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1. Introduction

Let C be a closed convex subset of a real Hilbert space H . Recall that a mapping A of C
into H is called monotone if

〈Au−Av, u− v〉 ≥ 0, (1.1)

for all u,v ∈ C. A is called α-inverse strongly monotone if there exists a positive real num-
ber α such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, (1.2)

for all u,v ∈ C. It is well known that the variational inequality problem VI(A,C) is to find
u∈ C such that

〈Au, v−u〉 ≥ 0, (1.3)
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for all v ∈ C (see [1–3]). The set of solutions of the variational inequality problem is
denoted by Ω. The variational inequality has been extensively studied in the literature,
see, for example, [4–6] and the references therein. A mapping S of C into itself is called
nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖, (1.4)

for all u,v ∈ C. We denote by F(S) the set of fixed points of S.
For finding an element of F(S)∩Ω under the assumption that a set C ⊂H is closed

and convex, a mapping S of C into itself is nonexpansive and a mapping A of C into
H is α-inverse strongly monotone, Takahashi and Toyoda [7] introduced the following
iterative scheme:

xn+1 = αnxn +
(
1−αn

)
SPC

(
xn− λnAxn

)
, (1.5)

for every n= 0,1,2, . . . , where PC is the metric projection of H onto C, x0 = x ∈ C, {αn}
is a sequence in (0,1), and {λn} is a sequence in (0,2α). They showed that if F(S)∩Ω
is nonempty, then the sequence {xn} generated by (1.5) converges weakly to some z ∈
F(S)∩Ω. Recently, Nadezhkina and Takahashi [8] introduced a so-called extragradient
method motivated by the idea of Korpelevič [9] for finding a common element of the
set of fixed points of a nonexpansive mapping and the set of solutions of a variational
inequality problem. They obtained the following weak convergence theorem.

Theorem 1.1 (see Nadezhkina and Takahashi [8]). Let C be a nonempty closed convex sub-
set of a real Hilbert space H . Let A : C→H be a monotone k-Lipschitz continuous mapping,
and let S : C → C be a nonexpansive mapping such that F(S)∩Ω �= ∅. Let the sequences
{xn}, {yn} be generated by

x0 = x ∈H ,

yn = PC
(
xn− λnAxn

)
,

xn+1 = αnxn +
(
1−αn

)
SPC

(
xn− λnAyn

)
, ∀n≥ 0,

(1.6)

where {λn} ⊂ [a,b] for some a,b ∈ (0,1/k) and {αn} ⊂ [c,d] for some c,d ∈ (0,1). Then the
sequences {xn}, {yn} converge weakly to the same point PF(S)∩Ω(x0).

Very recently, Zeng and Yao [10] introduced a new extragradient method for finding
a common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of a variational inequality problem. They obtained the following strong conver-
gence theorem.

Theorem 1.2 (see Zeng and Yao [10]). Let C be a nonempty closed convex subset of a real
Hilbert space H . Let A : C → H be a monotone k-Lipschitz continuous mapping, and let
S : C→ C be a nonexpansive mapping such that F(S)∩Ω �= ∅. Let the sequences {xn}, {yn}



Yonghong Yao et al. 3

be generated by

x0 = x ∈H ,

yn = PC
(
xn− λnAxn

)
,

xn+1 = αnx0 +
(
1−αn

)
SPC

(
xn− λnAyn

)
, ∀n≥ 0,

(1.7)

where {λn} and {αn} satisfy the following conditions:
(a) {λnk} ⊂ (0,1− δ) for some δ ∈ (0,1);
(b) {αn} ⊂ (0,1),

∑∞
n=0αn =∞, limn→∞αn = 0.

Then the sequences {xn} and {yn} converge strongly to the same point PF(S)∩Ω(x0) pro-
vided that

lim
n→∞

∥
∥xn+1− xn

∥
∥= 0. (1.8)

Remark 1.3. The iterative scheme (1.6) in Theorem 1.1 has only weak convergence. The
iterative scheme (1.7) in Theorem 1.2 has strong convergence but imposed the assump-
tion (1.8) on the sequence {xn}.

