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the hypotheses on the other coefficients and the boundary conditions involve a suitable
weight function.
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1. Introduction

Let Ω be a bounded open subset of Rn, n≥ 3, and let

L=
n∑

i, j=1

ai j(x)
∂2

∂xi∂xj
+

n∑

i=1

ai(x)
∂

∂xi
+ a(x) (1.1)

be a uniformly elliptic operator with measurable coefficients in Ω. Several bounds for the
solutions of the problem

Lu≥ f , f ∈ Lp(Ω),

u∈W2,p(Ω)∩Co(Ω̄),

u|∂Ω ≤ 0,

(D)

(p ∈]n/2,+∞[) have been given, and the application of such estimates allows to obtain
certain uniqueness results for (D).

For instance, if p ≥ n, ai, a∈ Lp(Ω) (with a≤ 0), a classical result of Pucci [4] shows
that any solution u of the problem (D) verifies the bound

sup
Ω
u≤ K‖ f ‖Lp(Ω), (1.2)

where K ∈R+ depends on Ω, n, p, ‖ai‖Lp(Ω) and on the ellipticity constant.
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2 Bounds for elliptic operators in weighted spaces

The case p < n, where additional hypotheses on the leading coefficients are necessary,
has been studied by several authors. Recently, a uniqueness result has been obtained in
[3] under the assumption that the ai j ’s are of class VMO, ai = a= 0 and p ∈]1,+∞[. This
theorem has been extended to the case ai �= 0, a �= 0 in [7].

If Ω is an arbitrary open subset of Rn and p ∈]n/2,+∞[, a bound of type (1.2) and a
consequent uniqueness result can be found in [1]. In fact, it has been proved there that
if the coefficients ai j are bounded and locally VMO, the coefficients ai, a satisfy suitable
summability conditions and esssupΩ a < 0, then for any solution u of the problem

Lu≥ f , f ∈ Lploc(Ω),

u∈W2,p
loc (Ω)∩Co(Ω̄),

u|∂Ω ≤ 0,

limsup
|x|→+∞

u(x)≤ 0 if Ω is unbounded,

(D′)

there exist a ball B ⊂⊂Ω and a constant c ∈R+ such that

sup
Ω
u≤ c

(∫

B
− ∣∣ f −∣∣pdx

)1/p

, (1.3)

where f − is the negative part of f ,
∫

B
− ∣∣ f −∣∣pdx = 1

|B|
∫

B
| f −|pdx, (1.4)

and c depends on n, p, on the ellipticity constant, and on the regularity of the coefficients
of L.

The aim of this paper is to study a problem similar to that considered in [1], but with
boundary conditions depending on an appropriate weight function. More precisely, fix a
weight function σ ∈�(Ω)∩C∞(Ω) (see Section 2 for the definition of �(Ω)) and s∈R,
we consider a solution u of the problem

Lu≥ f , f ∈ Lploc(Ω),

u∈W2,p
loc (Ω),

limsup
x→xo

σs(x)u(x)≤ 0 ∀xo ∈ ∂Ω,

limsup
|x|→+∞

σs(x)u(x)≤ 0 if Ω is unbounded.

(1.5)

If the coefficients ai j are bounded and locally VMO, the functions σai and σ2a are
bounded and esssupΩ σ

2a < 0, we will prove that there exist a ball B ⊂⊂Ω and a constant
co ∈R+ such that

sup
Ω
σsu≤ co

(∫

B
− ∣∣σs+2 f −

∣∣pdx
)1/p

, (1.6)

where co depends on n, p, s, σ , on the ellipticity constant, and on the regularity of the
coefficients of L. As a consequence, some uniqueness results are also obtained.
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2. Notation and function spaces

Let Ω be an open subset of Rn and let Σ(Ω) be the collection of all Lebesgue measurable
subsets of Ω. For each E ∈ Σ(Ω), we denote by |E| the Lebesgue measure of E and put

E(x,r)= E∩B(x,r) ∀x ∈Rn, ∀r ∈R+, (2.1)

where B(x,r) is the open ball in Rn of radius r centered at x.
Denote by �(Ω) the class of measurable functions ρ : Ω→R+ such that

