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Some estimates for solutions of the Dirichlet problem for second-order elliptic equations
are obtained in this paper. Here the leading coefficients are locally VMO functions, while
the hypotheses on the other coefficients and the boundary conditions involve a suitable
weight function.
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1. Introduction
Let Q be a bounded open subset of R”, n > 3, and let

2 n

S d
g awm+2mw—+mm (1.1)

i=1 0x;

be a uniformly elliptic operator with measurable coefficients in Q. Several bounds for the
solutions of the problem

Lu=f, feLl(Q),
ue W»(Q)ncC(Q), (D)
U, <0,
(p €]n/2,+00[) have been given, and the application of such estimates allows to obtain
certain uniqueness results for (D).

For instance, if p = n, a;, a € LP(Q) (with a < 0), a classical result of Pucci [4] shows
that any solution u of the problem (D) verifies the bound

supu < K|l flirr(a)s (1.2)
Q

where K € R, depends on Q, , p, lla;ll1r() and on the ellipticity constant.
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2 Bounds for elliptic operators in weighted spaces

The case p < n, where additional hypotheses on the leading coefficients are necessary,
has been studied by several authors. Recently, a uniqueness result has been obtained in
[3] under the assumption that the a;;’s are of class VMO, a; = a = 0 and p €]1,+oo[. This
theorem has been extended to the case a; # 0, a # 0 in [7].

If Q) is an arbitrary open subset of R” and p €]n/2,+[, a bound of type (1.2) and a
consequent uniqueness result can be found in [1]. In fact, it has been proved there that
if the coefficients a;; are bounded and locally VMO, the coefficients a;, a satisty suitable
summability conditions and esssupg, a < 0, then for any solution u of the problem

Lu>f, fell (Q),

loc

ue Wok(Q) nco,

ocC

U, <0, (D)
limsupu(x) <0 if Q is unbounded,
| x| —+00
there exist a ball B cC Q and a constant ¢ € R, such that
1/p
supusa(f |f*|pdx> , (1.3)
Q B

where f~ is the negative part of f,

g L B
J[Blf |“dx = |B|JB|f |Pdx, (1.4)

and ¢ depends on #, p, on the ellipticity constant, and on the regularity of the coefficients
of L.

The aim of this paper is to study a problem similar to that considered in [1], but with
boundary conditions depending on an appropriate weight function. More precisely, fix a
weight function o € A (Q) N C*(Q) (see Section 2 for the definition of 4(Q)) and s € R,
we consider a solution u of the problem

Lu>f, fell (Q),

loc

ue wolQ),

lo.

limsupo®(x)u(x) <0 Vx, € 0Q, (1.5)

X—Xo
limsupo®(x)u(x) <0 if Q is unbounded.
\X\H+oc
If the coefficients a;; are bounded and locally VMO, the functions oa; and o?a are
bounded and esssup, 02a < 0, we will prove that there exist a ball B CC Q and a constant
¢, € R, such that

p
supasusco(J: |05+2f_|pdx) , (1.6)
Q B

where ¢, depends on n, p, s, 0, on the ellipticity constant, and on the regularity of the
coefficients of L. As a consequence, some uniqueness results are also obtained.
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2. Notation and function spaces

Let Q) be an open subset of R” and let £(Q) be the collection of all Lebesgue measurable
subsets of Q. For each E € %(Q), we denote by |E| the Lebesgue measure of E and put

E(x,r) =EnB(x,r) VxeR" VreR,, (2.1)

where B(x,r) is the open ball in R” of radius r centered at x.
Denote by (Q) the class of measurable functions p : QO — R, such that

Bp(y) <p(x) <Pp(y) VyeQ, VxeQ(yp(y), (2.2)

where 3 € R, is independent of x and y. For p € (Q2), we put

Sp = {z € 00:limp(x) = 0}. (2.3)
It is known that
pELR(Q),  pTlELR(Q\S,), (2.4)
and, if S, + @,
p(x) < dist(x,S,) VxeQ (2.5)

