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In a recent paper by Savas and Sevli (2007), it was shown that each Cesédro matrix of order a, for
a > -1, is absolutely kth power conservative for k > 1. In this paper we extend this result to double
Cesdro matrices.
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The concept of absolute summability of order k > 1 was defined by Flett [1] as follows. Let
> ai be a series with partial sums (s,), A an infinite matrix. Then }} ay is said to be absolutely
summable A of order k > 1 if

an_l |Tn—1 - Tn|k <o, (1)
n=1
where
T, = Zanksk. (2)
k=0

Denote by < the sequence space defined by
Hy = {(Sn) : an_llan|k <oo; Ay =Sy — Sn—l} (3)
n=1

for k > 1. A matrix T is said to be a bounded linear operator on <4, written T € B(<#x), if
T : A — Hk. In 1970, Das [2] defined such a matrix to be absolutely kth power conservative
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for k > 1. In that paper, he proved that every conservative Hausdorff matrix H € B(<#x) for
k > 1. In a recent paper [3], the first two authors proved every Cesaro matrix of order a, for
a> -1, (C, a) € B(H#x) for k > 1. Since the Cesédro matrices of order a for -1 < a < 0 are not
conservative, their result shows that being conservative is not a necessary condition for being
absolutely kth power conservative.

In this paper, we extend the result of [3] to double summability, thereby demonstrating
that the property of being conservative is again not necessary for doubly infinite matrices to be
absolutely kth power conservative.

Let 3 o> @mn be an infinite double series with real or complex numbers, with partial
sums

=2, X (4)

i=0 j=0
For any double sequence (x,,,), we will define

A1 Xn = Xpn — Xm+ln — Xmn+l T Xm+ln+l- (5)

The series »; 3’ a, is said to be summable |C, a, |, k > 1, a, f > -1, if (see [4])

[*) oo} k
Z Z(mn)k 1|A11 mﬂln 1 < %, (6)

af I & O patphl
Omn = E _'En,'sij- (7)
ESEP Z(; g e
Define
A= {(Smn)z,n_o 30 ) @ < 05 = Allsm—l,n—l} (8)
m=1 n=1
fork > 1.

A four-dimensional matrix T = (tynj : m,n,i,j = 0,1,...) is said to be absolutely kth
power conservative, fork > 1,if T € B(Ji) ; that is, if

(mn) | Ao | < o0 9)
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implies that

(mn)* | Anityt ne < oo, (10)
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where

Ztmnijsij (m,n = 0, 1,) (11)
j=0
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Theorem 1. (C,a, ) € B(<#}) for each a, p > —1.

Proof. Let T,‘;ﬁ denote the mn-term of the (C, a, f)-transform, in terms of (mna,,,); that is,

1 & &g f1..
T:,ﬁ = ﬂz ZEm—liEﬁ—jl]aif' (12)
EnEyi=1 j=1
For a, p > -1, since
Tm[zt = mn(omn G:fn—l - ‘7:1'6—1,;1 + G:f—l,n—l)' (13)

to prove the theorem, it will be sufficient to show that

S L <o (14)

© ® 1 b K
> Dl =

1 mE g 1 & |
S SSEEL @) el s ISR
n

<
n=1 mnE;,E;, i=1 j=1 mEﬁ i=1 j=1
(15)
Since
! i S prLpfl (16)
o ==
we obtain
[o'e] o) 1 aﬂ k [o'e] o 1 m n 1 ﬂ 1
—|T < ~E, (1]) a
& 2l <22 22 il
-1 (17)
<SSl S 5
i=1 j=1 v m=i n=j MnEy, Eﬁ
Fora, p>-1land m,n > 1,
:{n 1Efl*1 © Ea—l. © Ei:l 1 foe) Eafl‘
ZZ ’ =y iy 1; =N - ()7l (18)
m=i n=j mnE"‘ m=i mEm n=j nEn J =i mEm
Thus
o] (oo} 1
>l = Loy St |a1]| Loom3 S eyl =00 )
m=1n=1 i=1 j=1 i=1 j=1

since (Symn) € 1. O
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Using the notation of [5],

1

O = Ex ZE“ i8in = (C,0,0) (Sun),

On = ﬂZEﬂ i5mj = (C,0,B) (Smn), (20)
n] =0

Imn = s 1)(n T 1)% ,;05’7 = (G LD (sm).

Corollary 1. (C,a,0) € B(#}) for each a > —1.
Corollary 2. (C,0,) € B(<#;) for each a > —1.

Corollary 3. (C,1,1) € B(#}).
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