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1. Introduction

In order the generalise the classical Cebysev functional, namely,

1 (" 1 (7 1 ("
T(f, g = mL f(x)g(x)dx - g L f(x)dx - b L g(x)dx, (1.1)

where f, g, and f g are integrable on [a, b], which has been extensively studied in the literature
(see, e.g., the book [1]), the author has introduced in [2] the following functional for Riemann-
Stieltjes integrals:

1 b 1 b 1 b
T80 gy |, S OSOWO | SO Sy g |, s
(1.2)
provided that the involved integrals exist and u(b) # u(a).
It has been shown in [2] that
1 1 1 b b
IT(f gl < E(M —m): |u(b) — u(a)| |g ~ u(b) - u(a) L 8(s)dufs) \/(u), (13)
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provided that f and g are continuous, m < f(t) < M for each t € [a,b], and u is of bounded
variation on [a, b] with the total variation V(). The constant 1/2 is sharp in (1.3) in the sense
that it cannot be replaced by a smaller quantity.

In the case that # is monotonic nondecreasing,

—j g(s)du(s)|dutt),  (1.4)

IT(f, g520] < 5 (M —~m) - —)lf

for which the constant 1/2 is best possible [2].
Finally, in the case where u is Lipschitzian with the constant L, and in this case we can
have f and g Riemann integrable on [a, b], the following result has been obtained as well [2]:

IT(f -u)|<1L(M—m)-;Jb (t)—;J‘b (s)du(s)|dt.  (1.5)
&S5 lu) —u(@)| ), 15 " u®) —ua) ), ¢ '

Here 1/2 is also sharp.

For other results, see [3, 4].

The aim of the present paper is to establish a new sharp bound for the absolute value
of the Cebygev functional (1.2). Applications for the trapezoid and midpoint inequality are
pointed out. A general perturbed quadrature rule and error estimates are obtained as well.

2. The results

The following result concerning a sharp bound for the absolute value of the Ceby3ev functional
T(f, g; h) can be stated.

Theorem 2.1. Let f : [a,b] — R be a function of bounded variation and let g,h : [a,b] — R be

bounded functions with h(a) # h(b) such that the Stieltjes integrals fa f(t)g(t)dh(t) and fs g(t)dh(t)
exist. Then

fg(t)dh(t) %j g(s)dh(s)|.

1 b
IT(f,gh)| < m\a/(f sup (2.1)

x€[a,b]

The constant C = 1 in the right-hand side of (2.1) cannot be replaced by a smaller quantity.

Proof. We use the following result for the Riemann-Stieltjes integral obtained in [1, page 337].
Let u,v,w : [a,b] — R such that u is of bounded variation on [a,b] and v,w are
bounded functions with the property that the Riemann-Stieltjes integrals [ bv(t)dw(t) and

fs u(t)v(t)dw(t) exist. Then a

(t)v( Ydw(t)

< [luw) + v<u>] sup

x€[a,b]

J (t)dw(t)'. (2.2)
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We also use the representation (see also [2])

1 b 1 b
6.8 = i j 10 -1 [s0 - 5 j g(@dn(s)|dn®),  23)

which holds for any y € R.
Now, if we choose y = f(b), u(t) = f(t) - f(b),

1 b
U(t) = g(t) — m fa g(S)dh(S), (24)
and w(t) = h(t), t € [a, b], then we get

h(x

f g(t)dh(t)—mj g)dh(s)|  @5)

|[h(b) — h(a)]T(f, & h) \/(f) sup

xGﬂ

and inequality (2.1) is proved.
For the sharpness of the inequality, assume that h(t) = f and g(t) = sgn(t — (a + b)/2),

€ [a,b]. Then (2.1) becomes
f sgn(t— a;b>dt', (2.6)

[ - 452)a

provided that f is of bounded variation on [a, b].
Notice that, if we consider A(x) defined by

\/(f) sup

x€[a,b]

