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We obtain global estimates for various integral transforms of positive differentiable func-
tions that satisfy inequalities of the type c1 f (x)/x ≤− f ′(x)≤ c2 f (x)/x, for x > 0.
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1. Introduction

In a recent article, Berndt [1] obtained the following global estimate for the Fourier sine
transform of the function f :

A

x
f
(

1
x

)
≤
∫∞

0
f (u)sin(ux)du≤ B

x
f
(

1
x

)
, ∀x > 0, (1.1)

where A and B are positive constants, provided that f is a differentiable function defined
on (0,∞) that satisfies

c1
f (x)
x

≤− f ′(x)≤ c2
f (x)
x

, (1.2)

where c1 and c2 are constants with

0 < c1 ≤ c2 < 2. (1.3)

It should be remarked that asymptotic estimates of the behavior of the sine and of other
integral transforms of regularly varying functions [6] in terms of the function f (1/x)
had been obtained before [7–9], both as x→ 0 and as x→∞. However, (1.1) is a global
estimate that not only considers the endpoint behavior but also holds for all x > 0.

Our aim in this article is to generalize (1.1) in two directions. On the one hand, we
want to consider other kernels than sine, so we will give conditions on the kernel k(x)
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such that an estimate of the form

A′

x
f
(

1
x

)
≤
∫∞

0
f (u)k(ux)du≤ B′

x
f
(

1
x

)
, ∀x > 0, (1.4)

holds if f satisfies (1.2).
On the other hand, we will remove the condition c2 < 2 for the sine transform. Actu-

ally, this condition was imposed by Berndt to guarantee the integrability of sin(ux) f (x) at
x = 0; if c2 ≥ 2, this function might not be integrable near x = 0. In such a case, the ordi-
nary sine transform of f will not exist, but one may consider regularizations of f which
are tempered distribution of the space �′, and whose Fourier sine transforms satisfy a
global estimate as in (1.1), modulo a polynomial. In this way, we remove the problem
of nonintegrability at x = 0. We are also able to remove the integrability condition (in
general, if c2 ≥ 1, f may not be integrable at 0) and obtain global estimates modulo a
polynomial for the Laplace transform of f .

Our analysis is based on a characterization of the class of function V, which con-
sists of those differentiable functions that satisfy (1.2). This characterization is given in
Section 3. Using this characterization we are able to give several global estimates for inte-
gral transforms of elements of V, both for general oscillatory kernels, particularly for the
sine transform, and for the Laplace transform in Sections 4 and 5.

2. Preliminaries

In this section, we explain the spaces of test functions and distributions employed in this
article. We also present some of the properties of these spaces that will be needed in our
analysis.

The space � of test functions of rapid decay and its dual space �′, space of tempered
distributions, are well known [4, 5, 10, 11].

We will discuss the concept of regularization [4, 5, 11]. If f is a function, denote by
supp f the closure of the set of points for which f does not vanish. Let f be a real-valued
function, which we assume to be locally integrable in R \ {0}; we say that a distribution

f̃ ∈�′ is a regularization of f at 0 if for all φ∈� with suppφ⊆ (−∞,0)∪ (0,∞), we have

〈
f̃ (x),φ(x)

〉=
∫∞
−∞

f (x)φ(x)dx. (2.1)

Of course, we assume that the integral in the right of the last equality makes sense. The
function f has a regularization at x = 0 if and only if it has an algebraic growth near
the origin in the Cesàro sense [3](see also [4, pages 297–332] for a complete discussion
of Cesàro behavior of distributions). If a function f has a regularization at 0, then it
has infinitely many regularizations at 0, and all of them are obtained by adding a linear
combination of the Dirac delta function and its derivatives concentrated at 0 [4, 10, 11].
Thus, given f̃ and f̃1, two regularizations of f at 0, they satisfy

f̃1(x)= f̃ (x) +
n∑
i=0

aiδ
(i)(x), (2.2)

for some real constants a0, . . . ,an.
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Let T be a linear continuous operator on �. We define its transpose as the linear oper-
ator ⊥T defined on �′ given by g �→⊥ Tg, where ⊥Tg is the tempered distribution defined
by

