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1. Introduction

The study of equilibriumproblems has recently been a rapidly growing area of research. See,
for example, [1–3] and the references mentioned therein.

Let (X, ρ) be a complete metric space. In this paper, we consider the following equilib-
rium problem:

To find x ∈ X such that f(x, y) ≥ 0 ∀y ∈ X, (P)

where f belongs to a complete metric space of functions A defined below. In this paper, we
show that for most elements of this space of functions A (in the sense of Baire category)
the equilibrium problem (P) possesses a unique solution. In other words, the problem (P)
possesses a unique solution for a generic (typical) element ofA [4–6].

Set

ρ1
((
x1, y1

)
,
(
x2, y2

))
= ρ

(
x1, x2

)
+ ρ

(
y1, y2

)
, x1, x2, y1, y2 ∈ X. (1.1)

Clearly, (X ×X, ρ1) is a complete metric space.
Denote by A0 the set of all continuous functions f : X ×X → R1 such that

f(x, x) = 0 ∀x ∈ X. (1.2)
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We equip the setA0 with the uniformity determined by the base

U(ε) =
{
(f, g) ∈ A0 ×A0 :

∣∣f(z) − g(z)
∣∣ ≤ ε ∀z ∈ X ×X

}
, (1.3)

where ε > 0. It is clear that the space A0 with this uniformity is metrizable (by a metric d) and
complete.

Denote by A the set of all f ∈ A0 for which the following properties hold.
(P1) For each ε > 0, there exists xε ∈ X such that f(xε, y) ≥ −ε for all x ∈ X.
(P2) For each ε > 0, there exists δ > 0 such that |f(x, y)| ≤ ε for all x, y ∈ X satisfying

ρ(x, y) ≤ δ.
Clearly, A is a closed subset of X. We equip the space A with the metric d and consider

the topological subspace A ⊂ A0 with the relative topology.
For each x ∈ X and each subset D ⊂ X, put

ρ(x,D) = inf
{
ρ(x, y) : y ∈ D

}
. (1.4)

For each x ∈ X and each r > 0, set

B(x, r) =
{
y ∈ X : ρ(x, y) ≤ r

}
,

Bo(x, r) =
{
y ∈ X : ρ(x, y) < r

}
.

(1.5)

Assume that the following property holds.
(P3) There exists a positive number Δ such that for each y ∈ X and each pair of real

numbers t1, t2 satisfying 0 < t1 < t2 < Δ, there is z ∈ X such that ρ(z, y) ∈ [t1, t2].
In this paper, we will establish the following result.

Theorem 1.1. There exists a set F ⊂ A which is a countable intersection of open everywhere dense
subsets ofA such that for each f ∈ F, the following properties hold:

(i) there exists a unique xf ∈ X such that

f
(
xf , y

) ≥ 0 ∀x, y ∈ X; (1.6)

(ii) for each ε > 0, there are δ > 0 and a neighborhood V of f in A such that for each h ∈ V and
each x ∈ X satisfying inf{h(x, y) : y ∈ X} > −δ, the inequality ρ(xf , x) < ε holds.

In other words, for a generic (typical) f ∈ A, the problem (P) is well-posed [7–9].

2. An auxiliary density result

Lemma 2.1. Let f ∈ A and ε ∈ (0, 1). Then there exist f0 ∈ A and x0 ∈ X such that (f, f0) ∈ U(ε)
and f(x0, y) ≥ 0 for all y ∈ X.
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Proof. By (P1) there is x0 ∈ X such that

f
(
x0, y

) ≥ − ε

16
∀y ∈ X. (2.1)

Set

E1 =
{
(x, y) ∈ X ×X : f(x, y) ≥ − ε

16

}
,

E2 =
{
(x, y) ∈ (X ×X) \ E1 : f(x, y) ≥ −ε

8

}
,

E3 = (X ×X) \ (E1 ∪ E2
)
.

