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1. Introduction

The well-known Griiss integral inequality [1] can be stated as follows (see [2, page 296]):

\ﬁff(x)g(x)dx - (ﬁff(x)dx) (bf—afgmdx)

a

< P-p@-a), (1)

provided that f and g are two integrable functions on [a, b] such thatp < f(x) < P, g < g(x) <
Q, for all x € [a,b], where p, P, g, Q are real constants.

Many generalizations, extensions, and variants of this inequality (1.1) have appeared
in the literature, see [1-8] and the references given therein. The main purpose of the present
paper is to establish several multivariate Griiss integral inequalities. Our results provide a new
estimates on such type of inequalities.

2. Main results

In what follows, R denotes the set of real numbers, R"” the n-dimensional Euclidean space. Let
D= {(x1,...,xp) : a; < x; <b;(i =1,...,n)}. For a function u(x) : R" - R, we denote the
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first-order partial derivatives by (0u(x)/0x;) (i = 1,...,n) and [ju(x)dx the n-fold integral
jfll f:: u(xi,...,xp)dxy - - dx,.

For continuous functions p(x), g(x) : D—R which are differentiable on D and w(x) :
D—[0, o) an integrable function such that | pw(x)dx > 0, we use the notation

(Jowx)p(x)dx) (Jow(x)q(x)dx)
Jpw(x)dx

Glew,pg), = [ w(@p(oacod - 2.1)

to simplify the details of presentation. Furthermore, if 3’ (0h/0x;)-(x; — y;) #0, for any x,y €
D, we use the abbreviations

G [ZC’ w, 8, h] n
_ o Up (Bt (0f (€)/0x:) (xi = yi) / 321 (9 () / 9x:) (xi — yi) )wo(y)dy) g (x) h(x)w (x)dx
Jpw(y)dy
o Up (X (0f (e)/0xi) (xi — yi) / 5t (Oh(e) / 0xi) (xi — yi) )w(y h(y)dy)g(x)w(x)dx
pw(y)dy
G[Za,w, f,H],
_ (U (Ei1(9g(d)/0xi) (xi — i) / X121 (9h(d) / 0xi) (xi — yi) )w(y)dy) f (¥)h(x)w (x)dx
hw(y)dy
o Up (X (0g(d) /0xi) (xi — yi) / X (0h(d) / 0xi) (xi — yi) )w(y)h(y)dy) f (x)w (x)dx
w(y)dy
(2.2)
It is clear that if
S (0f(e)/0xi) (xi—yi) _ Zi (98(d)/Oxi) (xi—yi) _ 2.3)

S (0h(c)/0xi) (xi—vi)  Spy (0h(d)/dxi) (xi - vi)

then G[=.,w, g, h], = Glw, g, h], and G[Z4,w, f, h], = G[w, f, h],,
Our main results are established in the following theorems.

Theorem 2.1. Let f,g,h : R" — R be continuous functions on D. If f, g are differentiable on
the interior of D and w(x) : D — [0,00) an integrable function such that [w(x)dx > 0. If
>t (0h/0xi)-(xi — yi) #0, for every x € D, then

Glw, £,81,| < 5 {G[Ze,w, 8,h],| + |G w, £, 1], |} 24)

Proof. Let x,y € D with x#y. From the n-dimensional version of the Cauchy’s mean value
theorem (see [9]), we have

o S (0f(0)/0xi) (xi - yi)
F-fy) = >t (0h(c)/oxi) (xi — i) (h(x) = 1)), 25)
S (9g(d)/0x) (i~ i) '
g(x) - g(y) = ST Gh() /o) (i — ) (h(x) - h(y)),
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where c = (y1 +a(x1 —y1),..., Ynt+a(xy,—yn))and d = (y1 +px1-v1),..., Yn +P(xn—1n)) (0 <
a <1,0 < p <1). Multiplying both sides of (2.5) by g(x) and f(x), respectively, and adding,
we get

D (0f () /0x:) (xi = yi)
i1 (0h(c)/0xi) (xi = yi)

S (08()/a%) (x - )
p 1(ah(d)/axl)( Xi— yl)

2f(x)g(x) = g(x) f(y) - f(x)g(y) = (g(x)h(x) - g(x)h(y))

(f(x)h(x) = f(x)h(y))-
(2.6)

Multiplying both sides of (2.6) by w(y) and integrating the resulting identity with respect to y
over D, we have

2([ windy ) rx1g0 -0 [ sy - £ [ wingdy

<I i (0f (e)/0xi) (xi — i)
Sty (0h(c)/dxi) (xi — yi)

(0 (c)/0xi) (xi — yi)
p 2it1 (Oh(c)/0x:) (xi = yi)

<f Zz 1(ag(d)/axl Xi _yi)
3L (0h(d)/0x;) (xi = i)

)J Zl 1(ag(d)/axl (xl 1)
>ty (0h(d) /0xi) (xi — yi)

w()dy ) (k)

-8(x)

w(y)h(y)dy (2.7)

w(w)dy ) ()

w(y)h(y)dy.

