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1. Introduction and definitions

Let «# denote the class of functions f normalized by
(z)=z+ Zajzf (1.1)
=2

which are analytic in the open unit disc U = {z : |z| < 1}.
For f € &4, Al-Oboudi [1] introduced the following operator:

Df(z) = f(2), (12)
D'f(z) = (1-6)f(z) +6zf'(z) = Dsf(z), 6>0 (1.3)
D"f(z) = Ds(D"'f(z)), (neN=1,23,...). (1.4)

If f is given by (1.1), then from (1.3) and (1.4) we see that

D"f(z) =z + il+(; 16]"a;z/, (ne€Ny=NuU{0}). (1.5)
i

When 6 = 1, we get Saldgean differential operator [2].
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Definition 1.1. Let S, ,5(a) denote the subclass of «# consisting of functions f which satisfy the
inequality
D™ f(2)
R 1.
e(an(Z)>>a (1.6)

forsome0<a<l, meN,neNyandall zeU.

The object of the present paper is to investigate the coefficient bounds, extreme points,
and integral mean inequalities for fractional derivatives of functions belonging to the class

-Sm,n,ﬁ (lX) .

2. Coefficient inequalities

Our first theorem gives a sufficient condition for f € & to belong to the class S, ,5(c).

Theorem 2.1. Let f(z) € o satisfy

i‘l‘(m, n,j,6,a)laj| <2(1-a), (2.1)
=2
where
W(m,n,j,6,a)=|[1+(j-1)6]"-A+a)[1+ (j-1)6]"|+ [1+(j-1)6]" +(1-a)[1+(j-1)6]"
(2.2)

forsomea (0<a<1),meN,neNy,6 (6>0). Then f(z) € Spus(a).

Proof. Suppose that (2.1) is true for a(0 < a < 1), m € N, n € Ny, and 6(6 > 0). For f(z) € &,
define the function F(z) by

Dm
D@

e

(2.3)

It suffices to show that

‘F(Z)‘l <1 (zel). (2.4)

F(z)+1

We note that
‘F(z) —1‘ D"f(z)/D"f(z) —a—1
F(z)+1 D"f(z)/D"f(z) —a+1
D"f(z) - (1+a)D"f(z)
D™ f(z)+ (1 -a)D"f(z)
a-32([1+(G-18]" - A+ a)[1+(j-1)6]")a;z/
Q-a)+ T2+ (G -16]"+ (1 -a)[1+ (j-1)6]")ajz/! (2.5)

B L e el LV 1)6]"||ajl|zl ™"
T 2-a)-Z5([1+ (-1 + (L-a)[1+ (- 1)8]")|ajl|zl ™
3 a+ X251+ (G -1D6]" - (1 +a)[1+(-1)6]"|la;l

2-a) =I5 ([1+ (G- 1DE]" + (1 -a)[1+ (- 1)5]")|a;|’
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The last expression is bounded above by 1 if

+ [+ G -16]" = L+ a)[1+ (- 1)8]"|lajl
i=2

c@-a)- S (1+G-D8]" + 1)1+ - 15]")]aj]

j=2

which is equivalent to condition (2.1). This completes the proof of Theorem 2.1.

Example 2.2. The function f(z) given by

22 +71)(1 - a)e;
f(z) = Z(]“‘Y )(j+1+y)¥(m,n,j,6, a)”

belongs to the class S;,,5(a) fory >-2,0<a<1,¢; € C,and [¢j| = 1.
We now derive the coefficient inequalities for f(z) belonging to the class S, 5(a).

Theorem 2.3. If f(2) € Sy ns(a), then for k > 2,

| < { +ﬁZ [1+( |] |1)6 kZ kZ-Z([1+(j1—1)|75]].[v1‘+|(j2—1)5])
j=2 Yj j2>j1 j1=2 1052

+ﬁ3]kz>j]kz>:kz [1+(h-1)6][1+ (-1)6][1+ (jz—-1)8])"

|0j, 0,05 |

+,5k 21—[[1+] 1)6]" }/

|vjl

where p=2(1 - a) and v = [1 + (k-1)8]" - [1+ (k- 1)6]".

Proof. Define the function p(z) by

1 /D"f(z) ~ ;
p(z)_l—u<D”f(z > 1+Zc]z.
Since p(z) is the Carathéodory function, we have that
el <2 (=1,23,...).

The definition of p(z) implies that

(1 5 (Dmf z) —aD"f(z)) = D"f(z)<1+Zc]zf>

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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Since
D"f(z)=z+ i[l +(j-1)6]"a;z (neN), (2.12)
=2
we have
D" f(z) —aD”f(z) (1 +6)" —a(1+6)" (1 +26)™ —a(1+26)
l1-a l1-a a2’ 1-a P

[1+(k-1)6]"-a[l+ (k- 1)6]
" 1-a

an(z)<1+zcjzj> = <Z+Z [1+(G-1)8] a]z]>(1+clz+---+ckzk+~~~).
=1 =2

+...’

