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1. Introduction

Steffensen [1] stated that if f and g are integrable functions on (a,b) with f nonincreas-
ingand 0 < g < 1, then

b b a+d
|, fwars| fwgwds | o, (L1)

where A = ff g(t)dt. This inequality is usually called Steffensen’s inequality in the litera-
ture. A comprehensive survey on Steffensen’s inequality can be found in [2].

Recently, Anderson [3] has given the time scale version of Steffensen’s integral in-
equality, using nabla integral as follows: let a,b € T% and let f,g : [a,b]r — R be nabla
integrable functions, with f of one sign and decreasing and 0 < g < 1 on [a,b]r. Assume
¢,y € [a,b]y such that

b
b—fsjg(t)VtSy—a it f>0,t€[ablr

“b (1.2)
y—asfg(t)wsb—e if f <0t e [a,b]r.
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Then

b b y
Jf(t)VtsJ f(t)g(t)VtﬁJ FOVL, (1.3)
4 a a

In the theorem above which can be found in [3] as Theorem 3.1, we could replace the
nabla integrals with delta integrals under the same hypotheses and get a completely anal-
ogous result.

Wu [4] has given some generalizations of Steffensen’s integral inequality which can
be written as the following inequality: let f, g, and h be integrable functions defined on
[a,b] with f nonincreasing. Also let

0<g(t)<h(t) (t€lab]). (1.4)
Then
b b a+h
Jb_/\f(t)h(t) dt < J F(t)g(t)dt < J F(Oh(t)dt, (1.5)
where A is given by
Lmh(t) dt = Lb g(t)dt = J’:Ah(t) dt. (1.6)

The aim of this paper is to extend some generalizations of Steffensen’s integral in-
equality to an arbitrary time scale. We obtain Steffensen’s integral inequality using the
diamond-a derivative on time scales. The diamond-« derivative reduces to the standard
A derivative for a = 1, or the standard V derivative for a = 0. We refer the reader to [5]
for an account of the calculus corresponding to the diamond-a dynamic derivative. The
paper is organized as follows: the next section contains basic definitions and theorems of
time scales theory, which can also be found in [5-9], and of delta, nabla, and diamond-
« dynamic derivatives. In Section 3, we present our results, which are generalizations of
Steffensen’s integral inequality on time scales.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of real numbers. The calculus of
time scales was initiated by Stefan Hilger in his Ph.D. thesis [9] in order to create a theory
that can unify discrete and continuous analysis. Let T be a time scale. T has the topology
that it inherits from the real numbers with the standard topology. Let o(t) and p(t) be
the forward and backward jump operators in T, respectively. For ¢t € T, we define the
forward, jump operator o : T — T by

o(t)=inf{se€T:s>t}, (2.1)
while the backward jump operator p: T — T is defined by

p(t) =supl{se T:s<t}. (2.2)



U. M. Ozkan and H. Yildirim 3

If o(t) > t, we say that ¢ is right-scattered, while if p(t) < t, we say that ¢ is left-scattered.
Points that are right-scattered and left-scattered at the same time are called isolated. If
o(t) = t, then t is called right-dense, and if p(f) = ¢, then ¢ is called left-dense. Points
that are right-dense and left-dense at the same time are called dense. Let ¢ € T, then two
mappings y,v: T —[0, o) satisfying

ut)i=o()—t, vt =t—p(t) (2.3)

are called the graininess functions.

We introduce the sets T*, Ty, and TX which are derived from the time scales T as
follows. If T has a left-scattered maximum ¢;, then T = T—{t;}, otherwise T* = T. If
T has a right-scattered minimum #,, then T, = T—{f,}, otherwise T, = T. Finally, T¢ =
T*NT,.

Let f: T — R be a function on time scales. Then for t € T¥, we define f2(¢) to be the
number, if one exists, such that for all ¢ > 0, there is a neighborhood U of t such that for
allse U,

| f(a(®) = f(s) = fADLo(t) = s]| <ela(t) —sl. (2.4)

We say that f is delta differentiable on T*, provided f2(t) exists for all t € T*. Similarly,
for t € Ty, we define fV(t) to be the number value, if one exists, such that for all £ > 0,
there is a neighborhood V of t such that for all s € V,

| £ (p() = £(5) = FTDp(t) ~s]| <elp(t) ~s. (2.5)

We say that f is nabla differentiable on T, provided fV (¢) exists for all t € T,.

If f:T — Ris a function, then we define the function f7: T — R by f°(t) = f(o(¢))
forall t € T, thatis, f7 = f oo.

If f:T — R is a function, then we define the function f#: T — R by f*(t) = f(p(t))
forall t € T, thatis, ff = f op.

Assume that f: T — R is a function and let t € T*(t # minT). Then we have the fol-
lowing.

(i) If f is delta differentiable at ¢, then f is continuous at ¢.