In this paper, motivated by the iterative schemes (1.6) and (1.7), we introduced a new
extragradient method for finding a common element of the set of fixed points of a nonex-
pansive mapping and the set of solutions of the variational inequality problem for mono-
tone mapping. We obtain a strong convergence theorem under some mild conditions.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·,·〉 and norm ‖ · ‖ and let C be a closed
convex subset of H . It is well known that for any u∈H , there exists unique y0 ∈ C such
that

∥
∥u− y0

∥
∥= inf

{‖u− y‖ : y ∈ C
}
. (2.1)

We denote y0 by PCu, where PC is called the metric projection of H onto C. The metric
projection PC of H onto C has the following basic properties:

(i) ‖PCx−PC y‖ ≤ ‖x− y‖, for all x, y ∈H ,
(ii) 〈x− y,PCx−PC y〉 ≥ ‖PCx−PC y‖2, for every x, y ∈H ,

(iii) 〈x−PCx, y−PCx〉 ≤ 0, for all x ∈H , y ∈ C,
(iv) ‖x− y‖2 ≥ ‖x−PCx‖2 +‖y−PCx‖2, for all x ∈H , y ∈ C.

Such property of PC will be crucial in the proof of our main results. Let A be a monotone
mapping of C into H . In the context of the variational inequality problem, it is easy to see
from (iv) that

u∈Ω⇐⇒ u= PC(u− λAu), ∀λ > 0. (2.2)
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A set-valued mapping T : H → 2H is called monotone if for all x, y ∈H , f ∈ Tx and
g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if its graph
G(T) is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f ) ∈ H ×H , 〈x− y, f −
g〉 ≥ 0 for every (y,g)∈ G(T) implies that f ∈ Tx. Let A be a monotone mapping of C
into H and let NCv be the normal cone to C at v ∈ C, that is,

NCv =
{
w ∈H : 〈v−u,w〉 ≥ 0, ∀u∈ C

}
. (2.3)

Define

Tv =
⎧
⎨

⎩
Av+NCv if v ∈ C,

∅ if v /∈ C.
(2.4)

Then T is maximal monotone and 0∈ Tv if and only if v ∈VI(C,A) (see [11]).
Now, we introduce several lemmas for our main results in this paper.

Lemma 2.1 (see [12]). Let (E,〈·,·〉) be an inner product space. Then, for all x, y,z ∈ E and
α,β,γ ∈ [0,1] with α+β+ γ = 1, one has

‖αx+βy + γz‖2 = α‖x‖2 +β‖y‖2 + γ‖z‖2−αβ‖x− y‖2−αγ‖x− z‖2−βγ‖y− z‖2.

(2.5)

Lemma 2.2 (see [13]). Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0,1] with 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Suppose xn+1 =
(1− βn)yn + βnxn for all integers n ≥ 0 and limsupn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞‖yn− xn‖ = 0.

Lemma 2.3 (see [14]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1− γn

)
an + δn, (2.6)

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn =∞;

(2) limsupn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.
Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be a
monotone L-Lipschitz continuous mapping ofC into H , and let S be a nonexpansive mapping
of C into itself such that F(S)∩Ω �= ∅. For fixed u∈H and given x0 ∈H arbitrary, let the
sequences {xn}, {yn} be generated by

yn = PC
(
xn− λnAxn

)
,

xn+1 = αnu+βnxn + γnSPC
(
xn− λnAyn

)
,

(3.1)
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where {αn},{βn}, {γn} are three sequences in [0,1] satisfying the following conditions:
(C1) αn +βn + γn = 1,
(C2) limn→∞αn = 0,

∑∞
n=0αn =∞,

(C3) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1,
(C4) limn→∞ λn = 0.

Then {xn} converges strongly to PF(S)∩Ωu.

