = {y ∈ C
[
t∗,∞) : k1ϕ̃ j(t)≤ y(t)≤ k2ϕ̃ j(t), t ≥ t∗

}
, (3.10)

and define the mapping � j : Y → C[t∗,∞) as follows: for j ∈ {n+ 1,n+ 2, . . . ,2n− 1},

� j y(t)=
∫ t

t0

(t− s)n−1

(n− 1)!

×
[
c
(
s− t0

) j−n

( j−n)!
+(−1)2n− j−1

∫ s

t0

(s− r) j−n−1

( j−n−1)!

×
∫∞

r

(σ − r)2n−j−1

(2n− j−1)!
q(σ)

(
y
(
g(σ)

))β
dσ dr

]1/α

ds,

t ≥ t0,

� j y(t)= 0, t∗ ≤ t ≤ t0,
(3.11)

and for j = n,

�ny(t)=
∫ t

t0

(t− s)n−1

(n− 1)!

[
c+ (−1)n−1

∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr
]1/α

ds, t ≥ t0,

�ny(t)= 0, t∗ ≤ t ≤ t0.
(3.12)

It can be verified that � j maps Y continuously into a relatively compact subset of Y .
First, we can show that � j(Y)⊂ Y by using the expression

∫ t

t0

(t− s)n−1

(n− 1)!

(
s− t0

)( j−n)/α
ds= ϕj

(
t− t0

)

(
1 + ( j−n)/α

)···(n+ ( j−n)/α
) . (3.13)

Next, let {ym(t)} be a sequence of functions in Y converging to y0(t) on any compact
subinterval of [t∗,∞). Then, by virtue of the Lebesgue convergence theorem it follows
that the sequence {� j ym(t)} converges to � j y0(t) on compact subintervals of [t∗,∞),
which implies the continuity of the mapping � j . Finally, since the sets � j(Y) and �′

j(Y)
= {(� j y)′ : y ∈ Y} are locally bounded on [t∗,∞), the Arzelá theorem implies that � j(Y)
is relatively compact inC[t∗,∞). Thus, all the hypotheses of the Schauder-Tychonoff fixed
point theorem are satisfied, and so there exists a y ∈ Y such that y = � j y. In view of
(3.11) and (3.12) the fixed element y = y(t) is a solution of the integral equation which is
a special case of (2.9) with ζ(t)= 0, ξj(t)= (c/( j −n)!)(t− t0) j−n as well as it is a special
case as of (2.10) with ζ(t) = 0, ωn = c. By differentiation of these integral equations 2n
times, we see that y(t) is a solution of the differential equation (A) on [t∗,∞) satisfying
Lj y(∞)= c, that is, y ∈ P(I j).
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Case 2. Let j ∈ {0,1, . . . ,n− 1} and suppose that (3.1) is satisfied. Let c > 0 be any given
constant and choose t0 > 0 so that

∫∞

t0

tn− j−1

(n− j− 1)!

[∫∞

t

(s− t)n−1

(n− 1)!
q(s)

(
ϕj(s)

)β
ds
]1/α

dt ≤ B( j!)β/αc1−β/α, (3.14)

where

B = 2−β/α if 2n− j− 1 is even, B = 2−1 if 2n− j− 1 is odd. (3.15)

Define the constants k1 and k2 as follows:

k1 = c

j!
, k2 = 2c

j!
if 2n− j− 1 is even,

k1 = c

2 j!
, k2 = c

j!
if 2n− j− 1 is odd,

(3.16)

and define the set Y by (3.10) with these k1, k2. We define the mapping � j : Y → C[t∗,∞)
in the following manner: for j ∈ {1,2, . . . ,n− 1},

� j y(t)= c(t− t0) j

j!
+ (−1)2n− j−1

∫ t

t0

(t− s) j−1

( j− 1)!

∫∞

s

(r− s)n− j−1

(n− j− 1)!

×
[∫∞

r

(σ − r)n−1

(n− 1)!
q(σ)

(
y
(
g(σ)

))β
dσ
]1/α

dr ds,

t ≥ t0,

� j y(t)= 0, t∗ ≤ t ≤ t0
(3.17)

and for j = 0,

�0y(t)= c+ (−1)2n−1
∫∞

t

(s− t)n−1

(n− 1)!

[∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr
]1/α

ds, t ≥ t0,

�0y(t)= 0, t∗ ≤ t ≤ t0.
(3.18)

Then it is routinely verified that � j(Y) ⊂ Y , that � j is continuous, and that � j(Y) is
relatively compact in C[t∗,∞). Consequently, there exists a fixed element y ∈ Y such that
y =� j y, which is the integral equation (2.13) with ω0 = c for j = 0 as well as it is the
integral equation (2.12) with ζ∗j (t)= (c/ j!)(t− t0) j for j ∈ {1,2, . . . ,n− 1}. It is clear that
the fixed element y = y(t) is a solution of (A) belonging to P(I j). This completes the
proof. �

Unlike the solutions of class P(I) it seems to be very difficult (or impossible) to char-
acterize the existence of solutions of class P(II), and we will be content to give sufficient
conditions under which (A) possesses such solutions.
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Theorem 3.2. (i) Let k be an odd integer less than n. Equation (A) has a solution of class
P(IIk) if

∫∞

0
tn−k−1

[∫∞

t
sn−1q(s)

(
ϕk
(
g(s)

))β
ds
]1/α

dt <∞, (3.19)

∫∞

0
tn−k

[∫∞

t
sn−1q(s)

(
ϕk−1

(
g(s)

))β
ds
]1/α

dt =∞. (3.20)

(ii) Let n be odd and let k = n. Equation (A) has a solution of class P(IIk) if

∫∞

0
tn−1q(t)

(
ϕn
(
g(t)

))β
dt <∞,

∫∞

0

[∫∞

t
sn−1q(s)

(
ϕn−1

(
g(s)

))β
ds
]1/α

dt =∞.

(3.21)

(iii) Let k be an odd integer greater than n and less than 2n. Equation (A) has a solution
of class P(IIk) if

∫∞

0
t2n−k−1q(t)

(
ϕk
(
g(t)

))β
dt <∞,

∫∞

0
t2n−kq(t)

(
ϕk−1

(
g(t)

))β
dt =∞.

(3.22)

Proof. (i) Let k be an odd integer less than n. The desired solution y(t) will be obtained
as a solution of the integral equation

y(t)= cϕk−1(t)

+
∫ t

t0

(t−s)k−1

(k−1)!

∫∞

s

(r−s)n−1−k

(n−1−k)!

[∫∞

r

(σ−r)n−1

(n−1)!
q(σ)

(
y
(
g(σ)

))β
dσ
]1/α

dr ds, t ≥ t0,

(3.23)

where c > 0 is fixed and t0 > 0 is chosen so large that t∗ =min{t0, inf t≥t0 g(t)} ≥ 1 and

∫∞

t0

tn−1−k

(n− 1− k)!

[∫∞

t

sn−1

(n− 1)!
q(s)

(
ϕk
(
g(s)

))β
ds
]1/α

dt ≤ 2−β/αc1−β/α. (3.24)

In order to show the existence of solution y(t) of the integral equation (3.23) we will show
that mapping �k y(t) defined on the set

Y = {y ∈ C
[
t∗,∞) : cϕk−1(t)≤ y(t)≤ 2cϕk(t), t ≥ t∗

}
(3.25)
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by

�k y(t)= cϕk−1(t)

+
∫ t

t0

(t−s)k−1

(k−1)!

∫∞

s

(r−s)n−1−k

(n−1−k)!

[∫∞

r

(σ−r)n−1

(n−1)!
q(σ)

(
y(g(σ)

))β
dσ
]1/α

dr ds,

t ≥ t0,

�k y(t)= 0, t∗ ≤ t ≤ t0
(3.26)

has a fixed element in Y . If y ∈ Y , then, using (3.24), we have

cϕk−1(t)≤�k y(t)≤ cϕk−1(t) + c
∫ t

t0

(t− s)k−1

(k− 1)!
ds= cϕk−1(t) + cϕk(t)≤ 2cϕk(t), t ≥ t∗,

(3.27)
which implies that �k maps Y into itself. Since it could be shown without difficulty that
�k is continuous in the topology of C[t∗,∞) and that �k(Y) is relatively compact in
C[t∗,∞), there exists a fixed element y of �k in Y . Repeated differentiation of (3.26)
shows that

Lk−1y(t)= c(k− 1)!

+
∫ t

t0

∫∞

s

(r− s)n−k−1

(n− k− 1)!

[∫∞

r

(σ − r)n−1

(n− 1)!
q(σ)

(
y
(
g(σ)

))β
dσ
]1/α

dr ds,
(3.28)

Lk y(t)=
∫∞

t

(s− t)n−k−1

(n− k− 1)!

[∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr
]1/α

ds, (3.29)

for t ≥ t0. It is obvious that Lk y(∞)= 0. Evaluating the right-hand side of (3.28), we see
that it is bounded from below by

∫ t

t0

(
s− t0

)n−k

(n− k)!

[∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr
]1/α

ds

≥ cβ/α
∫ t

t0

(
s− t0

)n−k

(n− k)!

[∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
ϕk−1

(
g(r)

))β
dr
]1/α

ds,

(3.30)

from which, in view of (3.20), it follows that Lk−1y(∞)=∞. This shows that y(t) belongs
to P(IIk).

(ii) Let n be odd and let k = n. Choose t0 > 0 large enough so that t∗ = min{t0,
inf t≥t0 g(t)} ≥ 1 and

∫∞

t0
tn−1q(t)

(
ϕn
(
g(t)

))β
dt ≤ 2−βcα−β(n− 1)!, (3.31)
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where c > 0 is an arbitrary fixed constant. Define the mapping �n : Y → C[t∗,∞), with
the set Y defined by (3.25), in the following way:

�ny(t)= cϕn−1(t) +
∫ t

t0

(t− s)n−1

(n− 1)!

[∫∞

s

(r− s)n−1

(n− 1)!
q(r)

(
y
(
g(r)

))β
dr
]1/α

ds, t ≥ t0,

�ny(t)= 0, t∗ ≤ t ≤ t0.
(3.32)

Proceeding as in case (i), we can prove that there exists a fixed element y = y(t) of the
mapping �n, which clearly satisfies cϕn−1(t)≤ y(t)≤ 2cϕn(t) for t ≥ t∗. Likewise we can
show that Ln−1y(∞)=∞ and Lny(∞)= 0, which implies that y(t)∈ P(IIk).

(iii) Let k be an odd integer greater than n and less than 2n. In this case, we let c > 0
and choose t0 ≥ 0 large enough so that t∗ =min{t0, inf t≥t0 g(t)} ≥ 1 and

∫∞

t0

t2n−1−k

(2n− 1− k)!
q(t)

(
ϕk
(
g(t)

))β
dt

≤ 2−βcα−β(k−n)!
[(

1 +
k−n

α

)
···

(
n+

k−n

α

)]α
.

(3.33)

Define the mapping �k : Y → C[t∗,∞) by

�k y(t)= cϕk−1(t)

+
∫ t

t0

(t− s)n−1

(n− 1)!

[∫ s

t0

(s− r)k−1−n

(k− 1−n)!

∫∞

r

(σ − r)2n−1−k

(2n− 1− k)!
q(σ)

(
y
(
g(σ)

))β
dσ dr

]1/α

ds,

t ≥ t0,

�k y(t)= 0, t∗ ≤ t ≤ t0.
(3.34)

It is easy to verify that the mapping �k y(t) maps the set Y defined by (3.25) into a rela-
tively compact subset of Y . Therefore, �k has a fixed element y = y(t) in Y . That y(t) is
a solution of class P(IIk) follows from differentiation of (3.34) combined with the obser-
vation below:

Lk−1y(t)≥
∫ t

t0

∫∞

s

(r− s)2n−k−1

(2n− k− 1)!
q(r)

(
y
(
g(r)

))β
drds

≥
∫ t

t0

(
s− t0

)2n−k

(2n− k)!
q(s)

(
y
(
g(s)

))β
ds

≥ cβ
∫ t

t0

(
s− t0

)2n−k

(2n− k)!
q(s)

(
ϕk−1

(
g(s)

))β
ds−→∞, as t −→∞,

Lk y(t)=
∫∞

t

(s− t)2n−k−1

(2n− k− 1)!
q(s)

(
y
(
g(s)

))β
ds−→ 0, as t −→∞.

(3.35)

This completes the proof of Theorem 3.2. �
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4. Comparison theorems

In order to establish criteria (preferably sharp) for all solutions of (A) to be oscillatory, we
are essentially based on the following oscillation result of Tanigawa [7] for the even-order
nonlinear differential equation (B).

Theorem 4.1. (i) Let α > β. All solutions of (B) are oscillatory if and only if

∫∞

0

(
ϕ2n−1(t)

)β
q(t)dt =

∫∞

0
t(n+(n−1)/α)βq(t)dt =∞. (4.1)

(ii) Let α < β. All solutions of (B) are oscillatory if and only if

∫∞

0
tn−1q(t)dt =∞ (4.2)

or

∫∞

0
tn−1q(t)dt <∞,

∫∞

0
tn−1

[∫∞

t
sn−1q(s)ds

]1/α

dt =∞. (4.3)

Our idea is to deduce oscillation criteria for (A) from Theorem 4.1 by using two com-
parison theorems which relate oscillation (nonoscillation) of the equation

(∣∣u(n)(t)
∣
∣α sgnu(n)(t)

)(n)
+F
(
t,u
(
h(t)

))= 0 (4.4)

to that of the equations

(∣∣v(n)(t)
∣
∣α sgnv(n)(t)

)(n)
+G

(
t,v
(
k(t)

))= 0, (4.5)

