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For 0 < p <∞ and α >−1, we let �
p
α be the space of all analytic functions f in D= {z ∈

C : |z| < 1} such that f ′ belongs to the weighted Bergman space A
p
α . We obtain a number

of sharp results concerning the existence of tangential limits for functions in the spaces
�

p
α . We also study the size of the exceptional set E( f )= {eiθ ∈ ∂D : V( f ,θ)=∞}, where

V( f ,θ) denotes the radial variation of f along the radius [0,eiθ), for functions f ∈�
p
α .

Copyright © 2006 D. Girela and J. Á. Peláez. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and main results

Let D denote the open unit disk of the complex plane C. If 0 < r < 1 and f is an analytic
function in D (abbreviated f ∈�ol(D)), we set

Mp(r, f )=
(

1
2π

∫ 2π

0

∣∣ f (reit)∣∣p dt
)1/p

, Ip(r, f )=M
p
p (r, f ), 0 < p <∞,

M∞(r, f )= sup
0≤t≤2π

∣∣ f (reit)∣∣.
(1.1)

For 0 < p ≤ ∞, the Hardy space Hp consists of those functions f ∈�ol(D) for which

‖ f ‖Hp
def= sup0<r<1Mp(r, f ) <∞. We refer to [10] for the theory of Hardy spaces.

The weighted Bergman space A
p
α (0 < p <∞,α >−1) is the space of all functions f ∈

�ol(D) such that

‖ f ‖Ap
α

def=
(∫

D

(
1−|z|)α∣∣ f (z)

∣∣pdA(z)
)1/p

<∞, (1.2)

where dA(z)= (1/π)dxdy denotes the normalized Lebesgue area measure inD. We men-
tion [11, 16] as general references for the theory of Bergman spaces.
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2 Boundary behaviour

We will write �
p
α (0 < p <∞,α > −1) for the space of all functions f ∈�ol(D) such

that
∫
D(1−|z|)α| f ′(z)|p dA(z) <∞. In other words,

f ∈�
p
α ⇐⇒ f ′ ∈A

p
α. (1.3)

If p < α+ 1, it is well known that �
p
α = A

p
α−p with equivalence of norms (see [12, The-

orem 6]). If p > 1 and α= p− 2, we are considering the Besov spaces �p which have been
extensively studied in [3, 9, 29]. Specially relevant is the space �2 =�2

0, which coincides
with the classical Dirichlet space �.

The space �
p
α is said to be a Dirichlet space if p ≥ α+ 1. Specially interesting are the

spaces in the “limit case” p = α+ 1, that is, the spaces �
p
p−1, 0 < p <∞. These spaces are

closely related to Hardy spaces. Indeed, a direct calculation with Taylor coefficients gives
that H2 =�2

1. Furthermore, we have

Hp ⊂�
p
p−1, 2≤ p <∞, (1.4)

�
p
p−1 ⊂Hp, 0 < p ≤ 2. (1.5)

The relation (1.4) is a classical result of Littlewood and Paley [21], and (1.5) can be found
in [28]. A good number of results on the spaces �

p
p−1 have been recently obtained in

[4, 13–15, 28]. We remark that the spaces �
p
p−1 are not nested. Actually, it is easy to see

that if p �= q, then there is no relation of inclusion between �
p
p−1 and �

q
q−1.

Fatou’s theorem asserts that if 0 < p ≤∞ and f ∈Hp, then f has a finite nontangential
limit f (eiθ) for a.e. eiθ ∈ ∂D. Bearing in mind (1.5), we see that this is true if f ∈�

p
p−1

and 0 < p ≤ 2. In view of (1.4), it is natural to ask whether or not Fatou’s theorem remains
true for the spaces �

p
p−1, 2 < p <∞. The answer to this question is negative. Indeed, [15,

Theorem 3.5] asserts that if 2 < p <∞, then there exists a function f ∈�
p
p−1 such that

lim
r→1−

∣∣ f (reit
)∣∣

(
log1/(1− r)

)1/2−1/p(
loglog1/(1− r)

)−1 =∞, for a.e. eit ∈ ∂D. (1.6)

This function has a nontangential limit almost nowhere in ∂D.
Fatou’s theorem is best possible for Hardy spaces in the sense that it cannot be extended

further to give the existence of “tangential limits.” Indeed, Lohwater and Piranian [22]
(see also [8, page 43], [20, 31], and [32, Volume I, page 280] for some related results)
proved that if γ0 is a Jordan curve, internally tangent to ∂D at z = 1, and having no other
point in common with ∂D, and γθ (θ ∈R) denotes the rotation of γ0 through an angle θ
around the origin, then there exists a function f ∈H∞ such that, for every θ ∈R, f does
not approach a limit as z→ eiθ along γθ .

