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Let p be a positive Radon measure on R? which may be nondoubling. The only condition that
u satisfies is p(B(x,r)) < Cor" for all x € R4, r > 0, and some fixed constant Co. In this paper,
we introduce the operator g}  related to such a measure and assume it is bounded on L2(p). We

then establish its boundedness, respectively, from the Lebesgue space L' (y) to the weak Lebesgue
space L"*(u), from the Hardy space H'!(u) to L' () and from the Lesesgue space L®(u) to the
space RBLO(y). As a corollary, we obtain the boundedness of 8, In the Lebesgue space L ()

with p € (1, 0).
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1. Introduction

A positive Radon measure p on R? is said to be doubling if there exists some constant C such
that u(B(x,2r)) < Cu(B(x,r)) for all x € supp(u), r > 0. It is well known that the doubling
condition is an essential assumption in many results of classical Calderén-Zygmund theory.
However in the recent years, it has been shown that a big part of the classical theory remains
valid if the doubling assumption on p is substituted by the growth condition as follows:

u(B(x,r)) < Cor" (1.1)

for all x € R4, where n is some fixed number with 0 < n < d. For example, In 2001,
Tolsa in [1, 2] investigated the weak (1,1) inequality for singular integrals, the Littlewood-
Paley theory and the T(1) theorem with nondoubling measures. In 2002, Garcia-Cuerva and
Gatto [3] investigated the boundedness properties of fractional integral operators associated
to nondoubling measures. In 2005, Hu et al. [4] studied the multilinear commutators
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of singular integrals with nondoubling measures. Since 2007, Hu et al. [5] have proved
some boundedness results of Marcinkiewicz integrals with nondoubling measures on some
function spaces.

On the other hand, let ¢ be a function on R? such that there exist positive constants
Co, C1, 6, and v satisfying

(a) ¢ € L"(R?) and [ g (x)dp(x) = 0,
(b) |gs(x)| < Co(1 + |x) P,
(©) lg(x +y) = ¢(x)] < Calyl" (1 + |x]) "7 for 2]y < |x|.

For this ¢, we define the Littlewood-Paley’s gx,ﬂ—function with nondoubling measures as
follows:

An d d 1/2
t
g;,ﬂ<f><x>=<fRfﬁ<m> g S P22 > C s )

where g (x) = t "¢ (x/t) and ¢ * f(y) = [pagp(y — 2) f(2)dp(z).

Note that if we replace du(y) by dy in the above definition and when ¢; = P; is the
Poisson kernel, we obtain classical g}-function defined and studied by Stein [6] and later by
Fefferman [7], where the weak (1,1) with A > 2 and weak (p, p) with A = 2/p boundedness of
g} function were obtained. In the same paper, Fefferman [7] also established the L” bounds of
g) for1 <p < ooand A > max{1,2/p}. For the more generalized g}-function defined by (1.1),
the L? boundedness is also well known (see, e.g., [8, pages 309-318]). On the other hand,
inspired by the works of Sakamoto and Yabuta in 1999, the first author in this paper studied
parametric g}-function systematically in his PhD thesis [9]. Later, in 2008, Lin and Meng [10]
gave some results on parametric g}-function with nondoubling measures. But their result
only valid for p > n/2, one cannot obtain the results for classical operators even for p = 1 or
in the classical case studied by Stein in 1961 [6].

In this paper, we will study the properties of operator Sipu with nondoubling measures
on some function spaces under the conditions (a)—(c).

First, before stating our main results, we give some notation and definitions, let Q C R”
be a closed cube with sides parallel to the axes. Denote its side length by /(Q) and its center
by xo. Given a > 1 and f > a”, we say Q is (a, f)-doubling if u(aQ) < pu(Q), where aQ is the
cube concentric with Q with side length al(Q). If a,  are not specified, by a doubling cube
we mean a (2,24*1)-doubling cube. For any cube Q, we denote by Q the smallest doubling
cube which contains Q and has the same center as Q.

Given two cubes Q C Rin R?, set

Nor ok
SQ,R=1+ Z #( Q)

=12k )" (9
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where Ngr is the first integer k such that (2¥Q) > I(R) and

Nk k
a z: ‘u(a Q) 1.4
SQ,R =l k=1 l(de)n ( . )

with & > 1, where N, aR is the first integer k such that [(a¥Q) > I(R).
In the article of [1, page 95], we know that Ko = K with constants that may

depend on a and Cy. The following atomic Hardy space H;fb” was introduced by Tolsa in
[11].