β−1ρ(y)≤ ρ(x)≤ βρ(y) ∀y ∈Ω, ∀x ∈Ω
(
y,ρ(y)

)
, (2.2)

where β ∈R+ is independent of x and y. For ρ∈�(Ω), we put

Sρ =
{
z ∈ ∂Ω : lim

x→z ρ(x)= 0
}
. (2.3)

It is known that

ρ∈ L∞loc(Ω̄), ρ−1 ∈ L∞loc

(
Ω̄ \ Sρ

)
, (2.4)

and, if Sρ �= ∅,

ρ(x)≤ dist
(
x,Sρ

) ∀x ∈Ω (2.5)

(see [2, 6]). Having fixed ρ ∈�(Ω) such that Sρ = ∂Ω, it is possible to find a function
σ ∈�(Ω)∩C∞(Ω)∩C0,1(Ω̄) which is equivalent to ρ and such that

σ ∈ L∞loc(Ω̄), σ−1 ∈ L∞loc(Ω), (2.6)

σ(x)≤ dist(x,∂Ω) ∀x ∈Ω, (2.7)
∣∣∂ασ(x)

∣∣≤ cασ1−|α|(x) ∀x ∈Ω, ∀α∈Nn
o , (2.8)

γ−1σ(y)≤ σ(x)≤ γσ(y) ∀y ∈Ω, ∀x ∈Ω
(
y,σ(y)

)
, (2.9)

where cα,γ ∈ R+ are independent of x and y (see [6]). For more properties of functions
of �(Ω) we refer to [2, 6].

If Ω has the property
∣∣Ω(x,r)

∣∣≥Arn ∀x ∈Ω, ∀r ∈]0,1], (2.10)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Ω, t), t ∈R+, of functions g ∈ L1

loc(Ω̄) such that

[g]BMO(Ω,t) = sup
x∈Ω

r∈]0,t]

∫

Ω(x,r)
−

∣∣∣∣g −
∫

Ω(x,r)
− g

∣∣∣∣dy < +∞, (2.11)

where
∫
Ω(x,r)− gdy = 1/|Ω(x,r)| ∫

Ω(x,r)
gdy. If g ∈ BMO(Ω)= BMO(Ω, tA), where

tA = sup

⎧
⎪⎨
⎪⎩
t ∈R+ : sup

x∈Ω
r∈]0,t]

rn∣∣Ω(x,r)
∣∣ ≤

1
A

⎫
⎪⎬
⎪⎭

, (2.12)
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we will say that g ∈ VMO(Ω) if [g]BMO(Ω,t) → 0 for t→ 0+. A function η[g] :R+ →R+ is
called a modulus of continuity of g in VMO(Ω) if

BMO(Ω,t) ≤ η[g](t) ∀t ∈R+,

lim
t→0+

η[g](t)= 0. (2.13)

We say that g ∈VMOloc(Ω) if (ζg)o ∈VMO(Rn) for any ζ ∈ C∞o (Ω), where (ζg)o denotes
the zero extension of ζg outside of Ω. A more detailed account of properties of the above
defined spaces BMO(Ω) and VMO(Ω) can be found in [5].

3. An a priori bound

Fix p ∈]n/2,+∞[. Let B be an open ball of Rn, n ≥ 3, of radius δ. We consider in B the
differential operator

LB =
n∑

i, j=1

αi j(x)
∂2

∂xi∂xj
+

n∑

i=1

αi(x)
∂

∂xi
+α(x), (3.1)

with the following condition on the coefficients:

αi j = αji ∈ L∞(B)∩VMO(B), i, j = 1, . . . ,n,

∃μ∈R+ :
n∑

i, j=1

αi jζiζ j ≥ μ|ζ|2 a.e. in B, ∀ζ ∈Rn,

αi ∈ L∞(B), i= 1, . . . ,n, α∈ L∞(B), α≤ 0 a.e. in B.