Next, multiplying both sides of (2.7) by w(x) and integrating the resulting identity with respect
to x over D, we have

2<Lw(y)dy> Lw(x)f(x)g(x)dx - <wa(x)g(x)dx> <IDw(y)f(y)dy>
- ([ weoreax ) ([ wgwiy)

- [ ([ Enldra oo )

~ 2 (0f () /0x:) (xi — i)
J;) (L S (9h(c) /o) (xs — ) w(y)h(y)dy)g(x)w(x)dx

> (0g(d)/0xi) (xi — yi)
i J‘D <-[D St (0h(d) /0xi) (xi — i)

f ( I p 1(ag(d)/ax1)(xl i)
Sty (0h(d) /0xi) (xi — yi)

w(w)dy ) g h(x)w o
(2.8)

w(y)dy)f(x)h(x)w(x)dx

() h(y)dy ) f(x)w(x)dx.
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From (2.8), it is easy to observe that

1
Gl £,81,] < HIG[Eesw,g,h],| + [G[Sa 0, 1] ) 29)
The proof is complete. O
Remark 2.2. When n =1, we have D = [ay,b1] and

i1 (0f (e)/0xi) (xi —yi) _ f'(c) i1 (0g(d)/0x:) (xi —yi) _ g'(d)

SO /o) (r—y) _H© S () (xi—y) K@)’ (210)

wherec=y1+a(x1—y1), 0<a<1l,andd = y; +f(x1-11), 0 < p < 1. In this case, (2.4) reduces
to the following inequality which was given by Pachpatte in [8]:

|Glw, f, g] < {' H |Glw, g, h] H wfh} (2.11)

where f(x),g(x),h(x) : [a,b] =R are continuous on [a,b] and differentiable in (a,b), w :
[a,b] — [0, o0) is an integrable function with faw(x)dx >0, |||l is the sup norm, and

~ (J;bw(x)p(x)dx) (J;bw(x)q(x)dx)

2.12
fabw(x)dx (212

b
Glw,p, q] :=f w(x)p(x)q(x)dx

Remark 2.3. If

21 (0f(e)/0xi) (xi—yi) i (0g(d)/0x;) (xi — yi)

=1, 2.13
ST (0h(0) /o) (xi— ) S0 (h(d) /0s) (x1 — ) 219

we have G[Z.,w, g h], = Glw,f,gl, and G[Z4,w, f,h], = Glw, f,h],. In this case, (2.4)
reduces to the following interesting inequality:

—_

|Glw, £,8l,| < 5{IGlw, g hl,| + |Glw, f, hl,|}. (2.14)

N

Remark 2.4. If h(x) = 3>, x;, then (2.5) reduces to the following results, respectively,

LS} " do(d
F@) - fy) = Z"“(xl w300~y = 35

i=1 i=1 Xi

(xi— (2.15)
Furthermore, letting w(y) = 1, (2.7) reduces to

|8 - 53780 [ fody = 0 [ swray

] Jeeo

(2.16)

< ﬁZ(Ig(x)

i=1

1 1lloco
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where M = mesD := [T, (b; - a;), and E;(x) := [,|x; — y;|dy. This is precisely a new inequality
established by Pachpatte in [6]. If, in addition, g(x) = 1, then inequality (2.16) reduces to the
inequality established by Mitrinovi¢ in [2], which is in turn a generalization of the well-known
Ostrowski inequality.

Theorem 2.5. Let f, g, h be as in Theorem 2.1. Then,

<1
(,[D dy)2

2 Z?:l (af(C)/axi) (xi - yi)
J‘D (w(x)h (x)jp ST (Gh()/ox) (i =) YWY

I 1 (0g(d)/0xi) (xi — yi)
Sty (0h(d) /0xi) (xi — yi)

S (0f (0)/0%:) (xi — 1)
* L <“’(x’fD S (9h(e) /%) (x: — 1)

|Glw, f,8],| <

X

w(y)dy> dx

w(y)h(y)dy (2.17)

j 2121 (98(d)/0xi) (xi - i)
p X1 (0h(d) /0x;) (xi = yi)

i1 (0f(e)/0xi) (xi — i)
‘ZL <w(")”(")L S (Ohe) /) () DY

J‘ X1 (0g(d)/0xi) (xi ~ yi)
S (0h(d) /0x;) (xi - yi)

w()h(y)dy )dx

w(w)h(y)dy )dx].