〈(⊥
Tg
)
(x),φ(x)

〉= 〈g(x),(Tφ)(x)
〉
. (2.3)

The Fourier transform of a tempered distribution is defined as the transpose operator of
the Fourier transform on the space of test functions of rapid decay at ∞ [10]. If φ ∈ �,
then its Fourier transform is again an element of � [4, 5, 10, 11]. Therefore, if g ∈�′, we
define its Fourier transform G∈�′ as

〈
G(x),φ(x)

〉=
〈
g(x),

∫∞
−∞

φ(u)eixudu
�
. (2.4)

We will define the sine transform of a tempered distribution in the same way as we defined
the Fourier transform. Note that if φ∈�, then its sine transform, defined as

∫∞
0
φ(u)sin(xu)du, (2.5)

is also an element of �. We define the sine transform on �′ as the transpose of the sine
transform on �.

The Laplace transform of a tempered distribution cannot be defined in every case.
However, it can be defined for tempered distributions whose support is bounded on the
left [11, pages 222–224]. In fact, if g ∈�′ with suppg ⊆ [0,∞), we define L, the Laplace
transform of g, as the function

L(x)= 〈g(u),λ(u)e−xu
〉

, (2.6)

where λ is any infinitely smooth function with support bounded on the left, which equals
one over a neighborhood of the support of g [11]. This definition is independent of the
choice of λ.

3. Characterization of the class V

In this section, we will define and characterize the class of functions V. The study of
integral transforms of elements in this class will be the central subject of this paper.

Definition 3.1. A positive, differentiable function f defined on (0,∞) is said to be an
element of V if it satisfies

c1
f (x)
x

≤− f ′(x)≤ c2
f (x)
x

, (3.1)

where c1 and c2 are positive numbers.

We will prove that the functions in V satisfy a variational property. Let us start by
setting

ε(t)= −t f
′(t)

f (t)
. (3.2)
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It follows that ε satisfies

c1 ≤ ε(t)≤ c2, ∀t > 0. (3.3)

By integrating −ε(t)/t, we obtain

log f (x)=−
∫ x

1

ε(t)
t

dt+ log f (1), (3.4)

and hence

f (x)= f (1)exp
{
−
∫ x

1

ε(t)
t

dt
}

, (3.5)

which gives us a representation formula for f . Conversely, if (3.3) and (3.5) hold, then f
satisfies (3.1). This fact is stated in the following lemma.

Lemma 3.2. A function f defined on (0,∞) belongs to the class V if and only if it satisfies
(3.5), where ε satisfies (3.3).

In fact, the last lemma was obtained by Berndt independently in his dissertation [2,
Lemma 1.4]. We now give another characterization of the elements of V.

Theorem 3.3. A function f defined on (0,∞) belongs to V if and only if it is a positive
differentiable function and satisfies

1
uc1

≤ f (ux)
f (x)

≤ 1
uc2

, ∀x ∈ (0,∞), ∀u∈ (0,1], (3.6)

1
uc2

≤ f (ux)
f (x)

≤ 1
uc1

, ∀x ∈ (0,∞), ∀u∈ [1,∞). (3.7)

Proof. We assume that f ∈V. By Lemma 3.2,

f (x)= f (1)exp
{
−
∫ x

1

ε(t)
t

dt
}

, (3.8)

where c1 ≤ ε(t)≤ c2. Therefore,

f (ux)
f (x)

= exp
{∫ x

1

ε(t)
t

dt−
∫ xu

1

ε(t)
t

dt
}
. (3.9)

Let us take u∈ (0,1]. Then we have
∫ x

1

ε(t)
t

dt−
∫ xu

1

ε(t)
t

dt =
∫ x

xu

ε(t)
t

dt. (3.10)