(see [2, 6]). Having fixed p € s4(Q) such that S, = 9€), it is possible to find a function
o € dA(Q) N C=(Q) N C*(Q) which is equivalent to p and such that

celr(Q), o leli(Q), (2.6)

o(x) < dist(x,0Q) VxeQ, (2.7)

|0% (x)| <coo'¥(x) VxeQ, Vae N, (2.8)
ylo(y) sox) <ya(y) VyeQ, VxeQ(y,a(y), (2.9)

where ¢4,y € Ry are independent of x and y (see [6]). For more properties of functions
of A(Q) we refer to [2, 6].
If Q) has the property

|Q(x,r)| = Ar" Vxe€Q, Vre]o,1], (2.10)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Q, 1), t € Ry, of functions g € L (Q)) such that

[glBmo(n = sup g—J[ g‘dy<+oo, (2.11)
xeq  JQxr) Q(xr)
re0,t]
where fq, ) gdy = 1/1Q(x,1)| |, gdy.1f g € BMO(Q) = BMO(€, ), where

rh 1
ty = tER, : <= 2.12
4 sup{ 2P a0 | A} (2.12)

re0,t]



4 Bounds for elliptic operators in weighted spaces

we will say that g € VMO(Q) if [g]lsmo(a,n — 0 for t — 0*. A function #[g] : Ry — Ry is
called a modulus of continuity of g in VMO(Q) if
Moy < n[gl(t) VteRy,

lim 5[g](#) = 0. (2.13)

We say that g € VMO0 (Q) if ((g), € VMO(R") for any { € C°(Q2), where ({g), denotes
the zero extension of (g outside of Q). A more detailed account of properties of the above
defined spaces BMO(Q) and VMO(Q) can be found in [5].

3. An a priori bound

Fix p €]n/2,+[. Let B be an open ball of R”, n > 3, of radius §. We consider in B the
differential operator

n az n a
Ly = i)]z:la,»j(x)m +;a,~(x)a—)q+(x(x), (3.1)
with the following condition on the coefficients:

OCij:(inEL"O(B)('\VMO(B), i,j:l,__.,n’
n

JueR,: z ;i G = ul{|* ae.inB, V(€ R", (hp)
ij=1
a;€L”(B), i=1,...,n,a€L”(B), «a<0a.e.inB.
Let po, pi1, 42 € Ry such that
n n
Z ||‘Xij||L°°(B) = po, 8z||“i||Lm(B) = Y1, 62”“||L°°(B) = pa. (3.2)
ij=1 1=1

Note that under the assumption (hg), the operator Ly from W2P(B) into LP(B) is
bounded and the estimate

Lsull 5 < c1llullwer)  Vu€ WP(B) (3.3)
holds, where ¢; € R, depends on n, p, uo, 1, po.
Lemma 3.1. Suppose that condition (hg) is verified, and let u be a solution of the problem

ue W>?(B),
Lyu>¢, ¢eLP(B), (3.4)

Uy, <0.
Then there exists ¢ € R, such that

sgpu = C‘szfn/pH‘PfHLP(B)) (3.5)
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where ¢ depends on n, p, u, to, 1, 4z, [p(etij)IBMo(rn,.)> and where p(a;;) is an extension
of a;j to R" in L= (R") n VMO(R").

Proof. Put B = B(y,6), where y is the centre of B, and B* = B(y, 1).
Consider the function T : B — B* defined by the position

T(x)=y+x;y =z, (3.6)
and for each function g defined on B, putg* =go T
We observe that
Liu* = 8*(Lpu) ", (3.7)
where
Ly = i aj;(2) 2 +5i0¢-*(2)i +8%a* (2). (3.8)
B ij=1 & aZiaZj -1 ! aZi

Denote by p(a;;) an extension of a;; to R” such that
p(oc,j) ELOO(R”) ﬁVMO(Rn) (39)

(for the existence of such function see [5, Theorem 5.1]). Since

*

plai)” € L™(R") nVMO (R"),  p(aij)|, = o, (3.10)
it follows that
(x?‘j € L*(B*) nVMO(B*). (3.11)
Moreover, the condition (hp) yields that
oci*j = oc;“,-, ij=1,..,n,
n
> afiGlj = ul{l* ae.inB*, V{eR", (3.12)
ij=1
af €L*(B*), i=1,...,n, a* € L®(B*), a*<0 a.e.inB*

We observe that the condition (3.12) implies that for r, s €]1,40c0[ the modulus of con-
tinuity of de in L"(B*) and that of §?a* in L*(B*) depend only on [|da; ||1~(s+) and
[|6%a* || 1= (p+), respectively.