(2.13)
Therefore, (2.11) shows that

(1+6) —a(1+6)" 222+(1+26) —a(1+26)" a3z +m+[1+(k—1)6] —a[1+(k-1)6] a2kt
1-a 1-a 1-a

<Z+Z [1+(G-1)8] a]zf>(1+clz+---+ckzk+---).
j=2

(2.14)

If we consider the coefficients of z* of the both sides in the above equality, then we find that

k-1

k-1)6]" - k-1)6]"
<[1+( D ]1_";[“( be] —[1+(k—1)5]">ak=Z[1+(k—j—1)6]"ak,jc,~.
j=1
(2.15)
Therefore,
|lak| = 1-a §[1+(k—j—1)6]"ak ic;
[[1+ (k-1)8]" - [1+ (k- 1)8]"| |5 7

k

§]1+w—j—nérpbAkA> (2.16)

=1

,_.

1_
S|u+w—nm 1+ (k- n5q<

2(1-a) kzi[1+(k—'—1)6]”|a |
ST+ k-Dol" [+ (-1l \ 2 J kil )

—.
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since |¢j| <2(j =1,2,3...). Thus, for f = 2(1 —a) and v = [1+ (k- 1)6]" - [1 + (k - 1)56]", we
obtain

lak| gﬂi 1+(1+6)"i+(1+26)”£+(1+36)"£+---+(1+ (k-2)6)" P
o |Uz |Us| |U4| |Uk—1|
g g
+(1+6)"(1+26)" +(1+6)"(1+36)"
|v2vs] |v2v4]
g i3
+(1+6)"(1+46)" +-+ (1+6)"(1+ (k-2)6)"
I 020 5| |Uzvk—1|
i3 P
+(1+26)"(1+36)" +(1+26)"(1+46)" e
|vs0a] |vsvs|
ﬁz
+(1+26)"(1+ (k-2)6)"
| 0301 |
ﬁ3 ﬁ3
+(1+6)"(1+26)"(1+36)" +(1+6)"(1+36)"(1+46)" +oen
| 020304 |v2v405]
+(1+6)"(1+(k-3)6)"(1+ (k —2)6)"[3—3 k= 21_[ [1+(-1o]" }
[orok-z0] o1
[1+(G-1o o S+ (i -8+ (- 1)8D)"
1+
|vk|{ ﬂ]z; | ll ﬂ ]zz>]:1hz—2 |v]1v]z|

SESESN 1+(]-1_1)5,1+(]’2—1)6,1+(]’3—1)6]) rotx [1+(-1)8]"
N 2
+ﬁ Z ZZ |U;'17szvjs| ﬂ H |U]|
(2.17)

J3>j2f2>j1j1=2

This completes the proof of Theorem 2.3. O

If we take 6 = 1 in Theorems 2.1 and 2.3, we can get the results due to Stimer Eker and
Owa [3].

3. Extreme points

In view of Theorem 2.1, we now introduce the subclass gm,n,g (a) C Spns(a), which consists of
function

flz)=z+ iajzj (aj 20) (3.1)
i=2

whose Taylor-Maclaurin coefficients satisfy inequality (2.1). Now, let us determine extreme
points of the class S, ,5(a).
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Theorem 3.1. Let f1(z) = zand

2(1-a)

e Sl | -
W, gm0 UTEY)

fi(z) =z

where ¥(m,n, j, 6, a) is given by (2.2).
Then f € Sy, (a) if and only if it can be expressed in the form

f(2) =X mifi(2),
j=1

where ;> 0 and 37321; = 1.

Proof. Suppose that

<] o 2 1 - i
4 j
Then
2 . 20-a)  _ 15 = 2(1 - a)(1 - -
jgzllf(m,n,],& a)mﬂj =2(1- 0‘);2’1] =2(1-a) (A -m) <21 -a),

which shows that f satisfies condition (2.1) and therefore f € .§mlnl5(zx).
Conversely, suppose that f € S, 5(a). Since

2(1 - a) .
i S —— =
VS W e VT
we may set
_¥(mn,jba)
A T S

m=1-1;
i=2
Then we obtain
f@=Dnifi2),
j=1

which completes the proof of Theorem 3.1.
Corollary 3.2. The extreme points of Spuns(a) are the functions f1(z) = z and

2(1-a)

_ Uy i
+‘P(m,n,j,6,a)z (j=23,..),

fi(z) =z

where ¥(m, n, j, 6, a) is given by (2.2).

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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4. Integral means inequalities for fractional derivative

We will make use of the following definitions of fractional derivatives by Owa [4], and Srivas-
tava and Owa [5].

Definition 4.1. The fractional derivative of order .\ is defined, for a function f, by

1 d(F fQ
F1-1)dz )y (z-¢)

Dif(z) = cdé (0<A<1), (4.1)

where f is an analytic function in a simply connected region of z-plane containing the origin,
and the multiplicity of (z — &)™ is removed by requiring log(z — ¢) to be real when z — & > 0.

Definition 4.2. Under the hypotheses of Definition 4.1, the fractional derivative of order p + A is
defined, for a function f, by

DIf(z) = L Dif(z) (0<1<Lpem) @2)

It readily follows from (4.1) that

k. Dk+1)
Dzt = ppaan? | @sA<LkeN). (4.3)

Further, we need the concept of subordination between analytic functions [6] and a subordi-
nation theorem of Littlewood in our investigation.