In spite of this, a number of “tangential Fatou’s theorems” have been proved for certain
spaces of Dirichlet type.
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For A > 0, γ ≥ 1, and ξ ∈ ∂D, we define

R(A,γ,ξ)= {z ∈D : |1− ξz|γ ≤A
(
1−|z|)}. (1.7)

When γ = 1 andA > 1, the regionR(A,γ,ξ) is basically a Stolz angle. When γ>1, R(A,γ,ξ)
is a region contained in D which touches ∂D at ξ tangentially. As γ increases, the degree
of tangency increases.

We define also, for A > 1 and β > 0,

Rexp(A,β,ξ)=
{
z ∈D : exp

(−|1− ξz|−β)≤
(
1−|z|)
A

}
,

Rlog(A,β,ξ)=
{
z ∈D : |1− ξz| ≤ A

(
1−|z|)

(
log

2
1−|z|

)β}
.

(1.8)

As β increases, the degree of tangency increases in both types of tangential regions.
If f ∈�ol(D), we say that f has the γ-limit L at eiθ , if f (z) → L as z → eiθ within

R(A,γ,ξ) for every A. Notice that saying that f has the 1-limit L at eiθ is the same as saying
that f has the nontangential limit L at eiθ . Substituting the regions R(A,γ,ξ) with the
regions Rexp(A,β,ξ) and Rlog(A,β,ξ), we have the notions of βexp-limits and βlog-limits.
We observe that these definitions of tangential limits are equivalent to those considered
in [2, 7, 23, 26].

Among other results, Kinney [19] and Nagel, Rudin, and Shapiro [23] (see also [26])
proved the following.

(i) If 0 < α < 1 and f ∈D2
α, then f has a finite α−1-limit at a.e. eiθ ∈ ∂D.

(ii) If f ∈D2
0 =�, then f has a finite 1exp-limit almost everywhere.

In view of these results, it is natural to ask whether results of this kind can be proved
for the spaces �

p
α for other choices of p and α. We start with a negative result.

Theorem 1.1. (a) Suppose that A > 1 and β > 1. Then there exists a function f ∈⋂
1≤p<∞�

p
p−1 such that for almost every eiθ ∈ ∂D, f does not approach a limit as z→ eiθ

inside Rlog(A,β,eiθ).
(b) Suppose that A > 0 and γ > 1. Then there exists a function f ∈⋂0<p<∞�

p
p−1 such

that for almost every eiθ ∈ ∂D, f does not approach a limit as z→ eiθ inside R(A,γ,eiθ).

Next we turn our attention to the spaces �
p
α with 1 ≤ p ≤ 2 and −1 < α ≤ p− 1. We

will prove the following theorem.

Theorem 1.2. (a) Suppose that 1≤ p ≤ 2, p− 2 < α≤ p− 1, and f ∈�
p
α . Then f has an

(α− p+ 2)−1-limit at a.e. eiθ ∈ ∂D.
(b) Suppose that 1 < p ≤ 2 and f ∈�

p
p−2 =�p. Then f has a (p′ − 1)exp-limit at a.e.

eiθ ∈ ∂D.

Here and throughout the paper, if p > 1, we write p′ for the exponent conjugate of p,
1/p+ 1/p′ = 1.
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We will prove that part (a) of Theorem 1.2 is sharp in the sense that the degree of
potential tangency (α− p+ 2)−1 cannot be substituted by any larger one.

Theorem 1.3. Suppose that 1 ≤ p ≤ 2, p− 2 < α ≤ p− 1, A > 0, and γ > (α− p + 2)−1.
Then there exists a function f ∈�

p
α such that for almost every eiθ ∈ ∂D, f does not approach

a limit as z→ eiθ inside R(A,γ,eiθ).