Moreover,

log
(

1
uc1

)
= c1

∫ x

xu

dt

t
≤
∫ x

xu

ε(t)
t

dt ≤ c2

∫ x

xu

dt

t
= log

(
1
uc2

)
. (3.11)

Therefore, (3.6) holds. By using a similar argument, we can see that (3.7) follows.
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Let us now assume the converse. First of all, we will show that f is a decreasing func-
tion. Let us take y ≥ x; by setting u= x/y in (3.6), we obtain

f (x)
f (y)

= f
(
y(x/y)

)
f (y)

≥
(
x

y

)−c1

≥ 1, (3.12)

and so f is a decreasing function. Set now g(y)= log f (ey); by (3.6), we have

−c1u≤ g(y +u)− g(y)≤−c2u, ∀u < 0, (3.13)

or

−c2 ≤ g(y +u)− g(x)
u

≤−c1, ∀u < 0. (3.14)

Taking u→ 0−, we obtain

−c2 ≤ g′(y)≤−c1, (3.15)

and hence

c1 ≤ − f ′
(
ey
)

f
(
ey
) ey ≤ c2. (3.16)

Therefore,

c1 f (x)
x

≤− f ′(x)≤ c2 f (x)
x

, (3.17)

and thus f ∈V. �

Corollary 3.4. If f belongs to V, with constants c1 and c2, then

f (t)=O
(

1
tc2

)
, t −→ 0+. (3.18)

Proof. According to Theorem 3.3,

t−c1 ≤ f (t)
f (1)

≤ t−c2 , ∀t ∈ (0,1]. (3.19)

Thus,

0 < tc2 f (t)≤ f (1), ∀t ∈ (0,1], (3.20)

as required. �

Note that the last corollary implies the integrability of f (u)sin(ux) (with respect to u),
in any interval (0,a), a <∞, only for c2 < 2. Moreover, if k is continuous on (0,∞) and

k(t)=O(tα), as t −→ 0, (3.21)
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then for the integrability of f (u)k(ux) at 0 it is sufficient to have c2 < α+ 1. We observe
also that the corollary implies that any f ∈V admits regularizations in the space �′ since
f (t) is bounded by a power of t as t→ 0+.

It is interesting that one may obtain inequalities similar to (3.6) and (3.7) for functions
that do not belong to V. Indeed, the following result applies to oscillatory functions like
f (x)= x−c(2 + sinlnx).

Theorem 3.5. Let f be a positive function defined in (0,∞). Suppose that for each compact
set J ⊂ (0,∞) there are constants m=m(J) and M =M(J) with 0 <m <M such that

m≤ f (ux)
f (x)

≤M, ∀x ∈ (0,∞), ∀u∈ J. (3.22)

Then there exist constants Kq, 1≤ q ≤ 4, and c1, c2 such that

K1

uc1
≤ f (ux)

f (x)
≤ K2

uc2
, ∀x ∈ (0,∞), ∀u∈ (0,1], (3.23)

K3

uc2
≤ f (ux)

f (x)
≤ K4

uc1
, ∀x ∈ (0,∞), ∀u∈ [1,∞). (3.24)

Proof. Let

M+(u)= sup

{
f (ux)
f (x)

: x ∈ (0,∞)

}
. (3.25)

Then M+ is locally bounded in (0,∞) and satisfies

M+(uv)≤M+(u)M+(v). (3.26)

If we now write lnu= n+ θ, where n∈N and where 0≤ θ < 1, for u≥ 1, we obtain

M+(u)≤ sup
{
M+
(
eθ
)

: 0≤ θ ≤ 1
}
M+(e)lnu, (3.27)

whenever u ≥ 1, and thus the right inequality in (3.23) follows with K2 = sup{M+(eθ) :
0 ≤ θ ≤ 1} and c2 = − lnmax{M+(e),1}. This also gives us the left inequality in (3.24)
with K3 = 1/K2. The proof of the other two inequalities is similar (or can be obtained by
applying what we already proved to the function 1/ f ). �

4. Oscillatory kernels

Let f ∈V. Suppose that c2 < 2 in Definition 3.1. It was proved by Berndt [1] that its sine
transform satisfies

A

x
f
(

1
x

)
≤
∫∞

0
f (u)sin(ux)du≤ B

x
f
(

1
x

)
, ∀x > 0. (4.1)

The previous inequality provides us an estimate of the global behavior for the sine trans-
form of f in terms of f (1/x).
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Our aim is to generalize (4.1) in two directions. First, we want to consider other kernels
than sine, so we will give conditions on the kernel such that an estimate similar to (4.1)
holds. Second, we will remove the condition c2 < 2 for the sine transform; in such a case,
the sine transform of f will exist as a tempered distribution satisfying a global estimate
as in (4.1), modulo a polynomial.

For our first goal, we define the k transform of f as the function F given by

F(x)=
∫∞

0
k(xu) f (u)du. (4.2)

We will assume that k satisfies
(1) k is continuous on [0,∞);
(2) k has only simple zeros, located at t = λn, where {λn}∞n=0 satisfies that λ0 = 0, and

λ0 < λ1 < ··· < λn < ··· , where λn →∞ as n→∞; k changes sign at every λn,
being positive on (λ0,λ1), and

∣∣∣∣
∫ λn+1

λn
k(t)dt

∣∣∣∣≥
∣∣∣∣
∫ λn+2

λn+1

k(t)dt
∣∣∣∣; (4.3)

(3) k(t)=O(tα), α≥ 0, t→ 0.
We can now state our first theorem.

Theorem 4.1. Let f be an element of the class V. If k satisfies (1), (2), and (3), and c2 <
α+ 1, then

F(x)= 1
x
f
(

1
x

)
h(x), ∀x > 0, (4.4)

where h is continuous and bounded above and below by positive constants. Hence there exist
positive constants A and B such that

A

x
f
(

1
x

)
≤ F(x)≤ B

x
f
(

1
x

)
, ∀x > 0. (4.5)

Note that Theorem 4.1 is applicable to a wide class of kernels. For example, it applies
to the Hankel kernel defined by

k(t)= t1/2Jν(t), ν >−1
2

, (4.6)

under the assumption c2 < ν + 3/2. Let us consider the proof of Theorem 4.1.

Proof. If we perform a change of variables we obtain

F(x)= x−1
∫∞

0
f
(
u

x

)
k(u)du. (4.7)

Let

dn(x)=
∫ λn+1

λn
f
(
u

x

)
k(u)du. (4.8)
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It follows that

F(x)= x−1
∞∑
n=0

dn(x). (4.9)

Since
∑∞

n=0dn(x) is an alternating series and |dn(x)| decreases to zero as n→∞, we have

x−1
2n+1∑
j=0

dj(x)≤ F(x)≤ x−1
2n∑
j=0

dj(x), n≥ 0, (4.10)

which is equivalent to

∫ λ2n+2

0

f (u/x)
f (1/x)

k(u)du≤ F(x)
x−1 f (1/x)

≤
∫ λ2n+1

0

f (u/x)
f (1/x)

k(u)du. (4.11)

In particular, for n= 0,

∫ λ2

0

f (u/x)
f (1/x)

k(u)du≤ F(x)
x−1 f (1/x)

≤
∫ λ1

0

f (u/x)
f (1/x)

k(u)du. (4.12)

Next, we will find positive constants A, B <∞ such that

∫ λ1

0

f (u/x)
f (1/x)

k(u)du≤ B, ∀x > 0, (4.13)

∫ λ2

0

f (u/x)
f (1/x)

du≥ A, ∀x > 0, (4.14)

and then (4.5) will follow. By Theorem 3.3,

f (u/x)
f (1/x)