Definition 1.1. For a fixed p > 1, a function b € L _(p) is called an atomic block if

(1) there exists some cube R such that supp(b) C R;

(2) IRdbd/l =0;
(3) there are fucntions a; with supports in cubes Q; C R and numbers A; € R such that

b= Z/\]’aj,
i

-1
”aj”Lw(y) < [n(pQj)Sor] -

(1.5)

Define

bl = 2141 (1.6)
]

We say that f € Hi;f (p) if there are atomic blocks {b;}; such that f = 3.2, b; with >; |b;] Hi <
. The H'* norm of f is defined by

100 = inf 2Pz (17)

where the infimum is taken over all the possible decompositions of f in atomic blocks.

It was shown by Tolsa that the space H ;;Z’ (1) was proved to be the Hardy space H' ()
in [11] with equivalent norms. We will denote the space Hif; (1) and the norm || - || HY ()
respectively, by H' (i) and || - |1 for convenience. He also proved that the dual space of
H'(p) is the following space RBMO().

Definition 1.2. Let p > 1 be a fixed constant. A function f € L () is said to be in the space
RBMO(p) if there exists some constant C > 0 such that for any cube Q centered at some point

of supp(y)

o5y ) W) ma(pans (18)
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and for any two doubling cubes Q C R
[mo(f) —mr(f)] < CSar, (1.9)

where mg(f) denotes the mean value of f over cube Q. The minimal constant C above is
defined to be the norm of f in the space RBMO(y) and denoted by | f||remoy)-

Tolsa in [11] proved that the definition of the space Hif;(y) and RBMO(u) are
independent of the choice of p. The following space RBLO(u) was introduced in [12]. It is
easy to see that RBLO(i) ¢ RBMO(y).

Definition 1.3. A function f € L () is said to be in the space RBLO(y) if there exists some
positive constant C such that for any ((4v/d), (4Vd)™h) doubling cube Q,

mo(f) —essinf f(x) < C (1.10)

and for any two ((4v/d), (4v/d)""")-doubling cubes Q C R,
mo(f) —mr(f) < CSqr- (111)
The minimal constant C as above is defined to be the norm of f in the space RBLO(u), we

denote it by || f[|[rpLO()-

In this paper, we always assume that ¢ and 7 are considered as they are defined at the
beginning of this paper. Our main results are as follows.

Theorem 1.4. Let ¢ be a function on R?, satisfying (a)~(c), L > 2,0 < y < min{(\ - 2)n/2,6}. If
8}, is bounded on L2(u), then it is also bounded from L (u) to LV (p).

Theorem 1.5. Let s be a function on R4, satisfying (a)~(c), L > 2,0 < y < min{(\A - 2)n/2,6}. If
8} . is bounded on L?(p), then it is also bounded from H'(u) to L' (p).

Theorem 1.6. Let s be a function on R, satisfying (a)~(c), L > 2,0 < y < min{(\ —2)n/2,6}. If
8, s bounded on L*(u), then for f € L*(p), 8y (f) is either infinite everywhere or finite almost

everywhere. More precisely, if gI#( f) is finite at some point xo € R?, then g;#( f) is p-finite almost
everywhere and

Corollary 1.7. Let s be a function on R?, satisfying (a)—(c), L > 2,0 < y < min{(X —2)n/2,6}. If
8yl bounded on L?(u), then it is also bounded on LP () for any 1 < p < co.

8| pror < CIF (). (112)

RBLO(u) ~

Remark 1.8. It is natural to consider the similar problems with more general rough kernels.
However, even in the doubling measure case, if we take ¢(x) = (Q(x)/|x["™) x{jxj<1) in (1.1)
(in this case, g} is defined and studied by [13]), from the results in [8], we know that it
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is impossible to give similar results as above for Littlewood-Paley g7  function even € €
Lip, (0 < a < 1) for n > 2. In fact, by the counter example in [13], even the L? (1 < p <
2n/(n + 2)) boundedness does not hold. In this sense, the condition we assumed on ¢ is
necessary and reasonable. On the other hand, in 2008, Lin and Meng [10] gave some results
on parametric g}-function with nondoubling measures. In fact the results in [10] are only
valid for p > n/2. By the same reason as above, one cannot obtain the result when p =1
which in this case, the operator coincides with the classical operator studied by Torchinsky
and Wang in [13] and it is a generalization of the classical operators studied by Stein and
Fefferman.