Proof. Let x∗ ∈ F(S)∩Ω, then x∗ = PC(x∗ − λnAx∗). Put tn = PC(xn − λnAyn). Substi-
tuting x by xn− λnAyn and y by x∗ in (iv), we have

∥
∥tn− x∗

∥
∥2 ≤ ∥∥xn− λnAyn− x∗

∥
∥2−∥∥xn− λnAyn− tn

∥
∥2

= ∥∥xn− x∗
∥
∥2− 2λn

〈
Ayn, xn− x∗

〉
+ λ2

n

∥
∥Ayn

∥
∥2

−∥∥xn− tn
∥
∥2

+ 2λn
〈
Ayn, xn− tn

〉− λ2
n

∥
∥Ayn

∥
∥2

= ∥∥xn− x∗
∥
∥2

+ 2λn
〈
Ayn, x∗ − tn

〉−∥∥xn− tn
∥
∥2

= ∥∥xn− x∗
∥
∥2−∥∥xn− tn

∥
∥2

+ 2λn
〈
Ayn−Ax∗, x∗ − yn

〉

+ 2λn
〈
Ax∗, x∗ − yn

〉
+ 2λn

〈
Ayn, yn− tn

〉
.

(3.2)

Using the fact that A is monotonic and x∗ is a solution of the variational inequality prob-
lem VI(A,C), we have

〈
Ayn−Ax∗, x∗ − yn

〉≤ 0,
〈
Ax∗, x∗ − yn

〉≤ 0. (3.3)

It follows from (3.2) and (3.3) that

∥
∥tn− x∗

∥
∥2 ≤ ∥∥xn− x∗

∥
∥2−∥∥xn− tn

∥
∥2

+ 2λn
〈
Ayn, yn− tn

〉

= ∥∥xn− x∗
∥
∥2−∥∥(xn− yn

)
+
(
yn− tn

)∥∥2
+ 2λn

〈
Ayn, yn− tn

〉

= ∥∥xn− x∗
∥
∥2−∥∥xn− yn

∥
∥2− 2

〈
xn− yn, yn− tn

〉

−∥∥yn− tn
∥
∥2

+ 2λn
〈
Ayn, yn− tn

〉

= ∥∥xn− x∗
∥
∥2−∥∥xn− yn

∥
∥2−∥∥yn− tn

∥
∥2

+ 2
〈
xn− λnAyn− yn, tn− yn

〉
.
(3.4)

Substituting x by xn− λnAxn and y by tn in (iii), we have

〈
xn− λnAxn− yn, tn− yn

〉≤ 0. (3.5)

It follows that

〈
xn− λnAyn− yn, tn− yn

〉= 〈xn− λnAxn− yn, tn− yn
〉

+
〈
λnAxn− λnAyn, tn− yn

〉

≤ 〈λnAxn− λnAyn, tn− yn
〉≤ λnL

∥
∥xn− yn

∥
∥
∥
∥tn− yn

∥
∥.

(3.6)
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By (3.4) and (3.6), we obtain

∥
∥tn− x∗

∥
∥2 ≤ ∥∥xn− x∗

∥
∥2−∥∥xn− yn

∥
∥2−∥∥yn− tn

∥
∥2

+ 2λnL
∥
∥xn− yn

∥
∥
∥
∥tn− yn

∥
∥

≤ ∥∥xn− x∗
∥
∥2−∥∥xn− yn

∥
∥2−∥∥yn− tn

∥
∥2

+ λnL
2(∥∥xn− yn

∥
∥2

+
∥
∥yn− tn

∥
∥2)

≤ ∥∥xn− x∗
∥
∥2

+
(
λ2
nL

2− 1
)∥∥xn− yn

∥
∥2

+
(
λ2
nL

2− 1
)∥∥yn− tn

∥
∥2
.

(3.7)

Since λn→ 0 as n→∞, there exists a positive integer N0 such that λ2
nL

2− 1≤−1/2 when
n≥N0. It follows from (3.7) that

∥
∥tn− x∗

∥
∥≤ ∥∥xn− x∗

∥
∥. (3.8)

By (3.1), we have

∥
∥xn+1− x∗

∥
∥= ∥∥αnu+βnxn + γnStn− x∗

∥
∥≤ αn

∥
∥u− x∗

∥
∥+βn

∥
∥xn− x∗

∥
∥+ γn

∥
∥tn− x∗

∥
∥

≤ αn
∥
∥u− x∗

∥
∥+

(
1−αn

)∥∥xn− x∗
∥
∥≤max

{∥∥u− x∗
∥
∥,
∥
∥x0− x∗

∥
∥}.