(2.2)

For each (y1, y2) ∈ E1, there is r1(y1, y2) ∈ (0, 1) such that

f
(
z1, z2

)
> − ε

14
∀z1, z2 ∈ X satisfying ρ

(
zi, yi

) ≤ r1
(
y1, y2

)
, i = 1, 2. (2.3)

For each (y1, y2) ∈ E2, there is r1(y1, y2) ∈ (0, 1) such that

f
(
z1, z2

)
> −ε

6
∀z1, z2 ∈ X satisfying ρ

(
zi, yi

) ≤ r1
(
y1, y2

)
, i = 1, 2. (2.4)

For each (y1, y2) ∈ E3, there is r1(y1, y2) ∈ (0, 1) such that

f
(
z1, z2

)
< −ε

8
∀z1, z2 ∈ X satisying ρ

(
zi, yi

) ≤ r1
(
y1, y2

)
, i = 1, 2. (2.5)

For each (y1, y2) ∈ X ×X, set

U
(
y1, y2

)
= Bo(y1, r1

(
y1, y2

)) × Bo(y2, r1
(
y1, y2

))
. (2.6)

For any (y1, y2) ∈ E1 ∪ E2, put

gy1,y2(z) = max
{
f(z), 0

}
, z ∈ X ×X (2.7)

and for any (y1, y2) ∈ E3, put

gy1,y2(z) = f(z), z ∈ X ×X. (2.8)

Clearly, {U(y1, y2) : y1, y2 ∈ X} is an open covering of X × X. Since any metric space is
paracompact, there is a continuous locally finite partition of unity {φβ : β ∈ B} subordinated to
the covering {U(y1, y2) : y1, y2 ∈ X}. Namely, for any β ∈ B, φβ : X×X → [0, 1] is a continuous
function and there exist y1(β), y2(β) ∈ X such that supp(φβ) ⊂ U(y1(β), y2(β)) and that

∑

β∈B
φβ(z) = 1 ∀z ∈ X ×X. (2.9)

Define

f0(z) =
∑

β∈B
φβ(z)g(y1(β),y2(β))(z), z ∈ X ×X. (2.10)
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Clearly, f0 is well defined, continuous, and satisfies

f0(z) ≥ f(z) ∀z ∈ X ×X. (2.11)

Let (z1, z2) ∈ E1. Then

f
(
z1, z2

) ≥ − ε

16
. (2.12)

Assume that β ∈ B and that φβ(z1, z2) > 0. Then

(
z1, z2

) ∈ supp
(
φβ

) ⊂ U
(
y1(β), y2(β)

)
. (2.13)

If (y1(β), y2(β)) ∈ E3, then in view of (2.5), (2.6), and (2.13), f(z1, z2) < −ε/8, a contradiction
(see (2.12)). Then (y1(β), y2(β)) ∈ E1 ∪ E2, and by (2.7),

gy1(β),y2(β)
(
z1, z2

)
= max

{
f
(
z1, z2

)
, 0

}
. (2.14)

Since this equality holds for any β ∈ B satisfying φβ(z1, z2) > 0, it follows from (2.10) that

f0
(
z1, z2

)
= max

{
f
(
z1, z2

)
, 0

}
(2.15)

for all (z1, z2) ∈ E1.
Relations (2.1), (2.2), and (2.15) imply that

f0
(
x0, y

) ≥ 0, y ∈ X. (2.16)

By (1.2), (2.7), (2.8), and (2.10)

f0(x, x) = 0, x ∈ X. (2.17)

Assume that

(
z1, z2

) ∈ E2. (2.18)

Then in view of (2.2) and (2.18), f(z1, z2) ≥ −ε/8. Together with (2.7) and (2.10), this implies
that

f0
(
z1, z2

) ≤
∑

β∈B
φβ

(
z1, z2

)
(
f
(
z1, z2

)
+
ε

8

)
= f

(
z1, z2

)
+
ε

8
. (2.19)

Combined with (2.11), this implies that

f
(
z1, z2

) ≤ f0
(
z1, z2

) ≤ f
(
z1, z2

)
+
ε

8
(2.20)

for all (z1, z2) ∈ E2.
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Let

(
z1, z2

) ∈ E3 (2.21)

and assume that

β ∈ B, φβ

(
z1, z2

)
> 0. (2.22)

Then in view of (2.22),

(
z1, z2

) ∈ supp
(
φβ

) ⊂ U
(
y1(β), y2(β)

)
. (2.23)

By (2.23) and the choice of U(y1(β), y2(β)) (see (2.3)–(2.6)), (y1(β), y2(β))/∈E1 and by (2.4),
(2.6), (2.7), and (2.8),

gy1(β),y2(β)
(
z1, z2

) ≤ f
(
z1, z2

)
+
ε

6
. (2.24)

Since the inequality above holds for any β ∈ B satisfying (2.22), the relation (2.10) implies that

f0
(
z1, z2

) ≤ f
(
z1, z2

)
+
ε

6
. (2.25)

Together with (2.11), (2.12), and (2.15), this implies that for all (z1, z2) ∈ X ×X

f
(
z1, z2

) ≤ f0
(
z1, z2

) ≤ f
(
z1, z2

)
+
ε

6
. (2.26)

By (2.17), f0 ∈ A0. In view of (2.16), f0 possesses (P1). Since f possesses (P2), it follows from
(2.7), (2.8), and (2.10) that f0 possesses (P2). Therefore f0 ∈ A and Lemma 2.1 now follows
from (2.16) and (2.26).