(hB)

Let μ0,μ1,μ2 ∈R+ such that

n∑

i, j=1

∥∥αi j
∥∥
L∞(B) ≤ μ0, δ

n∑

1=1

∥∥αi
∥∥
L∞(B) ≤ μ1, δ2‖α‖L∞(B) ≤ μ2. (3.2)

Note that under the assumption (hB), the operator LB from W2,p(B) into Lp(B) is
bounded and the estimate

∥∥LBu
∥∥
Lp(B) ≤ c1‖u‖W2,p(B) ∀u∈W2,p(B) (3.3)

holds, where c1 ∈R+ depends on n, p, μ0, μ1, μ2.

Lemma 3.1. Suppose that condition (hB) is verified, and let u be a solution of the problem

u∈W2,p(B),

LBu≥ φ, φ∈ Lp(B),

u|∂B ≤ 0.

(3.4)

Then there exists c ∈R+ such that

sup
B
u≤ cδ2−n/p∥∥φ−

∥∥
Lp(B), (3.5)
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where c depends on n, p, μ, μ0, μ1, μ2, [p(αi j)]BMO(Rn,·), and where p(αi j) is an extension
of αi j to Rn in L∞(Rn)∩VMO(Rn).

Proof. Put B = B(y,δ), where y is the centre of B, and B∗ = B(y,1).
Consider the function T : B→ B∗ defined by the position

T(x)= y +
x− y

δ
= z, (3.6)

and for each function g defined on B, put g∗ = g ◦T−1.
We observe that

L∗B u
∗ = δ2(LBu

)∗
, (3.7)

where

L∗B =
n∑

i, j=1

α∗i j(z)
∂2

∂zi∂zj
+ δ

n∑

i=1

α∗i (z)
∂

∂zi
+ δ2α∗(z). (3.8)

Denote by p(αi j) an extension of αi j to Rn such that

p
(
αi j
)∈ L∞(Rn

)∩VMO
(
Rn
)

(3.9)

(for the existence of such function see [5, Theorem 5.1]). Since

p
(
αi j
)∗ ∈ L∞(Rn

)∩VMO
(
Rn
)
, p

(
αi j
)∗
|B∗ = α∗i j , (3.10)

it follows that

α∗i j ∈ L∞(B∗)∩VMO(B∗). (3.11)

Moreover, the condition (hB) yields that

α∗i j = α∗ji, i, j = 1, . . . ,n,
n∑

i, j=1

α∗i j ζiζ j ≥ μ|ζ|2 a.e. in B∗, ∀ζ ∈Rn,

α∗i ∈ L∞(B∗), i= 1, . . . ,n, α∗ ∈ L∞(B∗), α∗ ≤ 0 a.e. in B∗.

(3.12)

We observe that the condition (3.12) implies that for r, s∈]1,+∞[ the modulus of con-
tinuity of δα∗i in Lr(B∗) and that of δ2α∗ in Ls(B∗) depend only on ‖δα∗i ‖L∞(B∗) and
‖δ2α∗‖L∞(B∗), respectively.

Thus, applying (3.10), (3.12), and [7, Theorem 2.1], it follows that the problem

L∗B v = ψ ∈ Lp(B∗),

v ∈W2,p(B∗)∩
o

W1,p(B∗)
(3.13)



6 Bounds for elliptic operators in weighted spaces

has a unique solution v satisfying the estimate

‖v‖W2,p(B∗) ≤ K‖ψ‖Lp(B∗), (3.14)

where K depends on n, p, μ, μ0, μ1, μ2, [p(αi j)∗]BMO(Rn,·).
The estimate (3.5) follows now from (3.14) using the same arguments of the proof of

Lemma 3.2 [1] in order to obtain there (eB) from [1, (3.23)]. �

4. Hypotheses and preliminary results

Let Ω be an open subset of Rn, n≥ 3. Fix ρ ∈�(Ω)∩L∞(Ω) such that Sρ = ∂Ω.
Consider a function g ∈ C∞o (R̄+) satisfying the condition

0≤ g ≤ 1, g(t)= 1 if t ≥ 1, g(t)= 0 if t ≤ 1
2
. (4.1)

For any k ∈N, we put

ηk(x)= 1
k
ζk(x) +

(
1− ζk(x)