(3.9)

Therefore, {xn} is bounded. Hence {tn}, {Stn}, {Axn}, and {Ayn} are also bounded.
For all x, y ∈ C, we get

∥
∥(I − λnA

)
x−(I − λnA

)
y
∥
∥2=∥∥(x− y)−λn(Ax−Ay)

∥
∥2=‖x− y‖2− 2λn〈x− y, Ax−Ay〉

+ λ2
n‖Ax−Ay‖2 ≤ ‖x− y‖2 + λ2

n‖Ax−Ay‖2

≤ ‖x− y‖2 + λ2
nL

2‖x− y‖2 = (1 +L2λ2
n

)‖x− y‖2,
(3.10)

which implies that

∥
∥(I − λnA

)
x− (I − λnA

)
y
∥
∥≤ (1 +Lλn

)‖x− y‖. (3.11)

By (3.1) and (3.11), we have

∥
∥tn+1− tn

∥
∥= ∥∥PC

(
xn+1− λn+1Ayn+1

)−PC
(
xn− λnAyn

)∥∥

≤ ∥∥(xn+1− λn+1Ayn+1
)− (xn− λnAyn

)∥∥

= ∥∥(xn+1− λn+1Axn+1
)− (xn− λn+1Axn

)

+ λn+1
(
Axn+1−Ayn+1−Axn

)
+ λnAyn

∥
∥

≤ ∥∥(xn+1− λn+1Axn+1
)− (xn− λn+1Axn

)∥∥

+ λn+1
(∥∥Axn+1

∥
∥+

∥
∥Ayn+1

∥
∥+

∥
∥Axn

∥
∥)+ λn

∥
∥Ayn

∥
∥

≤ (1 + λn+1L
)∥∥xn+1− xn

∥
∥

+ λn+1
(∥∥Axn+1

∥
∥+

∥
∥Ayn+1

∥
∥+

∥
∥Axn

∥
∥)+ λn

∥
∥Ayn

∥
∥.

(3.12)
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Set xn+1 = (1−βn)zn +βnxn. Then, we obtain

zn+1− zn = αn+1u+ γn+1Stn+1

1−βn+1
− αnu+ γnStn

1−βn

=
(

αn+1

1−βn+1
− αn

1−βn

)
u+

γn+1

1−βn+1

(
Stn+1− Stn

)

+
(

γn+1

1−βn+1
− γn

1−βn

)
Stn.

(3.13)

Combining (3.12) and (3.13), we have

∥
∥zn+1− zn

∥
∥−∥∥xn+1− xn

∥
∥

≤
∣
∣
∣
∣

αn+1

1−βn+1
− αn

1−βn

∣
∣
∣
∣‖u‖+

γn+1

1−βn+1

(
1 + λn+1L

)∥∥xn+1− xn
∥
∥

+
γn+1

1−βn+1

{
λn+1

(∥∥Axn+1
∥
∥+

∥
∥Ayn+1

∥
∥+

∥
∥Axn

∥
∥)+ λn

∥
∥Ayn

∥
∥}

+
∣
∣
∣
∣

γn+1

1−βn+1
− γn

1−βn

∣
∣
∣
∣
∥
∥Stn

∥
∥−∥∥xn+1− xn

∥
∥

≤
∣
∣
∣
∣

αn+1

1−βn+1
− αn

1−βn

∣
∣
∣
∣
(‖u‖+

∥
∥Stn

∥
∥)+

γn+1

1−βn+1
λn+1L

∥
∥xn+1− xn

∥
∥

+
γn+1

1−βn+1

{
λn+1

(∥∥Axn+1
∥
∥+

∥
∥Ayn+1

∥
∥+

∥
∥Axn

∥
∥)+ λn

∥
∥Ayn

∥
∥},

(3.14)

this together with (C2) and (C4) imply that

limsup
n→∞

(∥∥zn+1− zn
∥
∥−∥∥xn+1− xn

∥
∥)≤ 0. (3.15)

Hence by Lemma 2.2, we obtain ‖zn− xn‖→ 0 as n→∞. Consequently,

lim
n→∞

∥
∥xn+1− xn

∥
∥= lim

n→∞
(
1−βn

)∥∥zn− xn
∥
∥= 0. (3.16)