3. A perturbation lemma

Lemma 3.1. Let ε ∈ (0, 1), f ∈ A, and let x0 ∈ X satisfy

f
(
x0, y

) ≥ 0 ∀y ∈ X. (3.1)

Then there exist g ∈ A and δ > 0 such that

g
(
x0, y

) ≥ 0 ∀y ∈ X,
∣∣(g − f)(x, y)

∣∣ ≤ ε

4
∀x, y ∈ X (3.2)

and if x ∈ X satisfies inf
{
g(x, y) : y ∈ X

}
> −δ, then ρ(x0, x) < ε/8.

Proof. By (P2) there is a positive number

δ0 < min
{
16−1ε, 16−1Δ

}
(3.3)

such that
∣∣f(y, z)

∣∣ ≤ ε

16
∀y, z ∈ X satisfying ρ(y, z) ≤ 4δ0. (3.4)
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Set

δ= 2−1δ0. (3.5)

Define

φ(t) = 1, t ∈ [
0, δ0

]
,

φ(t) = 0, t ∈ [
2δ0,∞

)
,

φ(t) = 2 − tδ−1
0 , t ∈ (

δ0, 2δ0
)
,

(3.6)

f1(x, y) = −φ(ρ(x, y))ρ(x, y) + (
1 − φ

(
ρ(x, y)

))
f(x, y), (x, y ∈ X). (3.7)

Clearly, f1 is continuous and

f1(x, x) = 0 ∀x ∈ X. (3.8)

By (3.6) and (3.7),

f1(x, y) = −ρ(x, y) ∀x, y ∈ X satisfying ρ(x, y) ≤ δ0. (3.9)

Let x, y ∈ X. We estimate |f(x, y) − f1(x, y)|. If ρ(x, y) ≥ 2δ0, then by (3.6) and (3.7),
∣∣f1(x, y) − f(x, y)

∣∣ = 0. (3.10)

Assume that

ρ(x, y) ≤ 2δ0. (3.11)

By (3.3) and (3.11),

∣∣f(x, y)
∣∣ ≤ ε

16
. (3.12)

By (3.5), (3.6), (3.7), (3.11), and (3.12),

∣∣f1(x, y) − f(x, y)
∣∣ ≤ ρ(x, y) +

∣∣f(x, y)
∣∣ ≤ 2δ0 +

ε

16
<
ε

4
. (3.13)

Together with (3.10) this implies that

∣∣f1(x, y) − f(x, y)
∣∣ <

ε

4
∀x, y ∈ X. (3.14)

Assume that x ∈ X. In view of (P3) and (3.3), there is y ∈ X such that

ρ(y, x) ∈ [
2−1δ0, δ0

]
. (3.15)

It follows from (3.15) and (3.9) that

f1(x, y) = −ρ(y, x) ≤ −2−1δ0, (3.16)

inf
{
f1(x, z) : z ∈ X

} ≤ −2−1δ0 (3.17)
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for all x ∈ X. Set

g(x, y) = φ
(
ρ
(
x, x0

))
f(x, y) +

(
1 − φ

(
ρ
(
x, x0

)))
f1(x, y), x, y ∈ X. (3.18)

Clearly, the function g is continuous and

g(x, x) = 0 ∀x ∈ X. (3.19)

In view of (3.1), (3.18), and (3.6),

g
(
x0, y

)
= f

(
x0, y

) ≥ 0 ∀y ∈ X. (3.20)

Since the function f possesses (P2), it follows from (3.9), (3.20), and (3.18) that g possesses the
property (P2). Thus g ∈ A.

By (3.6), (3.14), and (3.18) for all x, y ∈ X

∣∣(f − g)(x, y)
∣∣ ≤ ∣∣f1(x, y) − f(x, y)

∣∣ ≤ ε

4
. (3.21)

Assume that

x ∈ X, inf
{
g(x, y) : y ∈ X

}
> −2−1δ0 = −δ. (3.22)

If ρ(x0, x) ≥ 2δ0, then by (3.6) and (3.18),

g(x, y) = f1(x, y) ∀y ∈ Y (3.23)

and together with (3.17), this implies that

inf
{
g(x, y) : y ∈ X

} ≤ −2−1δ0. (3.24)

This inequality contradicts (3.22). The contradiction we have reached proves that

ρ
(
x0, x

)
< 2δ0 <

ε

8
. (3.25)

This completes the proof of the lemma.