Thus, applying (3.10), (3.12), and [7, Theorem 2.1], it follows that the problem

Liv=weLl(B"),
0 (3.13)
v e WP (B*) n WhP(B*)
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has a unique solution v satisfying the estimate
IWllw2e gy < Kllyllres),

where K depends on n, p, y, to, p1, p2, [p(aij)* Ismo(re, -

(3.14)

The estimate (3.5) follows now from (3.14) using the same arguments of the proof of

Lemma 3.2 [1] in order to obtain there (eg) from [1, (3.23)].

4. Hypotheses and preliminary results

Let Q2 be an open subset of R”, n > 3. Fix p € s(Q) N L*(Q) such that S, = 0Q.

Consider a function g € C° (R, ) satisfying the condition

0<g=<l, g)y=1 ift=1, gi)y=0 iftr<

For any k € N, we put

A0) = LG0) + (1= Gw)olx), xe 0,

where (i (x) = g(ko(x)), x € Q. Clearly, nx € C*(Q) for any k € N and

1 _

= if x € Q,
Mi(x) = k ¢

o(x) ifxeQ\Qu,

where

Qk:{xeﬂ:o(x)>%}, ke N.

In the following we will use the notation
" 12 " 12
i=1 ij=1
It is easy to show that for each k € N,

o(x) < nr(x) <20(x), x€Q\Q,
q.o(x) < mr(x) <o(x), xeQy,
(k%)) <ci(o(x)),, x€Q,

(0(x))2+0(x)(0(x))

(Hk(x))xxﬁcz , x€eQ,

o(x)

O

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
(4.7)
(4.8)

(4.9)
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where ¢;, € Ry depends on k and ¢, and ¢;,¢; € Ry depend only on n. Moreover, for any
s € R, we have

(1), _ (1),

7 (x) < o) x€Q, (4.10)

s 2
(nks(x))xx -0 (’Ik(x))x"'”ék(x)(ﬂk(x))xx) ceq, (411)
M () 0%(x)
where ¢; € R, depends on s and n.
We consider in Q the differential operator
L= i a;i(x) i +ia~(x)i+a(x) (4.12)
ij=1 J axiax]- -1 ! ax,- ’
and put
n 82
L, = i’jzﬂ aij(x) Grdx, (4.13)

We will make the following assumption on the coefficients of L:

aij = aji € L*(Q) N VMO (Q),  iyj = 1,...,m,

n n
Ay, € Ry : Z ||a,-j||Lm(Q) <, Z a;i¢i(j > v[{]> ae.inQ, VI eR",
ij=1 hj=1
" (h1)
v, v, € Ry :esssup <0(x)z |ai(x)|> <y, esssup (o%(x)la(x)]) <,
Q i=1 Q
Ja, € R, :esssup (0 (x)a(x)) = —a,.
Q
Fixed s € R, let u be a solution of the problem
Lu>f, feIl(Q), uew @),
limsupo’(x)u(x) <0 Vx, € 0Q, (P)
limsupo®(x)u(x) <0 if Q is unbounded.
| x| —+00

For any k € N, we put

wr(x) = mp(x)u(x), xeQ. (4.14)
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LEmMa 4.1. Suppose that condition (hy) holds. Then, for any k € N there exist functions
bk (i=1,...,n), b, gk and positive constants B and B, such that

esssup ( i | bX (x) ) <pi, (4.15)

0 i-1
essgup( 2(x0) |64 (x)]) < o, (4.16)
g € Lloc(Q)’ (4.17)

where B1 depends on s, n, vo, v and [3, depends on s, n, vy, vo. Moreover, the function
Wi, k € N, satisfies the following conditions:

Wi € Wli’f(Q), limsupwi(x) <0 Vx, € 0Q,

X—Xo

. U (4.18)
limsupwi(x) <0 if Q is unbounded,

|x|—+o0
Lowk+be(wk)xl+bkw;{ ng in Q. (4.19)

i=1

Proof. Fix k € N. From (4.6)—(4.11) and from (2.6), (2.8), it easily follows that the func-
tion wy, defined by (4.14), verifies (4.18).
Moreover, observe that