)
σ(x), x ∈Ω, (4.2)

where ζk(x)= g(kσ(x)), x ∈Ω. Clearly, ηk ∈ C∞(Ω) for any k ∈N and

ηk(x)=
⎧
⎪⎨
⎪⎩

1
k

if x ∈ Ω̄k,

σ(x) if x ∈Ω \Ω2k,
(4.3)

where

Ωk =
{
x ∈Ω : σ(x) >

1
k

}
, k ∈N. (4.4)

In the following we will use the notation

fx =
( n∑

i=1

f 2
xi

)1/2

, fxx =
( n∑

i, j=1

f 2
xixj

)1/2

. (4.5)

It is easy to show that for each k ∈N,

σ(x)≤ ηk(x)≤ 2σ(x), x ∈Ω \ Ω̄k, (4.6)

c′kσ(x)≤ ηk(x)≤ σ(x), x ∈Ωk, (4.7)
(
ηk(x)

)
x ≤ c1

(
σ(x)

)
x, x ∈Ω, (4.8)

(
ηk(x)

)
xx ≤ c2

(
σ(x)

)2
x + σ(x)

(
σ(x)

)
xx

σ(x)
, x ∈Ω, (4.9)
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where c′k ∈R+ depends on k and σ , and c1,c2 ∈R+ depend only on n. Moreover, for any
s∈R, we have

(
ηsk(x)

)
x

ηsk(x)
≤ c3

(
ηk(x)

)
x

σ(x)
, x ∈Ω, (4.10)

(
ηsk(x)

)
xx

ηsk(x)
≤ c3

(
ηk(x)

)2
x +ηk(x)

(
ηk(x)

)
xx

σ2(x)
, x ∈Ω, (4.11)

where c3 ∈R+ depends on s and n.
We consider in Ω the differential operator

L=
n∑

i, j=1

ai j(x)
∂2

∂xi∂xj
+

n∑

i=1

ai(x)
∂

∂xi
+ a(x), (4.12)

and put

Lo =
n∑

i, j=1

ai j(x)
∂2

∂xi∂xj
. (4.13)

We will make the following assumption on the coefficients of L:

ai j = aji ∈ L∞(Ω)∩VMOloc(Ω), i, j = 1, . . . ,n,

∃ν,ν0 ∈R+ :
n∑

i, j=1

∥∥ai j
∥∥
L∞(Ω) ≤ ν0,

n∑

i, j=1

ai jζiζ j ≥ ν|ζ|2 a.e. in Ω, ∀ζ ∈Rn,

∃ν1,ν2 ∈R+ : esssup
Ω

(
σ(x)

n∑

i=1

∣∣ai(x)
∣∣
)
≤ ν1, esssup

Ω

(
σ2(x)|a(x)|)≤ ν2,

∃ao ∈R+ : esssup
Ω

(
σ2(x)a(x)

)=−ao.

(h1)

Fixed s∈R, let u be a solution of the problem

Lu≥ f , f ∈ Lploc(Ω), u∈W2,p
loc (Ω),

limsup
x→xo

σs(x)u(x)≤ 0 ∀xo ∈ ∂Ω,

limsup
|x|→+∞

σs(x)u(x)≤ 0 if Ω is unbounded.

(P)

For any k ∈N, we put

wk(x)= ηsk(x)u(x), x ∈Ω. (4.14)
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Lemma 4.1. Suppose that condition (h1) holds. Then, for any k ∈ N there exist functions
bki (i= 1, . . . ,n), bk, gk and positive constants β1 and β2 such that

esssup
Ω

(
σ(x)

n∑

i=1

∣∣bki (x)
∣∣
)
≤ β1, (4.15)

esssup
Ω

(
σ2(x)

∣∣bk(x)
∣∣)≤ β2, (4.16)

gk ∈ Lploc(Ω), (4.17)

where β1 depends on s, n, ν0, ν1 and β2 depends on s, n, ν0, ν2. Moreover, the function
wk, k ∈N, satisfies the following conditions:

wk ∈W2,p
loc (Ω), limsup

x→xo
wk(x)≤ 0 ∀xo ∈ ∂Ω,

limsup
|x|→+∞

wk(x)≤ 0 if Ω is unbounded,
(4.18)

Lowk +
n∑

i=1

bki
(
wk
)
xi

+ bkwk ≥ gk in Ω. (4.19)

Proof. Fix k ∈N. From (4.6)–(4.11) and from (2.6), (2.8), it easily follows that the func-
tion wk, defined by (4.14), verifies (4.18).