. a+b
X b a-x, 1fx€[a,—2 ],
A(x) = j sgn<t _a >dt = (2.7)
a 2 . a+b
x—Db, 1fx€<—,b,
2
then
-a
sup |AM(x)| = i (2.8)
x€[a,b]
Therefore, (2.6) becomes
b b
a+b b-a
f f(t)sgn(t— > )dt‘ < > -\/(f). (2.9)
Now, if in (2.9) we choose f(t) = sgn(t — (a + b)/2), then VZ(f) =
b a+b
f(t)sgn(t —— dt=b-a, (2.10)

and in both sides of (2.9) we get the same quantity (b — a). O



4 Journal of Inequalities and Applications

Remark 2.2. We observe that

[ g(t)dh(t)—% 4(s)dh(s)

b

Lx (t)dh(t) - Wh(a)u 2(s)dh(s) + J' 2(s

)dh(s)]
_h(b) -h(x) ([ h(x) - h(a) jb

(2.11)

= h) k@ ), M) 55 Tha)

_ [h(b) - h(x)] [h(x) - h(a)] '
) 1(b) - h(a) A(g,h;x,a,b),

8(s)dh(s)

X

where A(g, h; x, a, b) is defined by

1 x 1 b
Mgl a,b) = st | 8O - s [ sane), @12

provided that h(x) # h(a), h(b) for x € (a,b).
With this notation, inequality (2.1) becomes

[h(b) - h(x)] [h(x) - h(a)]
h(b) — h(a)

T ; _— -|A(g, h;x,a,b
T80 < VO 208 { o)
1

[h(b) - h(x)] [h(x) - h(a)]
Ih(b h(a)| x \/(f xe ub]

h(b) - h(a)

sup |A(g, h;x,a,b)|.

x€[a,b]

(2.13)

Now, if we assume that h(a) < h(x) < h(b) for any x € (a,b), then on utilising the elementary
inequality aff < (1/4)(a + ﬁ)z, a,p € [0,00), we have

[1(b) = h(20)] [1(x) ~ h(@)] < [h(b - h(a)]’, (2.14)

and from (2.9), we deduce the following simpler inequality:

IT(f, & h) <1 \/(f) sup. |A(g, h; x, a,b)|. (2.15)

an

The constant 1/4 is best possible in (2.15).

A sufficient condition for h such that h(a) < h(x) < h(b) for any x € (a,b) is that h is
strictly increasing on [a, b]. The sharpness of the constant will follow from a particular case
considered in Corollary 2.5 below.
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Corollary 2.3. Let f, g, : [a,b] — R be such that f is of bounded variation and the Riemann in-
tegmlsf fHw(t)dt, f g(Hw(t)dt, f ft)g(Hw(t)dt, andf w(t)dt exist andf w(t)dt £0. Then,
one has the inequality

i fﬂtﬂwwh jfU( fymmm
, . [ ) (2.16)
1 "w(t)dt
Hw(t)dt — 2——— Hw(t)dt|.
|f w(t)dt| a T AAL 51[15] f 50wl [P w(t)dt f gtwit) ‘
The inequality is sharp.

The proof follows by Theorem 2.1 on choosing h(x) = jx w(s)ds.

Remark 2.4. In particular, if w(s) > 0 for s € [a, b], then h(x) = f w(s)ds is strictly decreasing
on [a,b] and by (2.15) we deduce the inequality

ffmwmmm jﬂ)@mj jwmmm

w(t)dt

1 b
) sup

L0 2.17
fs w(s)ds a  xelap] @17)

g(s)w(s)ds — g(s)w(s)ds
f )

w(s)ds

x€[a,b]

* b
Jwﬁ [ oo s

The constant 1/4 is best possible.