Remark 1.9. Even in the classical case, the index A > 2 is sharp for weak (1,1) boundedness;
see [6] for detail.

We arrange our paper as follows, in Section 2, we give and prove some key lemmas.
The proof of our main theorems will be given in Section 3. Throughout this paper, the letter
C will denote a positive constant that may vary at each occurrence but is independent of the
essential variables. A < B will always denote that there exists a constant C > 0, such that
A<CB.

2. Main Lemmas
We need two lemmas given by Tolsa.

Lemma 2.1 (see [11]). If Q C R are concentric cubes such that there are no (a, f)-doubling cubes
with (B > a™) of the form a*Q, k > 1, with Q C a*Q C R, then

1
f ! uw<a, @.1)
RQ|X - xq]

where Cy depends only on a, p, n, C.

Lemma 2.2 (see [11]). For any f € L'(u) and any A > 0 (A > a® || fllprqe /llpll, if lpll < o0)
then we have one has the following:

(a) there exists a family of almost disjoint cubes {Q;}; (that means Y; yo, < C, C depends only
on d) such that

(1) (1/p(@Qi))f o | fldp > A/a*1;
(a.2) (1/y(ani))iji|f|d‘u <A/ a% forany n > 2;
(@3) |fl < dae pon R\ U; Qi
(b) for each i, let R; be the smallest (B, f™*')-doubling cube of the form p*Q;, k € N, with

that p > 3a, and let w; = xq,/ D XQ., then there exists a family of functions ¢; with
sup(p;) C R; and with constant sign satisfying

(b.1) [ = [ fwidp;
(b.2) 3, il < BA, where B is some constant;

(b.3) llpill=op(Ri) < Cf, | fldpe.
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To prove our theorems, we prepare another two key lemmas.
For any subset E C R4*! we denote

f ¢ 2n+2e ¢ 2n+2e dll(y)dt
TE := _ ,
E\t+|x-y| t+ |y -z| g3+l

. e\ 28 dp(y)dt
TE:= J‘ t+ |x _ | 2n42y+26 g+l T
E v (t+ |y —xi)

It is easy to see that

An 2n+26
f t t W)t i (23)
Ré+1 t+|x—y| t+|y_zl 3n+l

Lemma 2.3. Let Q; and R; be the same as in Lemma 2.2, and let x; be Qs center. Then for any z € Q;
and x € aR; \ aQ;,

(2.2)

TRf+l < 1

~ (2.4)
o = x;

|2n :

Lemma 2.4. Let Q; and R; be the same as in Lemma 2.2, and let x; be Q's center. For any z € Q; and
x € aR; \ aQ;, then

1
—. (2.5)

T BT ly x| > 2} <
— A

Proof of Lemma 2.3. Denote

¢ 2n+2e ¢ 2n+2e
A = D — 7 B = ° (26)
t+|x -y t+ |y - z|

D=1 (y,t) e R¥1 :t>max{|y—x|,|y—z|}},

Set

{
{ 2.7)
() ert: Jy-z| <t<|y-x[},
Dy = {(y,t) € R¥1 :t<min{|y—x|,|y—z|}}.

It is easy to see

TR = TDy + TD, + TD3 + TD,. (2.8)
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We first estimate T D;. Set

N (yt) eRT it < |y —x;

L

Dlz—Dlﬂ ( t)ERd+1:t>|y_xi|/|x_xi|>2|y_xi

)

{ (2.9)
D13—D10{( ) eRM . t> ly = x|, [x = xi| < 2|y - x|, |xi — 2| < |y — xi

)

Dig=Dini(y,t) eR¥ > ly — x|, |x = xi| < 2|y - xi, |xi — 2| > |y—xi|}.

We have

TD1 = TD1,1 + TD1,2 + TD1,3 + TD1,4. (210)

Note that z € Q; and x € aR; \ aQ;, then |z —x;| < r;, |x — x;| > 167;. These two inequalities will
always be used in the following proof, so we will not mention them every time.