(∣∣w(n)(t)
∣
∣α sgnw(n)(t)

)(n)
+

l′(t)
h′
(
h−1
(
l(t)
))F

(
h−1(l(t)

)
,w
(
l(t)
))= 0. (4.6)

Accordingly, the aim of this section is to establish such comparison theorems.
With regard to (4.4)–(4.6) it is assumed that

(i) α > 0 is a constant;
(ii) h, k, and l are continuously differentiable functions on [0,∞) such that h′(t) > 0,

k′(t) > 0, l′(t) > 0, limt→∞h(t)= limt→∞ k(t)= limt→∞ l(t)=∞;
(iii) F andG are continuous functions on [0,∞)×R such that uF(t,u)≥ 0, uG(t,u)≥

0 and F(t,u), G(t,u) are nondecreasing in u for any fixed t ≥ 0.

Theorem 4.2. Suppose that

h(t)≥ k(t), t ≥ 0,

F(t,x)sgnx ≥G(t,x)sgnx, (t,x)∈ [0,∞)×R. (4.7)

If all the solutions of (4.5) are oscillatory, then so are all the solutions of (4.4).

Theorem 4.3. Suppose that l(t)≥ h(t) for t ≥ 0. If all the solutions of (4.6) are oscillatory,
then so are all the solutions of (4.4).
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These theorems can be regarded as generalizations of the main comparison principles
developed in the papers [3, 5] to differential equations involving higher-order nonlin-
ear differential operators. To prove these theorems we need the following lemma which
compares the differential equation (4.4) with the differential inequality

(∣∣z(n)(t)
∣
∣α sgnz(n)(t)

)(n)
+F
(
t,z
(
h(t)

))≤ 0. (4.8)

Lemma 4.4. If there exists an eventually positive function satisfying (4.8), then (4.4) has an
eventually positive solution.

Proof of Lemma 4.4. Let z(t) be an eventually positive solution of (4.8). It is easy to see
that z(t) satisfies Lemma 2.1, that is,

Liz(t) > 0, t ≥ t1, for i= 0,1, . . . ,k− 1,

(−1)i−kLiz(t) > 0, t ≥ t1, for i= k,k+ 1, . . . ,2n− 1,
(4.9)

provided t1 > 0 is sufficiently large. Put t∗ =min{t1, inf t≥t1 h(t)}. Let us now consider the
set

U = {u∈ C
[
t∗,∞) : 0≤ u(t)≤ z(t), t ≥ t∗

}
, (4.10)

and the mapping �k : U → C[t∗,∞) defined in the appropriate way corresponding to the
cases k ∈ {n+ 1, . . . ,2n− 1}, k = n, and k ∈ {1,2, . . . ,n}.

If n < k ≤ 2n− 1, then, integrating (4.8) 2n− k times from t to∞, we have

(∣∣z(n)(t)
∣
∣α sgnz(n)(t)

)(k−n) ≥ ωk +
∫∞

t

(s− t)2n−k−1

(2n− k− 1)!
F
(
s,z
(
h(s)

))
ds, t ≥ t1, (4.11)

where ωk = limt→∞Lkz(t)≥ 0. Further integrations of (4.11) k times from t1 to t yields
the inequality

z(t)≥ z
(
t1
)

+
∫ t

t1

(t−s)n−1

(n−1)!

[
ωk

(
s−t1

)k−n

(k−n)!

+
∫ s

t1

(s−r)k−n−1

(k−n−1)!

∫∞

r

(σ−r)2n−k−1

(2n− k− 1)!
F
(
σ ,z
(
h(σ)

))
dσ dr

]1/α

ds, t≥ t1.

(4.12)
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Define the mapping �k by

�ku(t)= z
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωk

(
s− t1

)k−n

(k−n)!

+
∫ s

t1

(s−r)k−n−1

(k−n−1)!

∫∞

r

(σ−r)2n−k−1

(2n−k−1)!
F
(
σ ,u

(
h(σ)

))
dσ dr

]1/α

ds, t ≥ t1,

�ku(t)= z(t), t∗ ≤ t ≤ t1.
(4.13)

If k = n, then, integrating (4.8) n times from t to∞, we have

∣
∣z(n)(t)

∣
∣α sgnz(n)(t)≥ ωn +

∫∞

t

(s− t)n−1

(n− 1)!
F
(
s,z
(
h(s)

))
ds. (4.14)

Moreover, n times integration of (4.14) on [t1, t] yields the following integral inequality:

z(t)≥ z
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωn +

∫∞

s

(r− s)n−1

(n− 1)!
F
(
r,z
(
h(r)

))
dr
]1/α

ds. (4.15)

Define the mapping �n by

�nu(t)= z
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωn +

∫∞

s

(r− s)n−1

(n− 1)!
F
(
r,u
(
h(r)

))
dr
]1/α

ds, t ≥ t1,

�nu(t)= z(t), t∗ ≤ t ≤ t1.
(4.16)

If 1≤ k < n, then, integrating (4.8) 2n− k(= n+ (n− k)) times from t to∞, we have

z(k)(t)≥ ωk +
∫∞

t

(s− t)n−k−1

(n− k− 1)!