n n
Lowi — uLoni =2 . aij (1), + > ai(mu),,
ij=1 i=1

) (4.20)
—uy ai(my), +anju=niLu, xcQ.
i=1
Since
(qi)x (T’IS)X.(?] )x;
(1) 5t = () — < = 25 (), (4.21)
Mk (13)
from (4.20), (4.19) follows, where we have put
no (),
b{FZQi—ZZQ,‘jL, i=1,...,n,
j=1 M
k " (’1 )X, ’11( x,xj
b =a+22a,‘j% za,J o (4.22)
ij=1 (’1k) ij=1 Mk

e (m),
g"=f1kf+Zai
i=1

On the other hand, using the hypothesis (h), (4.6)—(4.11), and (2.8) it is easy to show
that there exist 31 € Ry depending on s, 1, vy, ¥ and 3, € Ry depending on's, n, vy, 72,
such that (4.15), (4.16), (4.17) hold. a
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Now we suppose that the following hypothesis on p holds:

lim ( sup ((o(x)), +0(x)(0(x))xx)> =0. (hy)

k—+o00 O\
An example of function p such that o satisfies (h,) is provided in [2].
LEMMA 4.2. Suppose that conditions (hy) and (hy) hold. Then there exists k, € N such that

esssup <a(x) Zn: |bf< (x) |) <+ %,
i1

Q
esssup (02 (x)bk(x)) < o (4.23)
Q 2
g5 (x) = i (x) f (%) - %a’z(x) lw, (x)], xeQ.

Proof. From (4.10), (4.11), and hypothesis (h;), we deduce that

Z a,, | ca(m) .
i,j=1
(), (i),
Z aij— 3 Z a,] 0 < es ()2 + e (k) ) (4.24)
i,j=1 (ﬂk) i,j=1
5 (M)
213 g < e ()
i=1 Mk

where c4,¢c5 € Ry depend on s, 1, % and ¢ € R, depends on s, n, »;. Observing that
(1K)x = (Mk)xx = 0 in Oy, the statement follows now from (4.8), (4.9), (h1), (hz), and
(4.24). 0

5. Main results

It is well know that there exists a function & € C*(Q) N C®!(Q) which is equivalent to
dist(-,0Q) (see, e.g., [8]). For every positive integer m, we define the function

wm:xeﬂ—>g(m5c(x))<1—g(m>), (5.1)

2m

where g € C*(R,) verifies (4.1). It is easy to show that y,, belongs to C°(Q) for every
m € N and

0= Wm = 1’ Supp l//m = E2m: Wm‘Em = 1, (52)
where

E, = {x e Q: x| <m, a(x) > i} (5.3)
m



10  Bounds for elliptic operators in weighted spaces

Remark 5.1. It follows from hypothesis () and from [5, Lemma 4.2] that for any m € N
the functions (y,,ai;), (obtained as extensions of y,a;; to R” with zero values out of )
belong to VMO(R") and

[(‘//m“ij)o]BMO(Rn,z) = [wmaij]BMO(Q,t)’ (5.4)

for ¢ small enough.

In the following we denote by w, b;, b, and g the functions defined by (4.14), (4.22),
respectively, corresponding to k = k,, where k, is the positive integer of Lemma 4.2
We can now prove the main result of the paper.

THEOREM 5.2. Suppose that conditions (hy) and (hy) hold, and let u be a solution of the
problem (P). Then there exist an open ball B CC Q and a constant ¢, € Ry such that

1/p
s s+2 £~ | P
sgpa(x)u(x)SCo(J(Bhr £ dx) , (5.5)

where ¢, depends only on n, p, s, y, v, Vo, V1, V2, do, §[Y¥maij] (m € N).

Proof. It can be assumed that sup, 0°(x) u(x) > 0. Thus it follows from (4.14) and (4.18)
that there exists y € Q such that sup,w(x) = w(y); moreover, there exists R, €]0,
dist(y,0Q)[ such that w(x) >0 for all x € B(y,R,).