Now we turn to questions related to radial variation of analytic functions. If f ∈
�ol(D) and θ ∈ [−π,π), we define

V( f ,θ)
def=
∫ 1

0

∣∣ f ′(reiθ)∣∣dr. (1.9)

Then V( f ,θ) denotes the radial variation of f along the radius [0,eiθ), that is, the length
of the image of this radius under the mapping f . We define the exceptional set E( f )
associated to f as

E( f )= {eiθ ∈ ∂D : V( f ,θ)=∞}. (1.10)

It is clear that if f has finite radial variation at eiθ , then f has a finite radial limit at
eiθ . Even though every Hp-function, 0 < p ≤ ∞, has finite radial limits a.e., if we take
f ∈�ol(D) given by a power series with Hadamard gaps

f (z)=
∞∑
k=1

akz
nk with nk+1 ≥ λnk, ∀k (λ > 1), (1.11)

such that

∞∑
k=1

∣∣ak∣∣2
<∞ but

∞∑
k=1

∣∣ak∣∣=∞, (1.12)

then f ∈⋂0<p<∞Hp, but a result of Zygmund (see [30, Theorem 1, page 194]) shows that
V( f ,θ)=∞ for every θ ∈ [−π,π).

We will prove a positive result for �
p
p−1-functions, 0 < p ≤ 1.

Theorem 1.4. If 0 < p ≤ 1 and f ∈�
p
p−1, then E( f ) has measure 0.

We note that this result cannot be extended to p > 1. Indeed, if we take f given by a
power series with Hadamard gaps as in (1.11) with

∑∞
k=1 |ak|p <∞ and

∑∞
k=1 |ak| =∞, we

have that f ∈�
p
p−1 (see [15, Proposition A]) and so V( f ,θ)=∞ for every θ ∈ [−π,π).

On the other hand, we have the following well-known result of Beurling [5] for func-
tions in �2

α.

Theorem 1.5. Let f be an analytic function inD.
(a) If f ∈�, then E( f ) has logarithmic capacity 0.
(b) If 0 < α < 1 and f ∈�2

α, then E( f ) has α-capacity 0.
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See [17] for the definitions of logarithmic capacity and α-capacity and [27] for an
extension of Theorem 1.5.

We will prove the following result for other values of p.

Theorem 1.6. Suppose that f ∈�
p
α .

(a) If 0 < p ≤ 1 and −1 < α < p− 1, then E( f ) has Lebesgue measure 0.
(b) If 1 < p < 2 and p− 2 < α < p− 1, then E( f ) has Lebesgue measure 0.
(c) If 1 < p ≤ 2 and α= p− 2, then E( f ) has logarithmic capacity 0.
(d) If 2 < p <∞ and p− 1 > α≥ p/2− 1, then E( f ) has β-capacity 0 for all β > 2/p(1 +

α)− 1.
(e) If 2 < p <∞ and α < p/2− 1, then E( f ) has logarithmic capacity 0.

2. On the membership of Blaschke products in spaces of Dirichlet type

We remark that H∞ �⊂�
p
α , if 0 < p <∞ and −1 < α < p− 1 (see, e.g., [13, Section 3] for

explicit examples). Clearly, (1.4) gives that H∞ ⊂�
p
p−1, if 2≤ p <∞. However, this does

not remain true for 0 < p < 2. Indeed, Vinogradov [28, pages 3822-3823] has shown that
there exist Blaschke products B which do not belong to

⋃
0<p<2 �

p
p−1. In this section, we

will find a number of sufficient conditions for the membership of a Blaschke product in
some of the spaces �

p
α . These results will be basic in the proofs of Theorems 1.1 and 1.3.

We recall that if a sequence of points {an} inD satisfies the Blaschke condition
∑∞

n=1(1−
|an|) <∞, the corresponding Blaschke product B is defined as

B(z)=
∞∏
n=1

∣∣an∣∣
an

an− z

1− anz
. (2.1)

Such a product is analytic inD, bounded by one, and with nontangential limits of modu-
lus one almost everywhere on the unit circle. We start obtaining sufficient conditions for
the membership of a Blaschke product in the spaces �

p
p−1, improving the first part of [28,

Lemma 2.11].

Lemma 2.1. Let B be a Blaschke product with sequence of zeros {an}.
(a) If {an} satisfies

∞∑
n=1

(
1−∣∣an∣∣) log

(
1

1−∣∣an∣∣
)
<∞, (2.2)

then B ∈⋂1≤p<∞�
p
p−1.