Corollary 2.5. Let f, g : [a,b] — R be such that f is of bounded variation and the Riemann integrals
[* g(t)dt and [° f(t)g(t)dt exist. Then

‘ — fb fgdt - o Lb Fat Lb g(t)dt'
- bia\:)/ Do f gdt -3 ,[ 8 t)df| (2.18)
<3V [t [l Lo

The constant 1/4 is best possible in (2.18).
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Proof. For the sharpness of the constant, consider g(t) = sgn(t — (a + b)/2), t € [a,b]. If we
denote

1 ( a+b 1 (° a+b
u(x) '_x—aL sgn(t— > >dt—m xsgn(t— 5 )dt, x € (a,b), (2.19)

1 a+b 1 b a+b * a+b
y(x)—x_aL sgn<t— 5 )dt—m<J’a5gn<t—T>dt—J‘a sgn(t— > >dt>

b-a x a+b b-a
:(x—mw—x>Lsg<”'2 >”:<x—mw—xf1“”

(2.20)
where A has been defined in the proof of Theorem 2.1.
Therefore,
sup |p(x)| = (b-a) sup 6(x), (2.21)
x€[a,b] x€[a,b]
where
1 . a+b
bT, if x € [a, T),
6(x) = (2.22)
. a+b
, ifxe <—, b|.
x—a 2
Since SUP a,b]6 (x) =2, inequality (2.18) becomes, for g given above,
b b
a+b 1
[[ rosen(1- 257 )| <3V (223)

for any function f of bounded variation on [a, b].
If in this inequality we choose f(t) = sgn(t — (a + b)/2), then we obtain in both sides of
(2.23) the same quantity (b — a). O

3. Applications for the trapezoid rule

The following result concerning the error estimate for the trapezoid rule can be stated as fol-
lows.

Proposition 3.1. Assume that f : [a,b] — R is absolutely continuous and has the derivative f' :
[a, b] — R of bounded variation on [a,b]. Then

(a) + f(b)
2

b b
|2 [ rar-1 <5o-aV(r) G1)

The constant 1/8 is best possible.
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Proof. We use the identity (see, e.g., [5])

by 1 (" 1 (* b
RO o [ rwa= g [ (-5 o 02

If we apply inequality (2.18), then we can write that

I—I ot ) ron g [ (-5

) ; ) ) ) 3.3)
a+ x—a a+
) su j<t_ )dt— j<t_ )m‘.
\a/ f x€[ apb] 2 b-a a 2
Since
b x 2 2
a+b a+b 1 a+b b-a
Jo (=5 )0 [ (-5 )dt—z[( -5 )-( ) )
(3.4)
x a+b 1 2l (b-a)?
sup t— dt| = 2sup =—5
x€lab]l Va x€[a,b]

hence, by (3.2) and (3.3), we deduce (3.1).
For the sharpness of the constant we choose f(t) = |t — (a + b)/2|. For this function, we
have

b-a
4 7

a+b

1 (f 1 (b
boal, 0= g | -
f@+fb) _b-a

2 27 (3.5)
-1, ifxe [a,a;b)

. a+b
1, 1fx6< > ,b],

e -

fit) =

and Vi(f') = 2.
If we replace the above quantities in (3.1), we get the same result (b — a)/4 in both
sides. O

The following result can be stated as well.

Proposition 3.2. If f : [a,b] — R is absolutely continuous on [a, b], then

b b)
o [ 0 SO0 -5 L=
f@) - fl@) _fb)-f@)| oo
1 x) - f(a x
SZ(b_”)'xse‘(f;) x—a B b-x
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Proof. Applying inequality (2.18), we can also write that

1 (t, a+b
el ro(-3t)n-gta Lo g [ (-43)

1\ a+b xX—a

< - . -

sV (-5) [ o ff 0 o
b (t)dt '(t)dt

51\/< a+b> A0 L ,

4V e [u pl x—a b-x
which, together with the identity (3.2), produces the desired inequality (3.6). O

For other results on the trapezoid rule, see [5].

4. Applications for the midpoint rule

The following result concerning the error estimates for the midpoint rule can be stated.