For any (y,t) € D11, we have that [y — xi| > 87, |y — 2| ~ [y — xil, |y — xi| > (1/2)|x — xil,
t 2 |x —xi|, t <|y —xi|. Then

t2n—2e t2n+2€

A<—— B<—
- |x _ xi|2n—26 - |]/ _ xi|2n+2€ (211)

For any (y,t) € D1, we get |x — x;| < 2t. Then

tTl*S
A<1, B< PR 2.12)

For (y,t) € D13, we obtain that |y — z| < 2|x — x;|, t > (1/2)|x — x;j|. Therefore

tn—S
A<1, B< PR (2.13)

For (y,t) € D14, we have that |x — y| ~ |x — x;|, t > r;. Therefore

t2n+2€

AS e BS1 (2.14)
1
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Thus, we get

|yfxi| t2n—2€ t2n+2€ 1 ( )
TD;, < f J — dtdu(y
|y—xi|>(1/2)|x—x,-\ 0 |X _ xilzn 2€ |y _ xi|2n+2e $3n+1
<—
| — xi|2"
e e 1 () 1
TD;) < J‘ f ———du(y)dt S ——, (2.15)
/2=l ly-zit [y — 2| £ |x = xi*"
+oo e 1 1
TDys < f f T e (y)dt S ——
/2 =x) |y-z|<2w-xl |y — 2| f3n+1 Ix — x|

+o0 t2n+2€ 1 did ( ) - 1
TDMSJ f L wauy) s ——
|_1/ xl|<ri . |x _ xi|2n+2€ t3n+l //t y |x _ xi|2n

Next we estimate TD,. Set
Dy =D2n {(y/f) R |y —xi| >2px —xil},

(2.16)
D2,2 =Dr,nN {(y,t) € Rfﬂ : |y—xi| < 2|x—xi|}.

For any (y,t) € Dy, there exist two constants Cy, C; such that C;|y —x;| < t < Cp|y —x;|. Since
A <1, B<1,we then have that

Coly-x| dtdu(y) < 1 (2.17)
Dy < | ( tap(y) < —. |
|y xl|>2|x—x,| Clly—x,-| t3n+1 Y |.’X' — xi|2"

For any (y,t) € D,p, the following inequalities hold: t < 3|x — x;|, |x — z| ~ |x — x;], and
t+|y — z| > |x — z|. It follows that

t2n+2€
ASl, ~ |x—x'|2"+2€’
1

2.18
3] x—x;] f2n+2e 1 1 ( )

o) e

y x|<t |x X |2n+2€ t3n+1 /l(y) |x _ xi|2n

Next we estimate TDs. Set
D31 =Dsn {(y,t) eRM: |x— x| < 2|y - x,-|},

(2.19)

D3> =Ds3N {(y,t) e R |x — x| >2|y—x,~|}.
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Then

TD;5 = TD3,1 + TD3,2.

(2.20)

For any (y,t) € D31, we can get that |y — z| ~ |y — x;| and there exist two constants C; and C;

such that Ci|y — x| <t < Ca|ly — xi|. Then

t2n+2€
A<l B S-’ 2n+2e”’
|y - xi|
C2|y—xi| {2n+2e 1

1
TDs1 J 7% et dtdpu(y) < PRIy

|y—x,-|2(l/2)|x—xiICl|y—xi| |]/ - Xi

For any (y,t) € D35, we can get |x — y| > (1/2)|x — x;] and t < (3/2)|x — x;|. Then

t2n+2€
A<

(3/2)|x—xi] t2n+2€
S B<1, TDs3, < I f
| — i

2n+2e”’
n+2e 0

|y—z|<t |x - xil
Next we estimate TDy. Set

Dy =Dy {(y1) €BE: |x—y| > 2x -},

Diz=Dsn {(%f) R Sle-zl<|x-y] S2|x—z|},
d+1 1
D4,3:D4ﬂ{(y,t)eR+ :|x—y|§§|x_z|}.

If (y,t) € D41, we obtain |y — z| > [x — z|, |[x — z| ~ |x — x;| and

t2n—2€ t2n+2€

2n-2e’ - 2n+2e ”

ly - z|

Therefore

ly-zl th—Ze t2n+2e 1 1
TDy; < J f dtdu(y) < ——.
ly—zl>lx—z1J 0 |x _ Z|2n—2€ | _ Z|2n+26 t3n+1 ‘u(y) |x _ xi|2n

If (y,t) € D4y, we have t < 2|x — z| and

t2n+2€ t2n—2€
2n+2e’ 2n-2e "

<
ly - z|

~
|x - 2|

————r S du(y)dt.