[∫∞

s

(r− s)n−1

(n− 1)!
F
(
r,z
(
h(r)

))
dr
]1/α

ds

≥
∫∞

t

(s− t)n−k−1

(n− k− 1)!

[∫∞

s

(r− s)n−1

(n− 1)!
F
(
r,z
(
h(r)

))
dr
]1/α

ds.

(4.17)

Futhermore, integrating (4.17) k times t1 to t, we obtain

z(t)≥ z
(
t1
)

+
∫ t

t1

(t− s)k−1

(k− 1)!

∫∞

s

(r− s)n−k−1

(n− k− 1)!

[∫∞

r

(σ − r)n−1

(n− 1)!
F
(
σ ,z
(
h(σ)

))
dσ
]1/α

dr ds.

(4.18)
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Define the mapping �k by

�ku(t)= z
(
t1
)

+
∫ t

t1

(t− s)k−1

(k− 1)!

∫∞

s

(r− s)n−k−1

(n− k− 1)!

[∫∞

r

(σ − r)n−1

(n− 1)!
F
(
σ ,u

(
h(σ)

))
dσ
]1/α

dr ds,

t ≥ t1,

�ku(t)= z(t), t∗ ≤ t ≤ t1.
(4.19)

Then, it is easily verified that (i) �k maps U into itself, (ii) �k is a continuous mapping,
and (iii) �k(U) is a relatively compact subset of C[t∗,∞). Therefore, by the Schauder-
Tychonoff fixed point theorem, �k has a fixed element u∈U such that u=�ku, which
clearly satisfies the integral equations (4.13), (4.16), and (4.19) on [t∗,∞), respectively,
that is,

u(t)= z
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωk

(
s− t1

)k−n

(k−n)!

+
∫ s

t1

(s−r)k−n−1

(n−k−1)!

∫∞

r

(σ−r)2n−k−1

(2n−k− 1)!
F
(
σ ,u

(
h(σ)

))
dσ dr

]1/α

ds, t ≥ t1,

(4.20)

for n < k ≤ 2n− 1,

u(t)= z
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωn +

∫∞

s

(r− s)n−1

(n− 1)!
F
(
r,u
(
h(r)

))
dr
]1/α

ds, t ≥ t1,

(4.21)

for k = n, and

u(t)= z
(
t1
)

+
∫ t

t1

(t− s)k−1

(k− 1)!

∫∞

s

(r− s)n−k−1

(n− k− 1)!

[∫∞

r

(σ − r)n−1

(n− 1)!
F
(
σ ,u

(
h(σ)

))
dσ
]1/α

dr ds, t ≥ t1,

(4.22)

for 1≤ k < n. Differentiation of (4.20), (4.21), and (4.22), respectively, shows that u(t) is
a positive solution of (4.4). This completes the proof of Lemma 4.4. �

Proof of Theorem 4.2. It is sufficient to prove that if (4.4) has an eventually positive solu-
tion, then so does (4.5).

Let u(t) be an eventually positive solution of (4.4). Note that u(t) is monotone in-
creasing for all sufficiently large t. In view of (4.7), we see that there exists t0 > 0 such that
u(h(t))≥ u(k(t)), t ≥ t0, and

F
(
t,u
(
h(t)

))≥G
(
t,u
(
k(t)

))
, t ≥ t0. (4.23)
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This together yields

(∣∣u(n)(t)
∣
∣α sgnu(n)(t)

)(n)
+G

(
t,u
(
k(t)

))≤ 0, t ≥ t0, (4.24)

and application of Lemma 4.4 then shows that (4.5) has an eventually positive solution
v(t). This completes the proof. �

Proof of Theorem 4.3. The statement of the theorem is equivalent to the statement that if
there exists an eventually positive solution of (4.4) then the same is true of (4.6).

Let u(t) be an eventually positive solution of (4.4). The following inequalities are pos-
sible for some odd k ∈ {1,3, . . . ,2n− 1}:

Liu(t) > 0, i= 0,1, . . . ,k− 1∀ large t,

(−1)i−kLiu(t) > 0, i= k,k+ 1, . . . ,2n− 1∀ large t.
(4.25)

If n < k ≤ 2n− 1, then we have

u(t)≥ u
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωk

(
s− t1

)k−n

(k−n)!

