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1. Introduction

g-Series, which are also called basic hypergeometric series, play a very important role in
many fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal
polynomials and physics. Convergence of a g-series is an important problem in the study of
g-series. There are some results about it in [1-3]. For example, Ito used inequality technique to
give a sufficient condition for convergence of a special g-series called Jackson integral. In this
paper, by using inequality technique, we derive the following two theorems on convergence
of g-series involving ,,1¢, basic hypergeometric series, which can be used for convergence of
special Thomae g-integral.

2. Notations and Known Results

We recall some definitions, notations, and known results which will be used in the proofs.
Throughout this paper, it is supposed that 0 < g < 1. The g-shifted factorials are defined as

(a;9),=1, (a;9), = (1 - aqk>, (a;9),, = ﬁ(l - aqk>. (2.1)
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We also adopt the following compact notation for multiple g-shifted factorials:
(alr az, ..., am; q)n = (al; q)n(a2; q)n Tt (am; q)nr (22)

where 7 is an integer or co.
The g-binomial theorem [4, 5] is

& (@) (aziq),,
= @ae  (za),

, lzl<1, |q| <1 (2.3)

When a = g™, where n denotes a nonnegative integer

L)
S A=

= ™.q), . 24
2 o, (za7";9), (2.4)

Heine introduced the ,,1¢, basic hypergeometric series, which is defined by [4, 5]

ai, az,...,ar+1 & (ai,az,...,ar;9),2"
T+1¢r< ;q, z> = Z s U2, s r4n . (25)
n=0

bl,bz,...,br (qlblrbZI"-/bT’;q)n

3. Main Results

The main purpose of the present paper is to establish the following two theorems on
convergence of g-series involving .1, basic hypergeometric series.

Theorem 3.1. Suppose a;, b;, t are any real numbers such that t > 0and b; < 1withi=1,2,...,r.
Let {c,} be any sequence of numbers. If

Cn+l

Cn

lim

n— oo

=p<1, (3.1)

then the g-series

= ai, az, ..., an,q"
Cn " r+ r ; ,t " 3.2
HZ=O 1¢ < blleI"‘lbr q q ) ( )

converges absolutely.

Proof. Letb <1 and

1-—at

_ <t<1 .
b 0<t<1, (3.3)

ft) =

It is easy to see that f () is a monotone function with respectto 0 <t < 1.
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Consequently, one has

)1—at
1-bt

|1—a|}
< 1 .
_max{ 1%

From (3.4), one knows

(ai; ), k-1

(bi; q)k

1-b;

_'1—(1,’

1-aq
‘1—biq

1-aq
1- b,’(]kil

where M; = max{1,|1-a;|/(1-b;)} fori=1,2,...,r.
So, one has

(alr as, ..., ar; q)k
(blrbZI e /br; q)k

5 (1:[ MZ.)".

(all az,...,ar,; q)k(_l)k
(bll bZ/ ey brr q)k

It is obvious that

—n; —tg" k
% >0, t>0,k=12,...,n
74k

Multiplying both sides of (3.6) by

(@7 q) (~tg")*
(4D

gives

(*11. ) T k
< 4q /‘1k<_tanMi> ‘

(49); i=1

(@™ a1, a,...,4:;9), (tg")"
(q,bl,bz,. . .,br}Q)k

Hence,

i (q—n/ ai,az,...,0a; q)k(tqn)k
k=0 (q’b1'b2l--~rbr;q)k

ay,az,...,a,q "
;q.t9"
T”¢’< buby,... b, q)
(q_nralfaZI---rar;q)k(tqn)k
(q/blrbZ/-'-/br;q)k

n
<2
k=0

n —Mn. r k
< ZM<_tqnnMi> |
k=0

(q; 9 i=1

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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By using (2.4) one obtains

n o(4n. r k r
Z(q ’q)k <—tanM1> — <_tHMi,~ q> . (311)
k=0 i=1 n

(9 9)x i=1

Substituting (3.11) into (3.10), one has
al/ aZ/ .. -/ar/q_n
T ; ,t n
+1¢T< bl/bZr'”/br 1 q>
Multiplying both sides of (3.12) by |c,|, one has
a, az,...,ar, q_n
Cn-r r 5 q.tg"
+1¢ < bl/bZI-"/bT q q>

The ratio test shows that the series

< <—thMi; q> . (3.12)
i=1 n

(3.13)

< |cnl <—t]L[Mi;q>
i=1

n

icn <—t1L[M,~,' q> (3.14)
i=1 n

n=0

is absolutely convergent. From (3.13), it is sufficient to establish that (3.2) is absolutely
convergent. O

Theorem 3.2. Suppose aj, b;, t are any real numbers such that t > 0 and a; < 1, b; < 1 with
i=1,2,...,r. Let {c,} be any sequence of numbers. If

im | =p>1, or lim |9 = 4o, (3.15)
n—ow| Cp n—ow| Cy
then the g-series
i ¢ < ay, aZ/-../arrq_n " n> (3 16)
Cn " r+l ; C]/_ q .
n=0 nor blleI"'le
diverges.
Proof. Leta <1,b<1and
1-at
f=—— <t<1 17
f@) = 1= 0stsl, (3.17)