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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Therefore

2|x—z| 2n+2e 2n-2e 1
D42 5 I J‘ dt. 207
0 ly-z|>t |x — z|2"+2€ |y _ |2n 2¢ {3n+1 ‘u(y) ( )

If (y,t) € D43, we have |y — z| ~ [x — z| and t < (1/2)|x — z|. Then

t2n—2€ t2n+2€
A< 2n—2e’ 2n+2e
|x -yl =l 228)
(1/2)|x—z] 2n-2e f2n+2e 1 1 .
e | s — .
0 l—ylot |x yIZn 26 x |2n+2€ 3n+1 #(y) |x _ xi|2n
The proof of Lemma 2.3 is finished. O
Proof of Lemma 2.4. Denote
o t An _ t26
A= <—> , B:= . (2.29)
t+|x_y| (t+|y_xi|)2n+2y+2§

Let K = {(y,t) € R%*!: |y — x;| > 2|x; — z|} and divide K into four parts

Ki=Kni(yt)e R4+ . max

)<t}

{
{whertly-x|<t<|y-z},

{ (2.30)
{

(y,t) e R . |y—x| <t, y—xi| <4r,~},

Ki=Kn{(yt) eRM :|y-x|<t,

v - xil 24ri}.

Then TK = TK; + TK, + TK3 + TKj.
Since x € R" \ aRLand z € R;, we have that |z — x;| <1y, |x — x;| > 167;.
We first estimate T K. Set

K =Kin {0 e B |y x| < 3n ),
d+1 . 3
K12—Klﬂ (y,t)ER |y—x,~|>§ri, t<|y—x,~|+2ri},
(2.31)

3
K13—Klﬂ{( ,t) € R4 ly — x| > 5T t> |y —xi| +2r;, |x — xi| < 2|y — x4

3
Kia=Kin{(yt) eR¥: ly —xi| > ST t> |y —xi| + 273, |x — x; >2|y—xl~|}
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Then
TK] = TKl,l + TKLZ + TKL[; + TK1,4.

For any (y,t) € K11, we have that |x — x;| ~ |[x — y| and f > (1/2)|x — x;|. Then we get

t25

A<l B< {2n+2y+26 7

and therefore

_ 9] 26 d At
TKys < f f t 1(y) < 1
ly—z|<t

(1/2)x—xi] F2n+2y+26 fn+l ~ |x _ xi|2n+2y

11

(2.32)

(2.33)

(2.34)

For any (y,t) € K1, we have |x — x;| < 3|y — xi|, (1/2)|y — xi| <t < 2|y — x;|. It follows that

_ _ £26
A<l B< 2n+2y+26"7
|xi - vl
_ 2|y-xil £26 dtd 1
TK1’2 < J‘ J‘ 2n+2y+26 trfj—l(y) S-’ 2n+2y "
y—xi|>(1/3)x=xil) (1/2)ly—=xil |x; — y| | — xil

If (y,t) € Ki3, we will get |x — x;| < |y — x;| < 2t. It follows that

A<, B<

TK13<J‘OO f 1 dtd‘u(y) < 1
o ly—xi|<t

(1/2) x| A N

If (y,t) € Kq4, we obtain that f > (1/2)|x — x;|. Thus we can get

— - 1
A < 1’ B < t2n+2y’
_ +oo d dt
TKis< _[ 2n1+2 #(Xl) N : 2n+2y "
1/2)x-x T 8 |2 — o[

Next we estimate TKZ. Set
K1 =Kan {(y,t) e R™!: ly - xi| > 2|x —xi|},
Ky =Kyn {(y,t) e R™!: ly — x| <2|x —xil}.
Then

TKZ = TKZJ + TKZ,Z.