Moreover, observe that

Lowk −uLoηsk − 2
n∑

i, j=1

ai j
(
ηsk
)
xj
uxi +

n∑

i=1

ai
(
ηsku

)
xi

−u
n∑

i=1

ai
(
ηsk
)
xi

+ aηsku= ηskLu, x ∈Ω.

(4.20)

Since

(
ηsk
)
xj
uxi =

(
ηsku

)
xi

(
ηsk
)
xj

ηsk
−
(
ηsk
)
xi

(ηsk)xj
(
ηsk
)2

(
ηsku

)
, (4.21)

from (4.20), (4.19) follows, where we have put

bki = ai− 2
n∑

j=1

ai j

(
ηsk
)
xj

ηsk
, i= 1, . . . ,n,

bk = a+ 2
n∑

i, j=1

ai j

(
ηsk
)
xi

(
ηsk
)
xj

(
ηsk
)2 −

n∑

i, j=1

ai j

(
ηsk
)
xixj

ηsk
,

gk = ηsk f +
n∑

i=1

ai

(
ηsk
)
xi

ηsk
wk.

(4.22)

On the other hand, using the hypothesis (h1), (4.6)–(4.11), and (2.8) it is easy to show
that there exist β1 ∈R+ depending on s, n, ν0, ν1 and β2 ∈R+ depending on s, n, ν0, ν2,
such that (4.15), (4.16), (4.17) hold. �
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Now we suppose that the following hypothesis on ρ holds:

lim
k→+∞

(
sup
Ω\Ωk

((
σ(x)

)
x + σ(x)

(
σ(x)

)
xx

)
)
= 0. (h2)

An example of function ρ such that σ satisfies (h2) is provided in [2].

Lemma 4.2. Suppose that conditions (h1) and (h2) hold. Then there exists ko ∈N such that

esssup
Ω

(
σ(x)

n∑

i=1

∣∣bkoi (x)
∣∣
)
≤ ν1 +

ao
2

,

esssup
Ω

(
σ2(x)bko(x)

)≤−ao
2

,

gko(x)≥ ηsko(x) f (x)− ao
8
σ−2(x)

∣∣wko(x)
∣∣, x ∈Ω.

(4.23)

Proof. From (4.10), (4.11), and hypothesis (h1), we deduce that

σ

∣∣∣∣∣∣

n∑

i, j=1

ai j

(
ηsk
)
xj

ηsk

∣∣∣∣∣∣
≤ c4

(
ηk
)
x,

σ2

∣∣∣∣∣∣

n∑

i, j=1

ai j

(
ηsk
)
xi

(
ηsk
)
xj

(
ηsk
)2

∣∣∣∣∣∣
+ σ2

∣∣∣∣∣∣

n∑

i, j=1

ai j

(
ηsk
)
xixj

ηsk

∣∣∣∣∣∣
≤ c5

((
ηk
)2
x +ηk

(
ηk
)
xx

)
,

σ2

∣∣∣∣∣∣

n∑

i=1

ai

(
ηsk
)
xi

ηsk

∣∣∣∣∣∣
≤ c6

(
ηk
)
x,

(4.24)

where c4,c5 ∈ R+ depend on s, n, ν0 and c6 ∈ R+ depends on s, n, ν1. Observing that
(ηk)x = (ηk)xx = 0 in Ω̄k, the statement follows now from (4.8), (4.9), (h1), (h2), and
(4.24). �

5. Main results

It is well know that there exists a function α̃ ∈ C∞(Ω)∩C0,1(Ω̄) which is equivalent to
dist(·,∂Ω) (see, e.g., [8]). For every positive integer m, we define the function

ψm : x ∈ Ω̄−→ g
(
mα̃(x)

)(
1− g

( |x|
2m

))
, (5.1)

where g ∈ C∞(R̄+) verifies (4.1). It is easy to show that ψm belongs to C∞o (Ω) for every
m∈N and

0≤ ψm ≤ 1, suppψm ⊆ E2m, ψm|Ēm = 1, (5.2)

where

Em =
{
x ∈Ω : |x| <m, α̃(x) >

1
m

}
. (5.3)
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Remark 5.1. It follows from hypothesis (h1) and from [5, Lemma 4.2] that for any m∈N
the functions (ψmai j)o (obtained as extensions of ψmai j to Rn with zero values out of Ω)
belong to VMO(Rn) and

[(
ψmai j

)
o

]
BMO(Rn,t) ≤

[
ψmai j

]
BMO(Ω,t), (5.4)

for t small enough.