≤max
{

1
uc1

,
1
uc2

}
, (4.15)

and hence

∫ λ1

0

f (u/x)
f (1/x)

k(u)du≤
∫ λ1

0
max

{
1
uc1

,
1
uc2

}
k(u)du. (4.16)

If we set

B =
∫ λ1

0
max

{
1
uc1

,
1
uc2

}
k(u)du, (4.17)
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then (4.13) follows. Since f is a decreasing function and k is negative on (λ1,λ2),

∫ λ1

0

f (u/x)
f (1/x)

k(u)du+
∫ λ2

λ1

f (u/x)
f (1/x)

k(u)du

≥
∫ λ1

0

f (u/x)
f (1/x)

k(u)du+
∫ λ2

λ1

f
(
λ1/x

)
f (1/x)

k(u)du

=
∫ λ1

0

(
f (u/x)− f

(
λ1/x

))
f (1/x)

k(u)du+
f
(
λ1/x

)
f (1/x)

∫ λ2

0
k(u)du,

(4.18)

so that
∫ λ2

0

f (u/x)
f (1/x)

k(u)du≥
∫ λ1

0

(
f (u/x)− f (λ1/x)

)
f (1/x)

k(u)du. (4.19)

Therefore, applying the mean value theorem, we obtain

f
(
u

x

)
− f

(
λ1

x

)
=− f ′

(
η

x

)(
λ1−u

x

)
, (4.20)

for some point η ∈ (u,λ1). Then, by the left inequality in Definition 3.1,

f
(
u

x

)
− f

(
λ1

x

)
≥ c1 f

(
η

x

)
λ1−u

η
. (4.21)

Since (1/η) f (η/x)≥ (1/λ1) f (λ1/x), we have

f
(
u

x

)
− f

(
λ1

x

)
≥ f

(
λ1

x

)
c1
(
λ1−u

)
λ1

≥ c1 f
(
λ1

x

)
. (4.22)

Combining (4.19) and the last inequality, it follows that

∫ λ2

0

f (u/x)
f (1/x)

k(u)du≥ f
(
λ1/x)

f (1/x)

∫ λ1

0
c1k(u)du. (4.23)

By Theorem 3.3, this implies that

∫ λ2

0

f (u/x)
f (1/x)

k(u)du≥ c1 min
{

1
λc1

1
,

1
λc2

1

}∫ λ1

0
k(u)du. (4.24)

Setting A equal to the right-hand side of the last inequality, the relation (4.14) has been
proved.

Set now

h(x)= F(x)
x−1 f (1/x)

, x > 0, (4.25)

so that

h(x)= lim
n→∞

2n∑
j=0

dj(x)

f (1/x)
. (4.26)
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We will show that each dj is continuous. Pick x0 ∈ (0,∞) and choose a such that a >
max{x0,1}. By Theorem 3.3

∣∣∣∣ f
(
u

x

)
k(u)

∣∣∣∣≤max
{
xc1 ,xc2

}
f (u)k(u), (4.27)

so that, for any x ∈ (0,a], it follows that

∣∣∣∣ f
(
u

x

)
k(u)

∣∣∣∣≤ ac2 f (u)
∣∣k(u)

∣∣. (4.28)

We have found an integrable function that dominates f (u/x)k(u) for x ∈ (0,a], this im-
plies that

lim
x→x0

dj(x)= dj
(
x0
)
. (4.29)

Finally, we show that h is continuous. We claim that the convergence in (4.26) is uniform
on each interval [a,b], 0 < a < b <∞. By (4.10),

∣∣∣∣∣h(x)−
2n∑
j=0

dj(x)

f (1/x)

∣∣∣∣∣≤
∣∣d2n+1(x)

∣∣
f (1/x)

. (4.30)

We also have
∣∣d2n+1(x)

∣∣
f (1/x)

=
∫ λ2n+2

λ2n+1

f (u/x)
f (1/x)

∣∣k(u)
∣∣du≤ 1

f (1/a)

∫ λ2n+2

λ2n+1

f
(
u

x

)∣∣k(u)
∣∣du

≤ f
(
λ2n+1/b

)
f (1/a)

∫ λ2n+2

λ2n+1

∣∣k(u)
∣∣du≤ f

(
λ2n+1/b

)
f (1/a)

∫ λ1

0
k(u)du.