From (C4) and (3.12), we also have ‖tn+1− tn‖→ 0 as n→∞.
For x∗ ∈ F(S)∩Ω, from Lemma 2.1, (3.1), and (3.7), we obtain when n≥N0 that

∥
∥xn+1− x∗

∥
∥2 = ∥∥αnu+βnxn + γnStn− x∗

∥
∥2

≤ αn
∥
∥u− x∗

∥
∥2

+βn
∥
∥xn− x∗

∥
∥2

+ γn
∥
∥Stn− x∗

∥
∥2

≤ αn
∥
∥u− x∗

∥
∥2

+βn
∥
∥xn− x∗

∥
∥2

+ γn
∥
∥tn− x∗

∥
∥2

≤ αn
∥
∥u− x∗

∥
∥2

+βn
∥
∥xn− x∗

∥
∥2

+ γn
{(∥∥xn− x∗

∥
∥2

+
(
λ2
nL

2− 1
)∥∥xn− yn

∥
∥2)

+
(
λ2
nL

2− 1
)∥∥yn− tn

∥
∥2}

≤ αn
∥
∥u− x∗

∥
∥2

+
∥
∥xn− x∗

∥
∥2− 1

2

∥
∥xn− yn

∥
∥2

,

(3.17)
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which implies that

1
2

∥
∥xn− yn

∥
∥2 ≤ αn

∥
∥u− x∗

∥
∥2

+
∥
∥xn− x∗

∥
∥2−∥∥xn+1− x∗

∥
∥2

= αn
∥
∥u− x∗

∥
∥2

+
(∥∥xn− x∗

∥
∥−∥∥xn+1− x∗

∥
∥)

× (‖xn− x∗
∥
∥+

∥
∥xn+1− x∗

∥
∥)

≤ αn
∥
∥u− x∗

∥
∥2

+
(∥∥xn− x∗

∥
∥+

∥
∥xn+1− x∗

∥
∥)
∥
∥xn− xn+1

∥
∥.

(3.18)

Since αn→ 0 and ‖xn− xn+1‖→ 0, from (3.18), we have ‖xn− yn‖→ 0 as n→∞.
Noting that

∥
∥yn− tn

∥
∥= ∥∥PC

(
xn− λnAxn

)−PC
(
xn− λnAyn

)∥∥

≤ λn
∥
∥Axn−Ayn

∥
∥≤ λnL

∥
∥xn− yn

∥
∥−→ 0 as n−→∞,

∥
∥tn− xn

∥
∥≤ ∥∥tn− yn

∥
∥+

∥
∥yn− xn

∥
∥−→ 0 as n−→∞,

∥
∥Syn− xn+1

∥
∥≤ ∥∥Syn− Stn

∥
∥+

∥
∥Stn− xn+1

∥
∥≤ ∥∥yn− tn

∥
∥+αn

∥
∥Stn−u

∥
∥+βn

∥
∥Stn− xn

∥
∥

≤ ∥∥yn− tn
∥
∥+αn

∥
∥Stn−u

∥
∥+βn

∥
∥Stn− Sxn

∥
∥+βn

∥
∥Sxn− xn

∥
∥

≤ ∥∥yn− tn
∥
∥+αn

∥
∥Stn−u

∥
∥+βn

∥
∥tn− xn

∥
∥+βn

∥
∥Sxn− xn

∥
∥.

(3.19)

Consequently, from (3.19), we can infer that

∥
∥Sxn− xn

∥
∥≤ ∥∥Sxn− Stn

∥
∥+

∥
∥Stn− Syn

∥
∥+

∥
∥Syn− xn+1

∥
∥+

∥
∥xn+1− xn

∥
∥

≤ (1 +βn
)∥∥xn− tn

∥
∥+ 2

∥
∥tn− yn

∥
∥+αn

∥
∥Stn−u

∥
∥+βn

∥
∥Sxn− xn

∥
∥+

∥
∥xn+1− xn

∥
∥,

(3.20)

which implies that

∥
∥Sxn− xn

∥
∥−→ 0 as n−→∞. (3.21)

Also we have
∥
∥Stn− tn

∥
∥≤ ∥∥Stn− Sxn

∥
∥+

∥
∥Sxn− xn

∥
∥+

∥
∥xn− tn

∥
∥

≤ 2
∥
∥tn− xn

∥
∥+

∥
∥Sxn− xn

∥
∥−→∞ as n−→∞.