+
∫ s

t1

(s−r)k−n−1

(n−k−1)!

∫∞

r

(σ−r)2n−k−1

(2n−k−1)!
F
(
σ ,u

(
h(σ)

))
dσdr

]1/α

ds, t≥ t1,

(4.26)

where ωk = limt→∞Lku(t)≥ 0. Combining (4.26) with the following inequality:

∫∞

r

(σ − r)2n−k−1

(2n− k− 1)!
F
(
σ ,u

(
h(σ)

))
dσ

≥
∫∞

l−1
(
h(r)
)

(ρ− r)2n−k−1

(2n− k− 1)!
F
(
h−1(l(ρ)

)
,u
(
l(ρ)

)) l′(ρ)
h′
(
h−1
(
l(ρ)

))dρ

≥
∫∞

r

(ρ− r)2n−k−1

(2n− k− 1)!
F
(
h−1(l(ρ)

)
,u
(
l(ρ)

)) l′(ρ)
h′
(
h−1
(
l(ρ)

))dρ,

(4.27)

we get

u(t)≥ u
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωk

(
s− t1

)k−n

(k−n)!

+
∫ s

t1

(s− r)k−n−1

(k−n− 1)!

∫∞

r

(ρ− r)2n−k−1

(2n− k− 1)!

×F
(
h−1(l(ρ)

)
,u
(
l
(
ρ)
)) l′(ρ)
h′
(
h−1
(
l(ρ)

))dρdr
]1/α

ds, t ≥ t1.

(4.28)
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If k = n, then u(t) satisfies the inequality

u(t)≥ u
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωn +

∫∞

s

(r− s)n−1

(n− 1)!
F
(
r,u
(
h(r)

))
dr
]1/α

ds, t ≥ t1,

(4.29)

where ωn = limt→∞Lnu(t)≥ 0.
If 1≤ k < n, then u(t) satisfies the inequality

u(t)≥ u
(
t1
)

+
∫ t

t1

(t−s)k−1

(k−1)!

∫∞

s

(r−s)n−k−1

(n−k−1)
!
[∫∞

r

(σ−r)n−1

(n−1)!
F
(
σ ,u

(
h(σ)

))
dσ
]1/α

dr ds, t ≥ t1.

(4.30)

We now observe that an essential part of the proof of Lemma 4.4 has been proving the
existence of the solution for each of the integral equations (4.20), (4.21), and (4.22). That
has been done by the application of Schauder-Tychonoff fixed point theorem on the basis
of the corresponding integral inequalities (4.12), (4.15), and (4.18). Proceeding here in
a similar way, on the basis that u(t) satisfies (4.28), (4.29), and (4.30), respectively, we
conclude that there exists a positive solution for each of the following equations:

w(t)= u
(
t1
)

+
∫ t

t1

(t− s)n−1

(n− 1)!

[
ωk

(
s− t1

)k−n

(k−n)!

+
∫ s

t1

(s− r)k−n−1

(k−n− 1)!

∫∞

r

(ρ− r)2n−k−1

(2n− k− 1)!

×F
(
h−1(l(ρ)

)
,ω
(
l(ρ)

)) l′(ρ)
h′
(
h−1
(
l(ρ)

))dρdr
]1/α

ds, t ≥ t1

(4.31)

for n < k ≤ 2n− 1,

w(t)= u
(
t1
)

+
∫ t

t1

(t−s)n−1

(n−1)!

[
ωn+

∫∞

s

∫∞

r

(ρ−r)n−1

(n−1)!

×F
(
h−1(l(ρ)

)
,ω
(
l(ρ)

)) l′(ρ)
h′
(
h−1
(
l(ρ)
))dρ

]1/α

ds, t ≥ t1

(4.32)

for k = n, and

w(t)= u
(
t1
)

+
∫ t

t1

(t− s)k−1

(k− 1)!

∫∞

s

(r− s)n−k−1

(n− k− 1)!

×
[∫∞

r

(ρ− r)n−1

(n− 1)!
F
(
h−1(l(ρ)

)
,ω
(
l(ρ)

)) l′(ρ)
h′
(
h−1
(
l(ρ)

))dρ
]1/α

dr ds, t ≥ t1

(4.33)
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for 1 ≤ k < n. It can be checked by differentiation that w(t) is a positive solution of
the differential equation (4.6) in each of the three cases. This completes the proof of
Theorem 4.3. �

5. Oscillation criteria

The aim of this section is to establish criteria (preferably sharp) for all solutions of (A)
to be oscillatory. Oscillation theorems will be established first in the sublinear case of (A)
for α > β as well as in the superlinear case for α < β. We first give the sufficient condition
for all of solutions of sublinear equation (A) to be oscillatory.