In the following we denote by w, bi, b, and g the functions defined by (4.14), (4.22),
respectively, corresponding to k = ko, where ko is the positive integer of Lemma 4.2

We can now prove the main result of the paper.

Theorem 5.2. Suppose that conditions (h1) and (h2) hold, and let u be a solution of the
problem (P). Then there exist an open ball B ⊂⊂Ω and a constant co ∈R+ such that

sup
Ω
σs(x)u(x)≤ co

(∫

B
− ∣∣σs+2 f −

∣∣pdx
)1/p

, (5.5)

where co depends only on n, p, s, γ, ν, ν0, ν1, ν2, ao, η[ψmai j] (m∈N).

Proof. It can be assumed that supΩ σ
s(x) u(x) > 0. Thus it follows from (4.14) and (4.18)

that there exists y ∈ Ω such that supΩw(x) = w(y); moreover, there exists Ro ∈]0,
dist(y,∂Ω)[ such that w(x) > 0 for all x ∈ B(y,Ro).

Let λ,α,αo ∈R+, with αo > 1 (that will be chosen late), such that

λα≤min{Ro,σ(y)}, α= αoσ(y). (5.6)

In the following we denote by B the open ball B(y,αλ).
We put

ϕ(x)= 1 + λ2− |x− y|2
α2

, x ∈ B̄, (5.7)

and observe that

1≤ ϕ(x)≤ 1 + λ2 ≤ 2, x ∈ B̄, (5.8)

ϕxi ≤
2λ
α

, ϕxiϕxj ≤
4λ2

α2
, i, j = 1, . . . ,n, (5.9)

ϕxixj = 0 if i �= j, ϕxixj =−
2
α2

if i= j. (5.10)

Consider now the function v defined by

v(x)= ϕ(x)w(x)−w(y), x ∈ B̄. (5.11)

Obviously,

v|∂Ω =w|∂Ω −w(y)≤ 0, v(y)= λ2w(y). (5.12)
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It is easy to show that

Lo(ϕw)−wLoϕ− 2
n∑

i, j=1

ai jϕxjwxi +
n∑

i=1

bi(ϕw)xi

−
n∑

i=1

biϕxiw+ bϕw = ϕ
(
Low+

n∑

i=1

biwxi + bw

)
≥ ϕg in B.

(5.13)

Thus

Lo(ϕw) +
n∑

i=1

di(ϕw)xi +dϕw ≥ ϕg +
n∑

i=1

biϕxiw in B, (5.14)

where

di = bi− 2
n∑

j=1

ai j
ϕxj
ϕ

, i= 1, . . . ,n, (5.15)

d = b+ 2
n∑

i, j=1

ai j
ϕxiϕxj
ϕ2

−
n∑

i, j=1

ai j
ϕxixj
ϕ

. (5.16)

Therefore we obtain from (5.14) that

Lov+
n∑

i=1

divxi +dv ≥ h, (5.17)

where

h= ϕg +w
n∑

i=1

biϕxi −dw(y). (5.18)

Clearly, (2.9), (5.6), and (5.9) yield that

∣∣ϕxi
∣∣≤ 2γ

σ

α2
oσ2(y)

in B, (5.19)

and hence it follows from Lemma 4.2 that

h≥ ϕηsko f −
ao
8
σ−2ϕw(y)− 2γw(y)

(
ν1 +

ao
2

)
1
α2
o
σ−2(y)−dw(y)

≥ ϕηsko f +
[
−d−

(
ao
4
γ2 + 2

γν1

α2
o

+
γao
α2
o

)
σ−2(y)

]
w(y).