(3.22)

Next we show that

limsup
n→∞

〈
u− z0,xn− z0

〉≤ 0, (3.23)

where z0 = PF(S)∩Ωu.
To show it, we choose a subsequence {tni} of {tn} such that

limsup
n→∞

〈
u− z0, Stn− z0

〉= lim
i→∞

〈
u− z0, Stni − z0

〉
. (3.24)
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As {tni} is bounded, we have that a subsequence {tni j} of {tni} converges weakly to z.
We may assume without loss of generality that tni ⇀ z. Since ‖Stn − tn‖ → 0, we obtain
Stni ⇀ z as i→∞. Then we can obtain z ∈ F(S)∩Ω. In fact, let us first show that z ∈Ω.

Let

Uv =
⎧
⎨

⎩
Av+NCv, v ∈ C,

∅, v /∈ C.
(3.25)

Then U is maximal monotone. Let (v,w) ∈ G(U). Since w−Av ∈ NCv and tn ∈ C, we
have 〈v− tn, w−Av〉 ≥ 0. On the other hand, from tn = PC(xn− λnAyn), we have

〈
v− tn, tn−

(
xn− λnAyn

)〉≥ 0, (3.26)

that is,

〈
v− tn,

tn− yn
λn

+Ayn

�
≥ 0. (3.27)

Therefore, we have

〈
v− tni , w

〉≥ 〈v− tni , Av
〉≥ 〈v− tni , Av

〉−
〈
v− tni ,

tni − xni
λni

+Ayni

�

=
〈
v− tni , Av−Ayni −

tni − xni
λni

�

= 〈v− tni , Av−Atni
〉

+
〈
v− tni , Atni −Ayni

〉−
〈
v− tni ,

tni − xni
λni

�

≥ 〈v− tni , Atni
〉−

〈
v− tni ,

tni − xni
λni

+Ayni

�
.

(3.28)

Noting that ‖tni − yni‖ → 0 as i→∞ and A is Lipschitz continuous, hence from (3.28),
we obtain 〈v− z,w〉 ≥ 0 as i→∞. Since U is maximal monotone, we have z ∈U−10, and
hence z ∈Ω.

Let us show that z ∈ F(S). Assume that z /∈ F(S). From Opial’s condition, we have

liminf
i→∞

∥
∥tni − z

∥
∥ < liminf

i→∞
∥
∥tni − Sz

∥
∥= liminf

i→∞
∥
∥tni − Stni + Stni − Sz

∥
∥

≤ liminf
i→∞

(∥∥tni − Stni
∥
∥+

∥
∥Stni − Sz

∥
∥)= liminf

i→∞
∥
∥Stni − Sz

∥
∥

≤ liminf
i→∞

∥
∥tni − z

∥
∥.

(3.29)

This is a contradiction. Thus, we obtain z ∈ F(S).
Hence, from (iii), we have

limsup
n→∞

〈
u− z0, xn− z0

〉= limsup
n→∞

〈
u− z0, Stn− z0

〉

= lim
i→∞

〈
u− z0, Stni − z0

〉= 〈u− z0, z− z0
〉≤ 0.

(3.30)



10 Journal of Inequalities and Applications

Therefore,

∥
∥xn+1− z0

∥
∥2 = 〈αnu+βnxn + γnStn− z0, xn+1− z0

〉

= αn
〈
u− z0, xn+1− z0

〉
+βn

〈
xn− z0, xn+1− z0

〉
+ γn

〈
Stn− z0, xn+1− z0

〉

≤ 1
2
βn
(∥∥xn− z0

∥
∥2

+
∥
∥xn+1− z0

∥
∥2)

+αn
〈
u− z0, xn+1− z0

〉

+
1
2
γn
(∥∥tn− z0

∥
∥2

+
∥
∥xn+1− z0

∥
∥2)