Proposition 4.1. Assume that f : [a,b] — R is absolutely continuous and has the derivative f' :

[a, b] — R of bounded variation on [a,b]. Then

ks roa-o(12)

The constant 1/8 is best possible.

b

1
g(b a)\/(f)

a

Proof. We use the identity (see, e.g., [6])

f<a+b>

where p : [a,b] — Ris given by

f p() f (t)dt,

t—a, ifte aa+b
4 4 2

. a+b
b, e (L]

7

p(t) =

If we apply inequality (2.18), we can write that

'_I t)p(t)dt—iff(t)dt —fpt)df| bi\b/ ) sup

x€[a,b]

(4.1)

(4.2)

(4.3)

f p(t t——J‘ p(t)dt‘

(4.4)
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We notice that

jb p(H)dt =0,

a

5(x) ::f p(b)dt

f (t— a)dt, ifte [a,aT-i-b ’

=9 a(a+b)/2 x a+b 9
f (t-a)dt+f (t-b)dt, ifte <—b]

a (a+b)/2 2

Lx—ap ifte [a,a+b],

)1 P a+b
Az(b—x) , ifte <T,b ,

for x € [a,b].
Since
1 2
sup |6(x)| = g (b-a), (4.6)

x€[a,b]

then by (4.2) and (4.4), we deduce (4.1).
For the sharpness of the constant 1/8, observe that for the absolutely continuous function
f(t) = |t - (a+b)/2|, we get in both sides of (4.1) the same quantity (b — a)/4. O

The following result can be stated as well.

Proposition 4.2. If f : [a,b] — R is absolutely continuous on [a, b], then

- ath ) - fla)
\b_afafa)dt—f( ) Sxi}‘ail F) - @) - (- a) - LU= .
Lo-a) sup [[0=1@ _JO =& '

xe(ab x—a b-x

Proof. Applying inequality (2.18), we can write

5= jb pO)f ()t - fbpa)dr =il b o

2 fWdt [ f @t
< —\/(P) sup f f(t)dt——f f(t)dt‘ \/(p J _ : )
a  x€lab] a xeub] -a -x
(4.8)
and since V4 (p) = b — a, we deduce from (4.8) the desired inequality (4.7). 0

For other results on the midpoint rule and their applications, see [6-8].
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5. Applications for general quadrature rules

Let h : [a,b] — R be a Riemann integrable function. Suppose that h is n-time differentiable and
that there exists the division a = xp < x1 < -+ < x,-1 < x, = b and the weights ay, ..., a, such
that

n b
r h(hdt = Y aih(x;) + f K,(Hh™ (t)dt, (5.1)
a i=0 a

where K, : [a,b] —R is the Peano kernel associated with the quadrature rule A(h) =3 pgih(x;).
Utilising inequality (2.18), we can produce a “perturbed quadrature rule” by approxi-

mating the error terms ff; K, (H)h™ (t)dt as follows.

Proposition 5.1. With the above assumptions and if "™ is of bounded variation, then

b n n— n— b
I h(bdt = Y aih(x;) + a 1)(1’;:2( V(a) j K, (t)dt + Ep(h) (5.2)
a i=0 a

and the error term E, (h) satisfies the bound

|E(h)] < \/(h<">) sup I K, (t)dt—x ”J' K () dt)

x€[a,b]

(5.3)

1 n
<7 (- a)\/(h<>

jK(t)dt [° K (t)dt
x-a bx"

x€ ab)

The proof is obvious by (2.9) on choosing f = h™ and g = K,,.
The second natural possibility is incorporated in the following proposition.

Proposition 5.2. With the above assumption and if K,, is of bounded variation on [a,b], then the
representation (5.2) holds and the error term E, (h) satisfies the bounds

B () — D () - (x - a) - P @) I @)

|En(h)] V(K ) sup

x€[a,b] b-a
(5.4)
_L \b/ o | RO @) = k(@) R (b) - kD (x)
4 a Tl xi(a,pb) X —a b - X ’

The proof follows by inequality (2.18) on choosing f = K, and g = h™.

Remark 5.3. As noted in the previous section, in practical applications and for a large num-
ber of quadrature rules, the Peano kernel K, is available and the involved quantities in the
error estimates (5.3) and (5.4) can be completely specified. In some cases, the new perturbed
rules provide a better approximation than the original one. The details are left to the interested
reader.
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