It is easy to see that f(t) is a monotone function with respectto 0 <t < 1.
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Consequently, one has

From (3.18), one knows

(ai;CI)k 1-a l-ag .1_aiqk—1 -
(bi;9), C1-bi 1-big 1-bgkt~

where m; = min{1,(1-a;)/(1-b;)} fori=1,2,...,r.
So, one has

k
(ar,a2,...,a.;9), r
> m; .
(bl,bz,...,br,‘(])k ll:i[
It is obvious that

(a7"9) (-ta")"

>0, t>0,k=1,2,...,n.
(4:9),

Multiplying both sides of (3.20) by

(q7:9), (~ta")"
(@ 9),

gives

_ k _ k
n/ 7 soeerQry —t " n; r
(g a1, a2 ar;q), (—tq") S (@) (_tqnl—[mi> ‘

(q/blleI'-'/br;q)k - (q’q)k i=1

Hence,

ay, az,...,a,,q" n (q—n,al,az,...,ar;q)k(_tqn)k
r+l r / ,_t n =
+ (i) ( q,-tq > g) (q,bl,bz,...,br;q)k

By using (2.4) one obtains

n (qfn;q)k . r k < r >
—t i) =\t iiq ) -
2 G, < "1;[’"> [Imia)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Substituting (3.25) into (3.24), one has

ai, az,...,qr, q_n r
e, ;og-tq ) > —t] [miq ) - (3.26)
bl/bZI-"/br i=1 n

Multiplying both sides of (3.26) by |c,|, one has

al/aZ/-"/ar/q_n L
lcal - 1, i a-tq" ) 2 el ] [miq ) - (3.27)
bl/bZ/”-/br i=1 n

Since
c —t[ 1= mi;
i (1€ H’;l Dt _ || (3.28)
n—oep|(—t 1 mi q),, n—ool Cn
By hypothesis
lim [ = p>1, or lim 1| _ +0c0, (3.29)
n—ow| Cy n—ow| Cp
therefore, in both cases there exists a integer Ny > 0 such that Vn > Ny
|C"+1|(_tl_[;:1mi; q)n+1 > 1. (330)

|Cn|(—tH¥:1mi; ‘7)”

So, one can conclude that

|Cn|<_t1_[mi;q> >|CN0|<_thi}q> , Vn> N (3.31)
i=1 n i=1 Ny
Now, from (3.27) and (3.31)
al/ a2/ cecy ar/ q_n r
Cul -7 ;o q,-tq" ) 2 el —t] |mi
el +1¢r< bbb ] q) |n|< ]_1[ q>n
> [eny| <—thi; q>
i=1

> 0.

(3.32)

No

Thereby, (3.16) diverges. O

We want to point out that some g-integral can be written as (3.2) or (3.16). So, the
results obtained here can be used to discuss the convergence of g-integrals.
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4. Some Applications

In [6, 7], Thomae defined the g-integral on the interval [0, 1] by
1 ©
[ o= a-pX @) (1)
0 n=0

The right side of (4.1) corresponds to use a Riemann sum with partition points ¢, = 4", n =
0,1,2,....Jackson [8] extended Thomae g-integral via

d ©
[ Fwag=a0-9 X s
0 (4.2)

fjf (B)dgt = f: f(t)dgt - f 0 FHd,t.

In this section, we use the theorems derived in this paper to discuss two examples of
the convergence for Thomae g-integral. We have the following theorems.

Theorem 4.1. Let a;, b;, t be any real numbers such that t > 0 and b; < 1 withi = 1,2,...,r. If
a > -1, then the Thomae g-integral

J‘lta al/aZI"'/aT/t_l t d t (4 3)
AN A '

converges absolutely.

Proof. By the definition of Thomae g-integral (4.1), one has

1 [11, a2/---/ar/ t_l
e ;g t)dgt
.[0 " ¢f< bibs,... b, )%

(4.4)
> ay,az,...,ar,q "
=(1=- n(l+a) s og,q" ).
( q)nZ:Oq r+1¢r< b1,b2/---,br q.9 >
Using Theorem 3.1 and noticing,
q(n+1)(1+a)
lim =q'" <1, (4.5)

n— 00 qn(1+a)

one knows that (4.3) converges absolutely. O
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Theorem 4.2. Let aj, b;, t be any real numbers such thatt > 0and a; <1, b; < 1lwithi=1,2,...,r.
If « > 1, then the Thomae g-integral

J]t_“ ¢ al/aZI"'/ar/t_l . t d t (4: 6)
A N S S I '

diverges.

Proof. By the definition of Thomae g-integral (4.1), one has

1 a, as, ..., a4, t"
Fo ; gq,—t )dat
Io " ¢’< bibs. by !

(4.7)
& _ al/aZ/-"/ar/q_n
=(1- (1 a)nr :og,—q" ).
( q);:oq +1¢>r< bbb q>
Using Theorem 3.2 and noticing,
) q(l—u)(n+1) e
R (48)
one knows that (4.6) diverges. O
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