Let A, a, 0, € Ry, with «, > 1 (that will be chosen late), such that

Aa < min{R,,0(y)}, a=a,0(y). (5.6)
In the following we denote by B the open ball B(y,aA).
We put
o(x) = 1+A2—M, x €B, (5.7)
and observe that
l<g(x)<1+A* <2, x€B, (5.8)
Py, < %, P Px; < t—)f, iLj=1,...,n, (5.9)
Pug =0 Hit)s gy =g ifiz) (5.10)
Consider now the function v defined by
v(x) = p(x)w(x) —w(y), x€B. (5.11)

Obviously,

Vg = Wio —W(¥) <0, v(y) = w(y). (5.12)
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It is easy to show that

Lo(‘/’w) - WLoq) -2 Z AijPx; Wx; + Z bi((PW)x,-

ij=1 i=1

- Z big,w+bow = ¢ (Low + Z biwy, + bw) >g@g inB.

i=1 i=1

Thus

Lo(epw) + Z di(ew)x, +dow = ¢g + Z bip,w inB,

i=1 i=1

where

n Px,
dizb,-—zza,-j—’, i=1,...,n,
= ®

n n
d=b+2 z aij ¢XifXj — Z aij q)Xin.
=1 =1 ?

Therefore we obtain from (5.14) that
Lyv+ Z divy, +dv = h,
i=1

where

h= (pg+wzb,-(pxi —dw(y).

i=1

Clearly, (2.9), (5.6), and (5.9) yield that

o .
Lo | < 2)/%2)0—2()/) in B,

and hence it follows from Lemma 4.2 that

o _ o\ 1 =
hZ(Pﬂiof—%ff Z(I)W(y)_zyw()’)(Vl*‘%)EO' 2(y) —dw(y)

0 v ao _
> o f+ [—d— (%y2+2%+ ):xz )0 2(y)]w(y).

The constant «, can be chosen in such a way that d < —d,0~%(y) in B, where

d, = @y2+2y—vl+y—a".

2 2
4 o5 o

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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In fact, by Lemma 4.2, (5.9) and (5.10), we have

d4doo2(y) =b+2 Y ay P 50, P9 14,672y
ij=1 ij=1 4
Lboa e Mo L (5.22)
<-50 +8voa2+2voa2+doa »)

ao 1 _
< [— yzz + (109, +2yn +yaa)a—%]o 2(y),

and hence, fixed «, such that

1 y2a,
— < , 5.23
a2 = 4(10v, +2yvy + ya,) (5:23)

it follows that
d<-d,07*(y) inB. (5.24)
By (5.11), (5.12), and (5.15)—(5.17), we deduce that the problem
v e W>P(B),
Lov+ id% rdvz=on f, feLX(B), (5.25)
i=1

V) <0

satisfies the hypotheses of Lemma 3.1. Therefore, it follows from (5.6), (4.15), and (4.16)
that there exists a constant ¢; € Ry, dependingon n, p, s, y, ¥, vo, v1, 2, [p(a; ‘B)]BMO(RH,.),
such that

v(x) < c; Aa)> P

(o5, 1) ||, VxEB. (5.26)

So it follows from (5.8) and from (5.26) with x = y that

w09 00 ) [ <2600 iy (520
Thus by (5.6) and (5.27) we have
w(y) < () "Paga” (D), £ os) < Q) Pagl|o?ni, £ 1| oes)» (5.28)

where ¢,,c3 € R; depend on the same parameters as ¢;. Finally from (4.6), (4.7), (4.14),
and (5.28) we obtain

sup o*u < cy(Aa) ™" ( JB [o2*s f~ |de> v < C5<J[B |ost2 f~ |dx> I/P, (5.29)
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where ¢4,¢5 € R; depend on the same parameters as ¢; and on a,. Then, if we choose

P(aij‘s) = (Ym aij) (5.30)
where m, is a positive integer such that v, =1 (5.5) follows from (5.29), (5.30), and
from Remark 5.1. O

COROLLARY 5.3. Suppose that conditions (hy) and (hy) hold, and let u be a solution of the
problem

Lu=f, o fel™(Q), uew,

limsupo’(x)u(x) =0 Vx, €0Q,

(),

O

oy (»")
limsupo®(x)u(x) =0 if Q is unbounded.
|x|a+oo
Then
supo®lul < ¢||0°" 1] 1w (> (5.31)
Q

where ¢, € R, is the constant of the statement of Theorem 5.2.
Proof. The result can be obtained applying Theorem 5.2 to the functions u and —u. [
The following uniqueness result is an obvious consequence of Corollary 5.3.

CoROLLARY 5.4. If the hypotheses (h;) and (h;) hold, then the problem

Lu=0, ueWw,

liriilglp o'(x)u(x) =0 Vx, €, (0"

limsupo®(x)u(x) =0 if Q is unbounded

[x| =400

(),

O

has only the zero solution.
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