(b) If there exists q ∈ (0,1) such that

∞∑
n=1

(
1−∣∣an∣∣)q <∞, (2.3)

then B ∈⋂0<p<∞�
p
p−1.
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Proof. A result of Rudin’s (see [25, Theorem I]) shows that (2.2) implies that B ∈ �1
0.

Then (a) follows from the Cauchy estimate |B′(z)| ≤ 1/(1−|z|).
We turn now to part (b). Suppose that {an} satisfies (2.3) for a certain q ∈ (0,1). As-

sume for now that p ∈ (0,1]. Using [18, Theorem 3.1], we see that B′ ∈ A2−q. Using this,
Hölder’s inequality with exponents (2− q)/p and (2− q)/(2− q− p), and the fact that
(2− q)(1− p)/(2− q− p) < 1, we obtain

∫
D

∣∣B′(z)
∣∣p(1−|z|2)p−1

dA(z)

≤
(∫

D

∣∣B′(z)
∣∣2−q

dA(z)
)p/(2−q)(∫

D

(
1−|z|2)(2−q)(p−1)/(2−q−p)

dA(z)
)(2−q−p)/(2−q)

<∞.
(2.4)

Hence, we have shown that B ∈�
p
p−1, for all p ∈ (0,1]. Using the Cauchy estimate again,

we obtain that B ∈�
p
p−1 for all p ∈ (0,∞), as desired. �

We next give a simplified proof of a result that essentially is Theorem 3.1(i) for β = 1
and p ≥ 1 in [18].

Lemma 2.2. Let p and α be such that p ≥ 1 and p− 2 < α < p− 1. If B is a Blaschke product
whose sequence of zeros {an} satisfies

∞∑
n=1

(
1−∣∣an∣∣)α+2−p

<∞, (2.5)

then B ∈�
p
α .

Proof. We will use the notation and terminology of [1, pages 332-333].
Let p, α, and B be as in the statement. Notice that 0 < α+ 2− p < 1, and then, using

[24, Theorem 1], we deduce that B′ ∈ B1/(α−p+3) or, equivalently, B ∈�1
α−p+1. Then as in

the proof of Lemma 2.1, the Cauchy estimate implies B ∈�
p
α since p− 1≥ 0. �

3. Tangential limits for �
p
α-functions

Proof of Theorem 1.1(a). We are going to use an argument which is similar to the one
used in the proof of [32, Volume I, Chapter VII, Theorem 7.44].

Take M with 1 <M <A and let Cθ be the boundary of Rlog(M,β,eiθ) (θ ∈ [0,2π)). For
all sufficiently large n, let ln denote the length of the arc of the circle |z| = 1− 1/n which
lies in Rlog(M,β,1) and let mn = E[2π/ln] + 1, where, for x ∈R, E[x] denotes the greatest
integer that is smaller than or equal to x. Let Sn = {zn,1,zn,2, . . . ,zn,mn} be any collection
of mn points equally spaced on |z| = 1− 1/n. Since the circular distance between any two
consecutive points of Sn is smaller than ln, for every θ the set Rlog(M,β,eiθ) contains a
point of Sn.
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We define

σn =
mn∑
k=1

(
1−∣∣zn,k

∣∣) log
(

1
1−∣∣zn,k

∣∣
)
= mn log(n)

n
. (3.1)

Notice that ln � (1/n) logβ n. Then it is easy to see that there exists a positive constant C
(which does not depend on n) such that

σn = mn log(n)
n

≤
(
1 + 2π/ln) log(n)

n
≤ C

log(n)
nln

≤ C
1

logβ−1n
−→ 0, as n−→∞.

(3.2)

Let us take then an increasing sequence nk satisfying that
∑∞

k=1 σnk < ∞ and let B be
the Blaschke product with zeros at the points of

⋃∞
k=1 Snk . By part (a) of Lemma 2.1,

B ∈ ⋂1≤p<∞�
p
p−1. Notice that for each θ ∈ R, B has infinitely many zeros in the set

Rlog(M,β,eiθ). Thus for every θ, the limit of B(z) as z→ eiθ inside of Rlog(M,β,eiθ) must
be zero if it exists at all. Since the radial limit of B has absolute value 1 a.e., it follows that
for almost every eiθ ∈ ∂D, the limit of B(z) as z → eiθ inside of Rlog(M,β,eiθ) does not
exist. �

Part(b) of Theorem 1.1 can be proved in a similar way using part (b) of Lemma 2.1.
We omit the details.