≤ 1
2

(
1−αn

)(∥∥xn− z0
∥
∥2

+
∥
∥xn+1− z0

∥
∥2)

+αn
〈
u− z0, xn+1− z0

〉
,

(3.31)

which implies that

∥
∥xn+1− z0

∥
∥2 ≤ (1−αn

)∥∥xn− z0
∥
∥2

+ 2αn
〈
u− z0,xn+1− z0

〉
, (3.32)

this together with (3.30) and Lemma 2.3, we can obtain the conclusion. This completes
the proof. �

We observe that some strong convergence theorems for the iterative scheme (3.1) were
established under the assumption that the mapping A is α-inverse strongly monotone in
[15].

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A be a monotone L-Lipschitz continuous mapping of C into H such that Ω �= ∅. For fixed
u∈H and given x0 ∈H arbitrary, let the sequences {xn}, {yn} be generated by

yn = PC
(
xn− λnAxn

)
,

xn+1 = αnu+βnxn + γnPC
(
xn− λnAyn

)
,

(3.33)

where {αn},{βn}, {γn} are three sequences in [0,1] satisfying the following conditions:
(C1) αn +βn + γn = 1,
(C2) limn→∞αn = 0,

∑∞
n=0αn =∞,

(C3) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1,
(C4) limn→∞ λn = 0.

Then {xn} converges strongly to PΩu.

4. Applications

A mapping T : C→ C is called strictly pseudocontractive if there exists k with 0 ≤ k < 1
such that

‖Tx−Ty‖2 ≤ ‖x− y‖2 + k
∥
∥(I −T)x− (I −T)y

∥
∥2

, (4.1)

for all x, y ∈ C. Put A= I −T , then we have

∥
∥(I −A)x− (I −A)y

∥
∥2 ≤ ‖x− y‖2 + k‖Ax−Ay‖2. (4.2)
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On the other hand,
∥
∥(I −A)x− (I −A)y

∥
∥2 = ‖x− y‖2 +‖Ax−Ay‖2− 2〈x− y, Ax−Ay〉. (4.3)

Hence, we have

〈x− y, Ax−Ay〉 ≥ 1− k

2
‖Ax−Ay‖2 ≥ 0. (4.4)

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H . Let T be a k-
strictly pseudocontractive mapping of C into itself, and let S be a nonexpansive mapping of
C into itself such that F(T)∩F(S) �= ∅. For fixed u∈H and given x0 ∈H arbitrary, let the
sequences {xn}, {yn} be generated by

yn =
(
1− λn

)
xn + λnTxn,

xn+1 = αnu+βnxn + γnS
((

1− λn
)
yn + λnT yn

)
,

(4.5)

where {αn}, {βn}, {γn} are three sequences in [0,1] satisfying the following conditions:
(C1) αn +βn + γn = 1,
(C2) limn→∞αn = 0,

∑∞
n=0αn =∞,

(C3) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1,
(C4) limn→∞ λn = 0.

Then {xn} converges strongly to PF(T)∩F(S)u.

Proof. Put A = I − T . Then A is monotone. We have F(T) = Ω and PC(xn − λnAxn) =
(1− λn)xn + λnTxn. So, by Theorem 3.1, we can obtain the desired result. This completes
the proof. �

Theorem 4.2. Let H be a real Hilbert space. Let A be a monotone mapping of H into itself
and let S be a nonexpansive mapping of H into itself such that A−10∩ F(S) �= ∅. For fixed
u∈H and given x0 ∈H arbitrary, let the sequences {xn}, {yn} be generated by

yn = xn− λnAxn,

xn+1 = αnu+βnxn + γnS
(
yn− λnAyn

)
,

(4.6)

where {αn},{βn}, {γn} are three sequences in [0,1] satisfying the following conditions:
(C1) αn +βn + γn = 1,
(C2) limn→∞αn = 0,

∑∞
n=0αn =∞,

(C3) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1,
(C4) limn→∞ λn = 0.

Then {xn} converges strongly to PA−10∩F(S)u.

Proof. Since A−10 =Ω, putting PH = I , by Theorem 3.1, we can obtain the conclusion.
This completes the proof. �
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