(ii) If f is left continuous at t and ¢ is right-scattered, then f is delta differentiable at ¢
with

sy = L7O-JO 2.6
fho == 26)
(iii) If ¢ is right-dense, then f is delta differentiable at ¢ if and only if the limit
limd (D= f() (2.7)
s—t t—s

exists as a finite number. In this case,

£ =tim O =S (tii { ), (2.8)
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(iv) If f is delta differentiable at ¢, then

o) = f(6) +u(t) fA(0). (2.9)

Assume that f : T — R is a function and let t € T, (¢ # maxT). Then we have the fol-
lowing.

(i) If f is nabla differentiable at ¢, then f is continuous at .

(ii) If f is right continuous at ¢ and ¢ is left-scattered, then f is nabla differentiable at
t with

v S = fP()
= 0 (2.10)
(iii) If ¢ is left-dense, then f is nabla differentiable at ¢ if and only if the limit
lim =S (2.11)
s—t t—s
exists as a finite number. In this case,
fv(t) =limf(t)_f(s), (2.12)
s—t t—s
(iv) If f is nabla differentiable at ¢, then
fP(t) = f(&) =v() £V (1). (2.13)

A function f: T — R is called rd-continuous, provided it is continuous at all right-
dense points in T and its left-sided limits finite at all left-dense points in T.

A function f: T — R is called Id-continuous, provided it is continuous at all left-dense
points in T and its right-sided limits finite at all right-dense points in T.

Afunction F: T — R s called a delta antiderivative of f : T — R, provided FA(¢) = f(t)
holds for all ¢ € T*. Then the delta integral of f is defined by

b
[ rac=re) - Fa. (214)

A function G: T — R is called a nabla antiderivative of g : T — R, provided G () =
g(t) holds for all t € T,. Then the nabla integral of g is defined by

b
[ svi=aw-cw. (215)

Many other information sources concerning time scales can be found in [6-8].

Now, we briefly introduce the diamond-« dynamic derivative and the diamond-« dy-
namic integra,l and we refer the reader to [5] for a comprehensive development of the
calculus of the diamond-« dynamic derivative and the diamond-a dynamic integration.
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Let T be a time scale and f(t) be differentiable on T in the A and V senses. For t € T,
we define the diamond-« dynamic derivative f°=(t) by

foe) =af(t)+(1-a)fV(t), 0<a<l. (2.16)

Thus f is diamond-« differentiable if and only if f is A and V differentiable. The
diamond-« derivative reduces to the standard A derivative for & = 1, or the standard V
derivative for & = 0. On the other hand, it represents a “weighted dynamic derivative” for
a € (0,1). Furthermore, the combined dynamic derivative offers a centralized derivative
formula on any uniformly discrete time scale T when o = 1/2.

Let f,g: T — R be diamond-« differentiable at t € T. Then

(i) f +g: T — R is diamond-« differentiable at t € T with

(f+g)%(t) = fo(t) +g°(b); (2.17)

(ii) for any constant ¢, cf : T — R is diamond-« differentiable at t € T with

(cf)°e(t) = cf°(1); (2.18)

(iii) fg: T — R is diamond-« differentiable at t € T with

(f@)*(t) = fo(t)g(H) +afo(H)g" (1) + (1 - a) fP(1)g" (1), (2.19)

Leta,t € T,and h: T — R. Then the diamond-« integral from a to t of h is defined by
t t t
| B0ur = Hoar+(-0) [ BV 0<ast (2.20)

We may notice that since the {, integral is a combined A and V integral, we, in general,
do not have

<J:h(‘[)<>a‘['><>a —h(t), teT. (2.21)

Leta,b,t €T, c € R, then
() [[f (D) +g(0)]0at =[5 F(D)OaT + [, 8(1)0ur,
(ii) [3cf(1)0at = [} f(1)0ur,
(iii) [} f(1)0at = [L f(D)0at + 3 f()Our.

3. Main results

Throughout this section, we suppose that T is a time scale, a < b are points in T. For a g-
difference equation version of the following result, including proof techniques, see [10].
We refer the reader to [10] for an account of g-calculus and its applications.

THEOREM 3.1. Leta,be TEwitha<band f, g, and h: [a,b]y — R be Oq-integrable func-
tions, with f of one sign and decreasing and 0 < g(t) < h(t) on [a,b]y. Assume €,y € [a,b]y
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such that
b b y
L h(t)()atsj g(t)Oatsj W6)Out if f >0, tE [a,blr,
} “b “b (3.1)
J h(t)()atsj g(H)0ut < L W6)Out if f <0, tE [a,b]r.
Then
j £ <>at<j F(Dg(1) 0t < j FORDOL. (32)

Proof. The proof given in the g-difference case [10] can be extended to general time
scales. We prove only the left inequality in (3.2) in the case f > 0. The proofs of the
other cases are similar. Since f is decreasing and g is nonnegative, we get

b b 4 b b
| F0g@0at = | FOhe10at = | F01g010ut+ | FORW0ut~ | FOMREI0u
j F(hg t><>ar—j FOIR) - g(B)]0at
j F(Dg()0ut — f( e)j 2(0]0at
b
- j F(BgD)0at — f(O) L h(t)0at + £(£) L 2()0ut
14 b b
> j F(BgD)0at — f(O) J 2()0ut + £(0) L 2(1)0at
4 b b
- j F(Dg()0ut - f(e)(L 2(t)0ut - L £(1)0at)
4 4
- j F(BgD)0at — f(O) J 2(1)0ut
J [f(t) = f(©)]g(t)Qat = 0.