(5.20)

The constant αo can be chosen in such a way that d <−doσ−2(y) in B, where

do = ao
4
γ2 + 2

γν1

α2
o

+
γao
α2
o
. (5.21)
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In fact, by Lemma 4.2, (5.9) and (5.10), we have

d+doσ−2(y)= b+ 2
n∑

i, j=1

ai j
ϕxiϕxj
ϕ2

−
n∑

i, j=1

ai j
ϕxixj
ϕ

+doσ−2(y)

≤−ao
2
σ−2 + 8νo

λ2

α2
+ 2νo

1
α2

+doσ−2(y)

≤
[
− γ2 ao

4
+
(
10νo + 2γν1 + γao

) 1
α2
o

]
σ−2(y),

(5.22)

and hence, fixed αo such that

1
α2
o
≤ γ2ao

4
(
10νo + 2γν1 + γao

) , (5.23)

it follows that

d <−doσ−2(y) in B. (5.24)

By (5.11), (5.12), and (5.15)–(5.17), we deduce that the problem

v ∈W2,p(B),

Lov+
n∑

i=1

divxi +dv ≥ ϕηsko f , f ∈ Lp(B),

v|∂B ≤ 0

(5.25)

satisfies the hypotheses of Lemma 3.1. Therefore, it follows from (5.6), (4.15), and (4.16)
that there exists a constant c1 ∈R+, depending on n, p, s, γ, ν, ν0, ν1, ν2, [p(ai j |B )]BMO(Rn,·),
such that

v(x)≤ c1(λα)2−n/p
∥∥∥
(
ϕηsko f

)−∥∥∥
Lp(B)

∀x ∈ B. (5.26)

So it follows from (5.8) and from (5.26) with x = y that

λ2w(y)≤ c1(λα)2−n/p
∥∥∥
(
ϕηsko f

)−∥∥∥
Lp(B)

≤ 2c1(λα)2−n/p
∥∥∥ηsko f

−
∥∥∥
Lp(B)

. (5.27)

Thus by (5.6) and (5.27) we have

w(y)≤ c2(λα)−n/pα2
oσ

2(y)
∥∥ηsko f

−∥∥
Lp(B) ≤ c3(λα)−n/pα2

o

∥∥σ2ηsko f
−∥∥

Lp(B), (5.28)

where c2,c3 ∈R+ depend on the same parameters as c1. Finally from (4.6), (4.7), (4.14),
and (5.28) we obtain

sup
Ω
σsu≤ c4(λα)−n/p

(∫

B

∣∣σ2+s f −
∣∣pdx

)1/p

≤ c5

(∫

B
− ∣∣σs+2 f −

∣∣dx
)1/p

, (5.29)



Loredana Caso 13

where c4,c5 ∈R+ depend on the same parameters as c1 and on ao. Then, if we choose

p
(
ai j |B

)
= (ψm1ai j

)
o, (5.30)

where m1 is a positive integer such that ψm1 |B = 1, (5.5) follows from (5.29), (5.30), and
from Remark 5.1. �

Corollary 5.3. Suppose that conditions (h1) and (h2) hold, and let u be a solution of the
problem

Lu= f , σs+2 f ∈ L∞(Ω), u∈W2,p
loc (Ω),

limsup
x→xo

σs(x)u(x)= 0 ∀xo ∈ ∂Ω,

limsup
|x|→+∞

σs(x)u(x)= 0 if Ω is unbounded.

(p′)

Then

sup
Ω
σs|u| ≤ co

∥∥σs+2 f
∥∥
L∞(Ω), (5.31)

where co ∈R+ is the constant of the statement of Theorem 5.2.

Proof. The result can be obtained applying Theorem 5.2 to the functions u and −u. �

The following uniqueness result is an obvious consequence of Corollary 5.3.

Corollary 5.4. If the hypotheses (h1) and (h2) hold, then the problem

Lu= 0, u∈W2,p
loc (Ω),

limsup
x→xo

σs(x)u(x)= 0 ∀xo ∈ ∂Ω,

limsup
|x|→+∞

σs(x)u(x)= 0 if Ω is unbounded

(p′′)

has only the zero solution.
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