4. Proof of Theorem 1.1

Denote by E the set of all f ∈ A for which there exists x ∈ X such that f(x, y) ≥ 0 for all y ∈ X.
By Lemma 2.1, E is an everywhere dense subset of A.

Let f ∈ E and n be a natural number. There exists xf ∈ X such that

f
(
xf , y

) ≥ 0 ∀y ∈ X. (4.1)

By Lemma 3.1, there exist gf,n ∈ A and δf,n > 0 such that

gf,n
(
xf , y

) ≥ 0 ∀y ∈ X,
∣∣(gf,n − f

)
(x, y)

∣∣ ≤ (4n)−1 ∀x, y ∈ X, (4.2)

and the following property holds.
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(P4) For each x ∈ X satisfying inf{gf,n(x, y) : y ∈ X} > −δf,n, the inequality ρ(xf , x) <

(4n)−1 holds.
Denote by V (f, n) the open neighborhood of gf,n in A such that

V (f, n) ⊂ {
h ∈ A :

(
h, gf,n

) ∈ U
(
4−1δf,n

)}
. (4.3)

Assume that

x ∈ X, h ∈ V (f, n), inf
{
h(x, y) : y ∈ X

}
> −2−1δf,n. (4.4)

By (1.3), (4.3), and (4.4),

inf
{
gf,n(x, y) : y ∈ X

} ≥ inf
{
h(x, y) : y ∈ X

} − 4−1δf,n > −δf,n. (4.5)

In view of (4.5) and (P4),

ρ
(
xf , x

)
< (4n)−1. (4.6)

Thus we have shown that the following property holds.
(P5) For each x ∈ X and each h ∈ V (f, n) satisfying (4.4), the inequality ρ(xf , x) < (4n)−1

holds.
Set

F =
∞⋂

k=1

∪ {
V (f, n) : f ∈ E and an integer n ≥ k

}
. (4.7)

Clearly, F is a countable intersection of open everywhere dense subset of A. Let

ξ ∈ F, ε > 0. (4.8)

Choose a natural number k > 8(ε−1 + 1). There exist f ∈ E and an integer n ≥ k such that

ξ ∈ V (f, n). (4.9)

The property (P4), (4.3), and (4.9) imply that for each x ∈ X satisfying

inf
{
ξ(x, y) : y ∈ X

}
> −2−1δf,n, (4.10)

we have

inf
{
gf,n(x, y) : y ∈ X

}
> −2−1δf,n − 4−1δf,n > −δf,n,

ρ
(
xf , x

)
< (4n)−1 <

ε

8
.

(4.11)

Thus we have shown that the following property holds.
(P6) For each x ∈ X satisfying (4.10), the inequality ρ(xf , x) < ε/8 holds.
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By (P1) there is a sequence {xi}∞i=1 ⊂ X such that

lim inf
i→∞

(
inf

{
ξ(xi, y) : y ∈ X

}) ≥ 0. (4.12)

In view of (4.12) and (P6) for all large enough natural numbers i, j, we have

ρ
(
xi, xj

) ≤ ρ
(
xi, xf

)
+ ρ

(
xf , xj

)
<
ε

4
. (4.13)

Since ε is any positive number, we conclude that {xi}∞i=1 is a Cauchy sequence and there exists

xξ = lim
i→∞

xi. (4.14)

Relations (4.12) and (4.14) imply that for all y ∈ X

ξ
(
xξ, y

)
= lim

i→∞
ξ
(
xi, y

) ≥ 0. (4.15)

We have also shown that any sequence {xi}∞i=1 ⊂ X satisfying (4.12) converges. This implies
that if x ∈ X satisfies ξ(x, y) ≥ 0 for all y ∈ X, then x = xξ. By (P6) and (4.15),

ρ
(
xξ, xf

) ≤ ε

8
. (4.16)

Let x ∈ X and h ∈ V (f, n) satisfy (4.4). By (P5), ρ(xf , x) < (4n)−1. Together with (4.16), this
implies that

ρ
(
x, xξ

) ≤ ρ
(
x, xf

)
+ ρ

(
xf , xξ

)
< (4n)−1 +

ε

8
< ε. (4.17)

Theorem 1.1 is proved.
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