(3.3)
(]

Remark 3.2. When « = 0 and setting h(t) = 1, inequality (3.2) reduces to inequality [3,
(3.1)].

In order to obtain our other results, we need the following lemma.

LemMA 3.3. Leta,b e TE witha<band f, g, and h: [a,b]y — R be Qq-integrable func-
tions. Suppose also that €,y € [a,b]y such that

G ng(t)oat - Lbh(t)oat. (3.4)
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Then

b
L f(t)g(t)<>at=Ly(f(t)h(t)—[f(t)—f(y)][h(t)— (t) ]><>at+j LF(5) — F()]g(D)0at

(3.5)
b 4 b
j f(t)g(t><>at=f LF(5) = F(O)]g(8)0at+ L (FOR® — LF&) - FOIRD - g(O])0e
‘ ! (3.6)
Proof. We prove the integral identity (3.5). By direct computation, we have
b
[[ Fmo - 170 - PO - g0 0ut - J Fg(00at
=Ly (FORE) - FO) — LF1) — FOITAE) - g(D)])Oat
b
+Jyf(t)g D0ut = | FDg(D0u1 (3.7)
= [ sl - g0 oat—j F(Dg(0)0at
h abt — a - at.
n( j ()0at j £()0at) L F(Dg()0ut
If we apply assumption
y b
j h(£)0at = j g(D0ut (3.8)
to (3.7), we obtain
Yy Y b
h of — af | — o
f(y)(L (£)0ut j 200 t) L F(Og(1)0ut
b b
= fO( | g0t~ [ g00ut) - [ f0g(10ut
¢ ¢ 4 (3.9)

b b
- f(y)j g(t)%t—j F(D(D0ut
Y

- [[ 170 - rolawou

By combining the integral identities (3.7) and (3.9), we have integral identity (3.5). The
proof of identity (3.6) is similar to that of integral identity (3.5) and is omitted. g

THEOREM 3.4. Leta,b € TEwitha<band f, gand h: [a,bly — R be {4-integrable func-
tions, f of one sign and decreasing and 0 < g(t) < h(t) on [a,b]y. Assume €,y € [a,b]y such
that

y b b
f h()Oat =j 2(1)0ut = L h()Oat. (3.10)
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Then
Lbfmh(t)oat < Lb (FORE) — LF(1) — F@RE) —g(1)]) Oat
< Lb F(O(0u
< [ (om0 - [0 - FOIAO - g0
< Ly FORDOut.

(3.11)

Proof. In view of the assumptions that the function f is decreasing on [a,b]y and that
0 < g(t) < h(t), we conclude that

14
L [f(t) = f(O)]g(t)Oat = 0, (3.12)

b
L LF(6) — FOI[h(D) - g(1)]0at = 0. (3.13)

Using the integral identity (3.6) together with the integral inequalities (3.12) and (3.13),
we have

b b
L f(t)h(t)oatSL (F(Oh) — [F(5) — F@O1[h(t g(f])Oat<J FO0)0ut.
(3.14)

In the same way as above, we can prove that
[ oot = [ (Fom) - [0 - Fnline - go)ou
SJ FORDOut.

The proof of Theorem 3.4 is completed by combining the inequalities (3.14) and (3.15).
(]

(3.15)

THEOREM 3.5. Let a,b € TE witha< b and f, g, h and ¢ : [a,b]t — R be Oq-integrable
functions, f of one sign and decreasing and 0 < ¢(t) < g(t) < h(t) — ¢(t) on [a,b]y. Assume
¢,y is given by

y b b
j B(E)Oat = j 2(1)0ut = L h(D)0at (3.16)

such that €,y € [a,b]y. Then

b b
j f<t>h<t><>,xt+j ILF() — F@]o(t) | Out
¢ @ (3.17)

b y b
sj f(t)g(t)oatsf f(t)h(t)oat—J ILF(8) = £ ()] Oat.
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Proof. By the assumptions that the function f is decreasing on [a,b]y and that

0<o(t) <g(t) <h()—(t) (t€[ably), (3.18)

it follows that

b

jy £~ PO ~g®10at+ [ [70) = F0)g(0t

a y
b
= 170~ £ 10 - g@10at+ [ 1 70) = F(0) 8010t
“y , v (3.19)
= [ 1700 low0u+ | 15 - f0lpwodt

= Jb [ [Lf(t) = fF()]e(t) | Qat.

a

Similarly, we find that

b
|

b
je [F(6) - f(f)]g(t)OaHL LF(0)— FOIA) - g(B)]0at = j LF(5) — F(@©)]9(8) Oat.

(3.20)

By combining the integral identities (3.5) and (3.6) and the inequalities (3.19) and (3.20),
we have inequality (3.17). O

Remark 3.6. When « = 0 and setting h(f) = 1 and ¢(t) = 0, inequality (3.17) reduces to
[3, inequality (3.1)].
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