(4.31)

Since the last term approaches to 0 as n→∞, the convergence in (4.26) is uniform on any
interval [a,b], 0 < a < b <∞. Therefore, h is continuous. �

We now consider the second generalization of the estimate (4.1). We want to empha-
size that the sine transform in this analysis will be considered as a tempered distribution,
so that we will take a regularization of f , instead of f . If we let c2 > 2 with no restriction,
the sine transform of f may not exist, as we remarked at the end of Section 3. In order
to define a regularization of f , we need to extend f to the whole real line; we do this by
setting f (x)= 0 for x < 0; for the sake of simplicity, we will keep denoting this extension
by f .

We state our second result.

Theorem 4.2. Let f ∈V. Suppose that f̃ is any regularization of f in �′ and denote the

sine transform of f̃ by F. Then for all x > 0 either

F(x)= h(x)
x

f
(

1
x

)
+P(x), (4.32)
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or

F(x)=−h(x)
x

f
(

1
x

)
+P(x), (4.33)

where h is continuous and bounded above and below by positive constants and P is a poly-
nomial.

Proof. It is known that any two regularizations of f , say f̃ and f̃1, satisfy

f̃ (x)= f̃1(x) +
m∑
i=0

aiδ
(i)(x), (4.34)

where a0, a1, . . . , am are some real constants. Observe that the sine transform of the sum
of delta functions and its derivatives on the right-hand side is a polynomial. To see this
fact, let φ be a test function of the space �, k ∈N; then,

〈
δ(k)(x),

∫∞
0
φ(u)sin(ux)du

�
= 0, if k is even ;

〈
δ(k)(x),

∫∞
0
φ(u)sin(ux)du

�
=
∫∞

0
(−x)kφ(x)dx, if k = 4 j + 1;

〈
δ(k)(x),

∫∞
0
φ(x)sin(ux)du

�
=
∫∞

0
xkφ(x)dx, if k = 4 j + 3.

(4.35)

Therefore, it suffices to work with any particular regularization of f . So we will find a
regularization of f for which the conclusion of the theorem holds. We will suppose that
c2 ≥ 2; otherwise, the conclusion of this theorem would be a consequence of Theorem 4.1.
Let n be the unique natural number such that

2n+ 1≤ c2 < 2n+ 3. (4.36)

We will divide the proof into two cases. We consider the cases when n is odd and then
when n is even.

Assume first that n is odd. Define now f̃ as

〈
f̃ (x),φ(x)

〉=
∫ 2π

0
f (x)

(
φ(x)−

2n+1∑
i=0

φ(i)(0)
i!

xi
)
dx+

∫∞
2π

f (x)φ(x)dx, (4.37)

for φ∈�. We will prove that f̃ is well defined. Let φ ∈�, then by Corollary 3.4,

f (x)

(
φ(x)−

2n+1∑
i=0

φ(i)(0)
i!

xi
)
=O

(
x2n+2−c2

)
, x −→ 0, (4.38)

and so, by (4.36), it is integrable on (0,2π). The integrability on (2π,∞) is clear since

φ ∈�. By a standard argument, f̃ ∈�′.
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We will prove the formula for the sine transform of f̃ . Denote by F̃ the sine transform

of f̃ . Let us now set

K(x)= sinx−
n∑
i=0

(−1)i

(2i+ 1)!
x2i+1. (4.39)

Since n is odd,

K(x)≥ 0, for x ≥ 0. (4.40)

Using the definition of F̃, we have for x > 0,

〈
F̃(x),φ(x)

〉=
〈
f̃ (x),

∫∞
0
φ(u)sin(xu)du

�
=
∫ 2π

0
f (x)