Definition 4.3. For two functions f and g, analytic in U, say that the function f(z) is subordinate
to g(z) in U, and write

f(z) <g(z) (z€U) (4.4)

if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1 such that
f(2) =g(w(z)) (z€l). (4.5)
In particular, if the function g is univalent in U, the above subordination is equivalent to
f(0)=¢(0),  f(U)cg(U). (4.6)

In 1925, Littlewood [7] proved the following subordination theorem.

Lemma 4.4. If f(z) and g(z) are analytic in U with f(z)<g(z), then for p>0and z=re®® (0<r<1),

20 20
f If(z)l"deéf 1g(2)1"ab. (47)

0 0
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Theorem 4.5. Let f(z) € .§m,n,5 () and suppose that

= 20 -a)T(k+1IG -1 -p)

]Z:;(] TP S Gl K 6 )T (k + 1~ 1= p)T 2 = p) “48)
forsomej > p, 0< A< 1, and (j- p)P+1 denote the Pochhammer symbol defined by (j — p)wl =
(G-p)(j—p+1)---j. Also let the function

B 2(1 - a) x
fi(2) = 24 e RN (k>2). (4.9)

If there exists an analytic function w(z) given by

Y(m,n,k,6,0)[(k+1-1-p) &

k-1 _ . I'(G-p) -1
(w(z)) - 2(1_a)r(k+1) ];z(] p)p+1r(]+1_)t_p) a]Z 7 (k ZP)/
(4.10)
then for z =re® and 0 <r < 1,
o A [ a A Iz
j |DY™ f(z)| a6 sf |ID™ ()| 'd0 (0<A<1,pu>0). (4.11)
0 0

Proof. By virtue of the fractional derivative formula (4.3) and Definition 4.2, we find from (3.1)
that

Dé’“f(z) - rzli{l + iT(Z—A—p)F(]’ + 1)a]-z7‘1}

2-1-p) = TG+1-1-p)
(4.12)
27 L Sre-1-p) D(j)ajzi"!
"TQR-A-p) +]Z:;4 2-1-p)(G -PpaP(ajz™ ¢,
where
~_  IG-p .
Since @(j) is a decreasing function of j, we have
, _ TI@-p
Similarly, from (4.3), (4.9), and Definition 4.2, we obtain
+ 1=A-p 20-a)F2-A-p)Ik+1) ,_
p+d __Z p k-1
D= A®) = i) {1 FWmm k6T (k+1-1-p) - } (415)
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For z = re®, 0 < r < 1, we must show that

I

27 0
[ e Zre-a-pi-puoaz| e
0 -
= (4.16)
i 21 -a)T2-A-p)T(k+1) #
<l h k1 :
_IO +1P(m/n/k/6r“)r(k+1_)‘_p) d6 (‘u>0)
Thus by applying Littlewood’s subordination theorem, it would be suffice to show that
o ) ) - 1-a)f2-A-p)I(k+1)
S - - 1 2( k-1
1+ j;r(z A=p)(j = P)pu®@(ajz " <1+ o k8T e 1= p) . (4.17)
By setting

- , L 20-aT@-A-p)T(k+1) .
1 +§F(2—A—P)(] — ), ®()ajz " =1+ k6 ATk —/\—p)w(z) . (418)

we find that

W(m,n,k,6,a)[(k+1-A-p)&

1
(w(z)" 21—l (k+1)

Z(l P)pa @()ajz™! (4.19)

which readily yields w(0) = 0. Further, we prove that the analytic function w(z) satisfies
|lw(z)| <1, z € U for (4.10). We know that

w1 |¥mnk,6,a)[(k+1-1-p) &

j-1
|w(z)| S (1 a)r(k + 1) Z(] p)p+1 (])alz
Y(m,nk6,a)[(k+1-A-p) &, . . i1
< 2(1_a)1—'(k+1) j;z(]_p)p+1q)(])a]|z|
¥(m,n, k 0, a)F(k +1-A-p) (4.20)
<
B W(m,n,k,6,0)[(k+1-A-p) T(2-p)
= =l 2(1—a)T(k + 1) IG-1-p) 2 Z(] Py
<zl <1
by means of the hypothesis of Theorem 4.5.
As special case p = 0, Theorem 4.5 readily yields. O
Corollary 4.6. Let f(z) € gm,n,(; () and suppose that
Z]a] < 2(1-a)['(k+1)I'(3-1) (421)

Y(m,n,k,6,a)['(k+1-21)
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for some 0 < A < 1. Also let the function

2(1-a
fe(z) =z + Wzk (k >2). (4.22)
If there exists an analytic function w(z) given by
r(G+1 .
(w(z2)E! = Y(m,nk6al(k+1-1)& TG+1) i1 (423)

2(1-a)l(k+1) Zr(]+1 0y

then for z =re and 0 < r < 1,
27 20
f |DXf(z)|"d6 < f |DX fe(2)|"d0 (0<A<1,u>0). (4.24)
0 0
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