Theorem 5.1. Let α > β. Suppose that there exists a continuously differentiable function
h : [0,∞)→ (0,∞) such that h′(t) > 0, limt→∞h(t)=∞, and

min
{
t,g(t)

}≥ h(t) ∀ large t. (5.1)

If
∫∞

0

(
h(t)

)(n+(n−1)/α)β
q(t)dt =∞, (5.2)

then all solutions of (A) are oscillatory.

Proof. Let us consider the equations

(∣∣z(n)(t)
∣
∣α sgnz(n)(t)

)(n)
+ q(t)

∣
∣z
(
h(t)

)∣∣β sgnz
(
h(t)

)= 0, (5.3)

(∣∣w(n)(t)
∣
∣α sgnw(n)(t)

)(n)
+

q
(
h−1(t)

)

h′
(
h−1(t)

)
∣
∣w(t)

∣
∣β sgnw(t)= 0. (5.4)

Since by (5.2),

∫∞
t(n+(n−1)/α)β q

(
h−1(t)

)

h′
(
h−1(t)

)dt =
∫∞ (

h(τ)
)(n+(n−1)/α)β

q(τ)dτ =∞, (5.5)

Theorem 4.1(i) implies that all solutions of (5.4) are oscillatory. Application of Theorem
4.3 then shows that all solutions of (5.3) are oscillatory, and the conclusion of the theorem
follows from comparison of (A) with (5.3) by means of Theorem 4.2. �

It will be shown below that there is a class of sublinear equations of the type (A) for
which the oscillation situation can be completely characterized.

Theorem 5.2. Let α > β and suppose that

limsup
t→∞

g(t)
t

<∞. (5.6)

Then, all solutions of (A) are oscillatory if and only if
∫∞

0

(
g(t)

)(n+(n−1)/α)β
q(t)dt =∞. (5.7)
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Proof. That the oscillation of (A) implies (5.7) is an immediate consequence of Theorem
3.1.

Assume now that (5.7) is satisfied. The condition (5.6) means that there exists a con-
stant c > 1 such that

g(t)≤ ct ∀ sufficiently large t. (5.8)

Consider the ordinary differential equation

(∣∣z(n)(t)
∣
∣α sgnz(n)(t)

)(n)
+
cq
(
g−1(ct)

)

g′
(
g−1(ct)

)
∣
∣z(t)

∣
∣β sgnz(t)= 0. (5.9)

Since by (5.7),

∫∞
t(n+(n−1)/α)β cq

(
g−1(ct)

)

g′
(
g−1(ct)

) dt =
∫∞(g(t)

c

)(n+(n−1)/α)β

q(t)dt =∞, (5.10)

all solutions of (5.9) are oscillatory according to Theorem 4.1(i). From Theorem 5.1 it
follows that the equation

(∣∣u(n)(t)
∣
∣α sgnu(n)(t)

)(n)
+
cq
(
g−1(ct)

)

g′
(
g−1(ct)

)
∣
∣u(ct)

∣
∣β sgnu(ct)= 0 (5.11)

has only oscillatory solutions. Comparison of (A) with (5.11) via Theorem 5.2 then leads
to the desired conclusion of the theorem. �

Oscillation criteria for (A) in the superlinear case are given in the following theorems.

Theorem 5.3. Let α < β. Suppose that there exists a continuously differentiable function
h : [0,∞)→ (0,∞) such that h′(t) > 0, limt→∞h(t)=∞, and (5.1) is satisfied. If

∫∞

0

(
h(t)

)n−1
q(t)dt =∞ (5.12)

or
∫∞

0

(
h(t)

)n−1
q(t)dt <∞,

∫∞

0
tn−1

[∫∞

h−1(t)

(
h(s)

)n−1
q(s)ds

]1/α

dt =∞, (5.13)

then all solutions of (A) are oscillatory.

The proof of Theorem 5.3 is similar to the proof of Theorem 5.1, so it will be omitted.

Theorem 5.4. Let α < β and suppose that

liminf
t→∞

g(t)
t

> 0. (5.14)

Then, all solutions of (A) are oscillatory if and only if either (4.2) or (4.3) holds.