(∫∞
0
φ(u)K(xu)du

)
dx

+
∫∞

2π
f (x)

(∫∞
0
φ(u)sin(xu)du

)
dx

=
∫∞

0

φ(x)
x

(∫ 2π

0
f
(
u

x

)
K(u)du+

∫∞
2π

f
(
u

x

)
sinudu

)
dx,

(4.41)

for every φ ∈�. It follows that if x > 0,

F̃(x)= 1
x

[∫ 2π

0
f
(
u

x

)
K(u)du+

∫∞
2π

f
(
u

x

)
sinudu

]
. (4.42)

Hence F̃ can be identified with a classical function, in the sense that F̃ is the distribution
generated by the function given by (4.42).

Next we set

h(x)= F̃(x)
x−1 f (1/x)

, for x > 0. (4.43)

We will find two constants, A and B, so that

A≤ h(x)≤ B, x > 0. (4.44)

Notice that

h(x)−
∫ 2π

0

f (u/x)
f (1/x)

K(u)du=
∫∞

2π

f (u/x)
f (1/x)

sinudu. (4.45)

We also have that
∫ 4π

2π

f (u/x)
f (1/x)

sinudu≤
∫∞

2π

f (u/x)
f (1/x)

sinudu≤
∫ 3π

2π

f (u/x)
f (1/x)

sinudu. (4.46)

We can apply the argument that we used in Theorem 4.1 to find positive constants A′ and
B′ such that

∫ 3π

2π

f (u/x)
f (1/x)

sinudu≤ B′, A′ ≤
∫ 4π

2π

f (u/x)
f (1/x)

sinudu, (4.47)
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for all x ∈ (0,∞). Using the last inequalities, we obtain that

A′ ≤
∫∞

2π

f (u/x)
f (u/x)

sinudu≤ B′. (4.48)

It follows that
∫ 2π

0
min

{
1
uc1

,
1
uc2

}
K(u)du+A′ ≤ h(x), h(x)≤

∫ 2π

0
max

{
1
uc1

,
1
uc2

}
K(u)du+B′,

(4.49)

which shows that h is bounded above and below by positive constants.
We now prove the continuity of h. The continuity of

∫∞
2π

f
(
u

x

)
sinudu (4.50)

follows from the proof of Theorem 4.1. Moreover, since

f (u/x)
f (1/x)

K(u)≤max
{

1
uc1

,
1
uc2

}
K(u), (4.51)

it follows by the Lebesgue dominated convergence theorem that

h(x)−
∫∞

2π

f (u/x)
f (1/x)

sinudu (4.52)

is continuous, and so is h(x). This completes the proof for the odd case.
We now assume that n is an even number. Define f̃ as

〈
f̃ (x),φ(x)

〉=
∫ 3π

0
f (x)

(
φ(x)−

2n+1∑
i=0

φ(i)(0)
i!

xi
)
dx+

∫∞
3π

f (x)φ(x)dx, (4.53)

for φ∈�. It follows that f̃ ∈�′. Set

J(x)=
n∑
i=0

(−1)i

(2i+ 1)!
x2i+1− sinx, (4.54)

which is a positive function, since n is an even number. Let F̃ be the sine transform of f̃ .
We have that if x > 0,

F̃(x)= 1
x

[
−
∫ 3π

0
f
(
u

x

)
J(u)du+

∫∞
3π

f
(
u

x

)
sinudu

]
. (4.55)

Set

h(x)=− F̃(x)
x−1 f (1/x)

, x > 0. (4.56)
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It follows that

h(x)=
∫ 3π

0

f (u/x)
f (1/x)

J(u)du−
∫∞

3π

f (u/x)
f (1/x)

sinudu, (4.57)

for x > 0. We can find two positive constants, A′′ and B′′, such that

−
∫ 4π

3π

f (u/x)
f (1/x)

sinudu≤ B′′, −
∫ 5π

3π

f (u/x)
f (1/x)

sinudu≥ A′′. (4.58)

From these inequalities, it follows that

∫ 3π

0
min

{
1
uc1

,
1
uc2

}
J(u)du+A′′ ≤ h(x), h(x)≤

∫ 3π

0
max

{
1
uc1

,
1
uc2

}
J(u)du+B′′,

(4.59)

which proves the required inequalities. The continuity of h can be established as in the
odd case. �

5. Laplace transform

In this section, we will give a result analogous to Theorem 4.2 for the Laplace transform.
The estimate is as follows.