Next we will obtain a representation formula for functions f in the space �
p
α , −1 < α,

1≤ p ≤ 2, which will play a basic role in the proof of Theorem 1.2.

Theorem 3.1. Suppose that either 1 ≤ p ≤ 2 and −1 < α < p− 1 or 1 < p ≤ 2 and α =
p− 2, and that f ∈�

p
α . Then there exists a function h(eiθ)∈ Lp(∂D) such that

f (z)= 1
2π

∫ π

−π
h
(
eiθ
)

(
1− e−iθz

)(α+1)/p dθ, z ∈D. (3.3)

Proof. Let p and α be as in the statement and f (z) =∑∞
n=0 anz

n ∈ �
p
α . Then z f ′(z) =∑∞

n=0nanz
n ∈ A

p
α . Since �

p
α ⊂ A

p
α , we also have that f ∈ A

p
α . Then it follows that

z f ′(z) +
α+ 1
p

f (z)=
∞∑
n=0

(
n+

α+ 1
p

)
anz

n ∈ A
p
α. (3.4)

So using [6, Lemma 1.1] (see also [12, part (iii) of Theorem 5]) and [6, Corollary 3.5],
we deduce that the fractional integral

h(z)
def= Ĩ(α+1)/p

(
z f ′(z) +

α+ 1
p

f (z)
)
=

∞∑
n=0

(
n+

α+ 1
p

)
B
(
n+ 1,

α+ 1
p

)
anz

n (3.5)

belongs to Hp since p ≤ 2. Here B(·,·) is the classical beta function. Note that

B(u,v)= Γ(u)Γ(v)
Γ(u+ v)

(3.6)
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and recall that Γ(s+ 1)= sΓ(s), for all s �= 0,−1, . . . . Then it is easy to see that

h(z)=
∞∑
n=0

n!Γ((α+ 1)/p)
Γ
(
n+ (α+ 1)/p

)anzn. (3.7)

Then,

h
(
eiθ
)=

∞∑
n=0

n!Γ((α+ 1)/p)
Γ
(
n+ (α+ 1)/p

)aneinθ ∈ Lp(∂D). (3.8)

By the binomial theorem,

1
(1− e−iθz)(α+1)/p =

∞∑
k=0

Γ
(
k+ (α+ 1)/p

)
k!Γ((α+ 1)/p)

e−ikθzk. (3.9)

Thus,

1
2π

∫ π

−π
h
(
eiθ
)

(
1− e−iθz

)(α+1)/p dt

= 1
2π

∫ π

−π

( ∞∑
n=0

n!Γ(α+ 1/p)
Γ
(
n+ (α+ 1)/p

)aneinθ
)( ∞∑

k=0

Γ
(
k+ (α+ 1)/p

)
k!Γ(α+ 1/p)

e−ikθzk
)
dθ

=
∞∑
n=0

anz
n = f (z).

(3.10)

This finishes the proof. �

Proof of Theorem 1.2. We need to consider three cases.

Case 1. 1≤ p ≤ 2 and α= p− 1. Then �
p
α =�

p
p−1 ⊂Hp and the result in this case follows

from Fatou’s theorem for Hp.

Case 2. 1≤ p ≤ 2 and p− 2 < α < p− 1. If f ∈�
p
α , then, using Theorem 3.1, we have that

there exists h(eiθ)∈ Lp(∂D) such that

f (z)= 1
2π

∫ π

−π
h
(
eiθ
)

(
1− e−iθz

)(α+1)/p dt =
1

2π

∫ π

−π
h
(
eiθ
)

(
1− e−iθz

)1−(p−α−1)/p dt. (3.11)

Notice that p((p−α− 1)/p) < 1, so by [23, part (a) of Theorem A] we have that f has
(α− p+ 2)−1-limit at a.e. eiθ ∈ ∂D.
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Case 3. 1 < p ≤ 2 and α= p− 2. Using again Theorem 3.1, we have that if f ∈�
p
α , then

there exists h(eiθ)∈ Łp(∂D) such that

f (z)= 1
2π

∫ π

−π
h
(
eiθ
)

(
1− e−iθz

)1−1/p dt. (3.12)

Using [23, part (b) of Theorem A], we deduce that f has (p′ − 1)exp-limit at a.e. eiθ ∈ ∂D.
�

Theorem 1.3 can be proved arguing as in the proof of part (a) of Theorem 1.1, using
Lemma 2.2 instead of Lemma 2.1. Again, we will omit the details.