Proof. Multiplying both sides of (2.5) by w(y) and integrate the resulting identities with respect
to y on D, we get, respectively,

(Lw(y )y )f (x) - wa(y)f (v)dy

)J‘ > 1(6f(c)/6xl (x, yi)w(y)d _I zyzl(af(c)/ﬁxi)(xi—yi)w(y)h(y)dy,

i1 (0h(c)/0xi) (xi = i) i (Oh(c) /0xi) (xi = i)

<wa(y )y )g (x) - wa(y)g(y)dy

S (g () /o) (x: - 1) 1 (05(d)/0x3) (xi - i)
= S (0h(d) /o) (e — i) LY 5 S (Oh(d) /0x5) (xi — i)

w(y)h(y)dy.
(2.18)
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Multiplying the left sides and right sides of (2.18), we get

(ij<y>dy)2f<x>g<x> - ([ vty ) s ([ wtngay)
- (| wway)se (| w(y)f(y)dy> = ([ wrrway) ([ wwsway)

2 i1 (0f(e)/0xi) (xi — i) i1 (0g(d)/0x:) (xi — i)
_h(x)f S (0h(c) /0% (xi - i) I S (0h(d) /ox:) (xi - )

L1 (0f (©)/0x:) (xi — i) [ Zi(9g(d)/0xi) (xi — i)
b ST (3h(e)/ ) (s — ) W W)Y L S (Oh(d) /ox,) (x: — 1)

_ h(x)j i= 1(ag(d)/a.’)ﬁ) (xz ]/1 f Zz 1(af(c)/ax,) (xl- - yz)
31 (0h(d)/0x:) (xi - yi) S (8h(c)/0x:) (xi — yi)

w(y)dy

w(y)h(y)dy

w(y)h(y)dy

)J' i1 (8f () /0xi) (xi - i)w(y)d]/"[ 31 (0g(d) /0xi) (xi — i)

h(y)dy.
2% (0h(c)/0x:) (xi — 1) DZ?:l(ah(d)/aXi)(xi_yi)W(y) W)y

(2.19)

Multiplying both sides of (2.19) by w(x) and integrating the resulting identity with respect to
x over D, we get

(Lw(y)dy)szwu)f(x)g(x)dx - (wa<y)dy) < Lw(X)f(x)dx> <wa(y)g(y)dy>
([ ey ) (| ogeax ) ([ wwnfwy)
+ <Lw(x)dx> (wa(y)f (y)dy) <Lw(y)g(y)dy>

= (o e e ey e, S G o e )
o e s B g o i
e e 3 e
| oo f = iiiﬁiifiiiﬁi ; way | S ﬁiﬁiiﬁiiiﬁjﬁ i; () dy) .

(2.20)

From (2.20), it is easy to arrive at inequality (2.17). The proof of Theorem 2.5 is completed. [J
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Remark 2.6. Taking n =1, we have D = [ay,b;] and

i (0f(0)/0xi)(xi—y) _ f'le) XL (08(d)/dxi)(xi—yi) _ g'(d)
S (0h(e)/oxi) (xi-y:) ()" XL (0h(d)/dx;)(xi-yi) ()

(2.21)

wherec = y1 +a(x1 —y1),0 <a <1,and d = y1 + p(x1 — y1), 0 < B < 1. In this case, (2.20)
becomes the following inequality which was given by Pachpatte in [8]:

7.1

where f(x),g(x), h(x) : [a,b] =R are continuous on [a,b] and differentiable in (a,b), w :

(f x)h(x)dx)

w(x)dx

(2.22)

b
IGlw, £, 51| < jw(x)h%x)

[a,b] — [0, o) is an integrable function with jaw(x)dx >0, and

Glrw,p.a] = |  oopg(edx - P (x}dxi<{ ;;’(")”’(x)d” (2.23)

Remark 2.7. If h(x) = 3, x;, then (2.5) becomes

- 0 " dg(d
~f =2 f(c (xi—y), g(x)-g) =2 8 )(x1 vi). (2.24)

i=1 i=1

Multiplying the left and right sides of (2.24), we get

Fx)80) - FE)3W) - 8 W)+ FV3) = [Z L (- yi)] [Z D (xi - w)]-

i=1

Integrating both sides of (2.25) with respect to y on D, we have the following inequality which
was established by Pachpatte in [6]:

F@g00 - 10 (37 | sy ) - (5[ swav) + 15[ sga

AL AL

where M = mesD =[], (bi — a;).

(2.26)
of
ox;

ax,
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