Theorem 5.1. Let f ∈V. Suppose that f̃ is any regularization of f in �′ and denote its
Laplace transform by L. Then for all x > 0, either

L(x)= h(x)
x

f
(

1
x

)
+P(x), (5.1)

or

L(x)=−h(x)
x

f
1
x

+P(x), (5.2)

where h is continuous and bounded above and below by positive constants, and P is a poly-
nomial.

Proof. We proceed as in Theorem 4.2. It suffices to consider a particular regularization of
f . Let n be the integer part of c2. We will consider two cases. First, we assume that n is
odd, and then we consider the even case.

Assume that n is odd. Define f̃ as

〈
f̃ (x),φ(x)

〉=
∫ 1

0
f (x)

(
φ(x)−

n∑
i=0

φi(0)
i!

)
dx+

∫∞
1

f (x)φ(x)dx, (5.3)
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for φ∈�. Then, f̃ is a regularization of f in �′. Since supp f̃ = [0,∞), its Laplace trans-
form is well defined. Let us denote its Laplace transform by L̃, so that

L̃(x)=
∫ 1

0
f (u)

(
e−ux −

n∑
i=0

(−ux)i

i!

)
du+

∫∞
1

f (u)e−uxdu

= 1
x

[∫ 1

0
f
(
u

x

)(
e−u−

n∑
i=0

(−u)i

i!

)
du+

∫∞
1

f
(
u

x

)
e−udu

]
.

(5.4)

We now consider the following inequality:

e−x −
n∑
i=0

(−x)i

i!
> 0, for x > 0. (5.5)

Set

h(x)= L̃(x)
x−1 f (1/x)

, K(x)= e−x −
n∑
i=0

(−x)i

i!
. (5.6)

Then, we have

∫ 1

0

K(u)
uc1

du+
∫∞

1

e−u

uc2
du≤ h(x)≤

∫ 1

0

K(u)
uc2

du+
∫∞

0

e−u

uc1
du. (5.7)

This completes the proof for the odd case.
Assume now that n is even. Set

J(x)=
n∑
i=0

(−x)i

i!
− e−x; (5.8)

it follows that

J(x) > 0, for x > 0. (5.9)

Take A > 1 such that
∫ 1

0

J(u)
uc1

du−
∫∞
A

e−u

uc1
du > 0,

∫ 1

0

J(u)
uc2

du−
∫∞
A

e−u

uc2
du > 0. (5.10)

We define f̃ , a regularization of f , as

〈
f̃ (x),φ(x)

〉=
∫ A

0
f (x)

(
φ(x)−

n∑
i=0

φ(i)(0)
i!

)
dx+

∫∞
A

f (x)φ(x)dx. (5.11)

It follows that L̃, the Laplace transform of f̃ , is given by

L̃(x)= 1
x

(
−
∫ A

0
f
(
u

x

)
J(u)du+

∫∞
A

f
(
u

x

)
e−udu

)
. (5.12)
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Define now h by

h(x)= −L̃(x)
x−1 f (1/x)

. (5.13)

We have that
∫ 1

0

J(u)
uc1

du+
∫ A

1

J(u)
uc2

du−
∫∞
A

e−u

uc1
du≤ h(x),

h(x)≤
∫ 1

0

J(u)
uc2

du+
∫ A

1

J(u)
uc1

du−
∫∞
A

e−u

uc2
du,

(5.14)

so h is bounded above and below by positive constants. �
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