Proof. We need only to prove the “if” part of the theorem, since the “only if” part follows
immediately from Theorem 3.1.
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In view of (5.14) there exists a positive constant c < 1 such that

g(t)≥ ct ∀ sufficiently large t. (5.15)

Consider the ordinary differential equation

(∣∣z(n)(t)
∣
∣α sgnz(n)(t)

)(n)
+

1
c
q
(
t

c

)∣
∣z(t)

∣
∣β sgnz(t)= 0. (5.16)

Using the assumptions on q(t), we see that either

∫∞

0

tn−1

c
q
(
t

c

)
dt = cn−1

∫∞

0
ξn−1q(ξ)dξ =∞ (5.17)

or

∫∞

0
tn−1

[∫∞

t
sn−1 1

c
q
(
s

c

)
ds
]1/α

dt = cn+(n−1)/α
∫∞

0
ηn−1

[∫∞

η
ξn−1q(ξ)dξ

]1/α

dη =∞,

(5.18)

which implies that all the solutions of (5.16) are oscillatory. We now apply one of the
comparison principles, Theorem 5.2, to compare (5.16) with the equation

(∣∣u(n)(t)
∣
∣α sgnu(n)(t)

)(n)
+ q(t)

∣
∣u(ct)

∣
∣β sgnu(ct)= 0, (5.19)

and to conclude that (5.19) has the same oscillatory behavior as (5.16). Since (5.15) holds,
applying another comparison principle, Theorem 5.1, we conclude that all the solutions
of (A) are necessarily oscillatory. This completes the proof. �

From the proofs of Theorems 5.2 and 5.4 we see that in case α > β or α < β, the oscil-
lation of the functional differential equation

(∣∣y(n)(t)
∣
∣α sgn y(n)(t)

)(n)
+ q(t)

∣
∣y(ct)

∣
∣β sgn y(ct)= 0 (5.20)

is equivalent to that of the ordinary differential equation (B). This observation combined
with comparison Theorems 5.1 and 5.2 will lead to the following result.

Corollary 5.5. Let either α > β or α < β, and suppose that g(t) in (A) satisfies

0 < liminf
t→∞

g(t)
t

, limsup
t→∞

g(t)
t

<∞. (5.21)

Then all solutions of (A) are oscillatory if and only if the same is true for (B).

6. Example

We present here an example which illustrates oscillation and nonoscillation theorems
proved in Sections 3 and 5.
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Example 6.1. Consider the equation

(∣∣y(n)(t)
∣
∣α sgn y(n)(t)

)(n)
+ t−λ

∣
∣y
(
tγ
)∣∣β sgn y

(
tγ
)= 0, (6.1)

where α, β, γ are fixed positive constants and λ is a varying parameter.
It is easy to check that, written for (6.1),

(3.1) is equivalent to λ > n+α(n− j) +βγ j, (6.2)

(3.2) is equivalent to λ > 2n− j +
(
n+

j−n

α

)
βγ; (6.3)

so that from Theorem 3.1 we see that (6.1) has a positive solution belonging to the class
P(I j) if and only if

λ > n+α(n− j) +βγ j, j ∈ {0,1, . . . ,n− 1},

λ > 2n− j +
(
n+

j−n

α

)
βγ, j ∈ {n,n+ 1, . . . ,2n− 1}.

(6.4)

It follows that all solutions of (6.1) belong to P(I) if either

α≤ βγ, λ > 1 +
(
n+

n− 1
α

)
βγ (6.5)

or

α > βγ, λ > n+nα. (6.6)

It is easy to see that for (6.1) the conditions {(3.19), (3.20)}, (3.21), and (3.22) guarantee
the existence of solutions of class P(IIk), k ∈ {1,3, . . . ,2n− 1} only under the condition
α > βγ. The conclusions which follow from Theorem 3.2 are

(i) (6.1) has solutions of P(IIk) (1≤ k ≤ n) if

α > βγ, n+α(n− k) +βγk < λ≤ n+α(n− k) +βγk+α−βγ; (6.7)

(ii) (6.1) has solutions of P(IIk) (n < k ≤ 2n− 1) if

α > βγ, 2n− k+βγ
(
n+

k−n

α

)
< λ≤ 2n− k+βγ

(
n+

k−n

α

)
+ 1− βγ

α
. (6.8)

We now want oscillation criteria for (6.1).
Suppose that α > β. If γ ≤ 1, then from Theorem 5.2 we conclude that all solutions of

(6.1) are oscillatory if and only if

λ≤ 1 +
(
n+

n− 1
α

)
βγ. (6.9)

If γ > 1, then, applying Theorem 5.1, we see that all solutions of (6.1) are oscillatory if

λ≤ 1 +
(
n+

n− 1
α

)
β. (6.10)
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Suppose that α < β. If γ > 1, then from Theorem 5.4 we conclude that all solutions of
(6.1) are oscillatory if and only if

λ≤ n+nα. (6.11)

If γ ≤ 1, then Theorem 5.3 applies to (6.1) and leads to the conclusion that all of its solu-
tions are oscillatory if

λ≤ 1 + γ(n− 1) +αγn. (6.12)
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