4. Radial variation of functions in the spaces �
p
α

Proof of Theorem 1.4. Let 0 < p < 1 and f ∈�
p
p−1. Set

F f =
{
θ ∈ [−π,π] : f has a finite nontangential limit at eiθ

}
. (4.1)

By (1.5) and Fatou’s theorem, [−π,π] \ F f has Lebesgue measure 0. On the other hand,
Zygmund proved in [30, page 81] that

(1− r)
∣∣ f ′(reiθ)∣∣−→ 0, as r −→ 1−, (4.2)

for all θ ∈ F f . Consequently the set

F∗f =
{
θ ∈ [−π,π] : (1− r)

∣∣ f ′(reiθ)∣∣−→ 0
}

(4.3)

is such that [−π,π] \F∗f has Lebesgue measure 0. Since f ∈�
p
p−1, we deduce that the set

Tf =
{
θ ∈ [−π,π] :

∫ 1

0
(1− r)p−1

∣∣ f ′(reiθ)∣∣p dr <∞
}

(4.4)

is such that [−π,π] \Tf has Lebesgue measure 0. Thus, [−π,π] \
(
F∗f ∩Tf

)
has Lebesgue

measure 0. Furthermore, if θ ∈ F∗f ∩Tf , there exists a positive constant Cθ such that

V( f ,θ)=
∫ 1

0

∣∣ f ′(reiθ)∣∣p∣∣ f ′(reiθ)∣∣1−p
dr ≤ Cθ

∫ 1

0
(1− r)p−1

∣∣ f ′(reiθ)∣∣p dr <∞.

(4.5)
�

Proof of Theorem 1.6. Since

�
p
α ⊂�

p
β , −1 < α≤ β, 0 < p <∞, (4.6)

(a) follows from Theorem 1.4.
Suppose now that 1 < p < 2, p− 2 < α < p− 1, and f ∈�

p
α . Then the set

Tα
f =

{
θ ∈ [−π,π] :

∫ 1

0
(1− r)α

∣∣ f ′(reiθ)∣∣p dr <∞
}

(4.7)
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is such that [−π,π] \Tα
f has Lebesgue measure 0. Now, using Hölder’s inequality, we see

that there exists a positive constant Cα,p such that

V( f ,θ)=
∫ 1

0
(1− r)α/p

∣∣ f ′(reiθ)∣∣(1− r)−α/p dr

≤
(∫ 1

0
(1− r)α

∣∣ f ′(reiθ)∣∣p dr
)1/p(∫ 1

0
(1− r)−p

′α/p dr
)1/p′

≤ Cα,p

(∫ 1

0
(1− r)α

∣∣ f ′(reiθ)∣∣p dr
)1/p

<∞,

(4.8)

for all θ ∈ Tα
f . (We have used that −p′α/p >−1 since α < p− 1.) Thus, (b) is proved.

Part (c) follows from the well-known inclusion

�
p
p−2 =�p ⊂�q =�

q
q−2, 1 < p < q <∞, (4.9)

(see, e.g., [3, page 112]), Theorem 1.5, and the fact that �2 =�.
Finally, suppose that 2 < p <∞ and f ∈�

p
α . Using Hölder’s inequality with exponents

p/(p− 2) and p/2, we have that

∫
D

(
1−|z|)β∣∣ f ′(z)

∣∣2
dA(z)=

∫
D

(
1−|z|)β−2α/p∣∣ f ′(z)

∣∣2(
1−|z|)2α/p

dA(z)

≤
(∫

D

(
1−|z|)(pβ−2α)/(p−2)

dA(z)
)(p−2)/p

×
(∫

D

(
1−|z|)α∣∣ f ′(z)

∣∣p dA(z)
)2/p

.

(4.10)

Letting β = 0, we see that the condition α < p/2− 1 implies that f ∈�. Hence, (e) follows
from part (a) of Theorem 1.5. On the other hand, if p− 1 > α ≥ p/2− 1, then β can be
chosen so that β > (2/p)(1 + α)− 1 and 0 < β < 1. Then (4.10) implies that f ∈�2

β, and
(d) follows from part (b) of Theorem 1.5. �
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