2n+2y "

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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For any (y,t) € K51, the inequalities t > (1/2)|y — x;| and ¢ < 2|y — x;]| hold, and we have

_ - 1
A<l B< f2n+2y”

2.40

TKy; < f j el 0
ly-xils2bexil) (1/2)ly-) 2t

For any (y,t) € Ky, the inequalities f < 3|x — x;| and t + |y — x;| > |x — x;] hold, and we can get

_ _ t25
Asl, B< |x - x'|2n+2y+26’
1
(2.41)
Trn < 2|x—xi 126 du(y)dt _ 1
22 = 2n+2y+26  gn+l ~ A 2nH2y
0 ly—x|<t |x — ;] |oc — x4
Next we estimate TKg,. Let
_ d.
K;1=Kzn {(y,t) eER:t> |y—x,~|},
(2.42)
Ks» = Ksn { d, o
32=Ksn{(y,t) eR ¢t < |y—xi .
Then
TK3 =TK3; + TK3,. (2.43)

Since 2n + 2y < An, we can choose € > 0 small enough such that 2n + 2y + 2¢ < An and
€< (1/2)n.
Now denote

~ t 2n+2y+2e
A= <—> , (2.44)
t+x -yl

and for a subset E ¢ R4, we denote

TE = E\Tr £ dp(y)dt
o t+|x -yl 2n+2y+26 g+l (2.45)
E X-y (t+ |y —xil)

It is easy to see that TE < TE.
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For any (y,t) € K31, we have |x — y| ~ |x — x|, t < 2|x — x;|. It follows that

~ f2n+2e+2y
A ’S 2n+2e+2y”
|ac — oY
AE < pn+2e t26+ZY g f2n+2e 1 1 (246)
> |x _ xi|2n+2€ (t " |y _ xi|)2n+27+26 - |x _ xi|2n+26 |y _ xiln—s fn+e

The last inequality holds because ¢ > |y — x;| and we choose ¢ > 0 small enough such that
n—¢e > 0, and then we can get (t/|y — x;|)"° > 1, which leads to the above inequality. Using
these inequalities, we obtain

2[x—xi| 2n+2
TK3; < f f o ! 1 dtdu(y) N ! . (2.47)
, y—xl<ari) 0 |x _ xi|2n+25 |y - x; |n—e fn+e fn+l |x _ xi|2n+2y
If (y,t) € K32, we get t < |x — x;|. It follows that
- t2n+2y+2€
A S |x _ xi|2n+2y+2e’
— 2€ $2n+2y+26 2€ frry+6
AB < 2n+2y+2€ 2n+2y+26 < 2n+2y+2e n+y+67 (2-48)
e =2 (e Jy - )T =TT [y T
SO (R L LR O U
2 = 0 —— |x _ xi|2n+2y+2€ |y —x; |n+y+6 tn+1 ~ |x _ xi|2n+2), .
Next we estimate TKy. Set
Ky =Kyni(y,t) e R, ly —xi| <t<|y—xi| +2r;, 2|y —xi| > |x - xi|},
Kip=Ksn{(y,t) eR¥T: ly —xi| <t<|y—xi| +2r;, 2|y —xi| <|x - xi|},
Kz =Kin{(y,t) e R imax{ |y - xi|, |y - xi| +2r:} <t, 2|y — x| > |x —xi|},
Kya=Kin {(y) € RE imax{|y - xl, |y - x| +2r) <4, 2]y - x| < e - xil}, (2.49)

Ky5=Kyn {(y,t) e R . ly —xi| >t, |x-y| >2|x—x1-|},
{(y,t) eRM: |y -xi| > t, %lx—xil <|x-y| §2|x—x,~|},

1
Ky7 =Kyn i (y,t) e RIT: ly—xi| >t |[x-y| < §|x—xi|}.
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Then
TK4 = TK4,1 + TK4[2 + TK4,3 + TK4,4 + TK4,5 + TK4[6 + TK4I7. (250)

For any (y,t) € K41, we have (3/4)|y — xi| <t < (3/2)|y — xi|. Then we get

o - 126
A<, B < P2y 25
B ool @ dtdu(y) . (2.51)
TKsp Sj J 2n+2y+26 FERIN 22y
ly-xl>(1/2) il 3/4)y-x BT | — x|
If (y,t) € K42, we get |[x —y| > (1/2)|x — x;] and ¢ < 2|x — x;|. Then we can obtain
- $2n+2y+2e _ 120
7 B S —75=/
Ix _ x_|2n+2}’+2€ F2n+2y+26
1
. (2.52)
- X=X 2n+2y+2e 26
TK4'ZSI j t 214242 t d#(yl)dtg 12 2"
0 ly—xil<t |x _ xil n+2y+2e t2n+2y+26 i+ |x _ xi| n+2y
If (y,t) € Ky3, we gett > (1/2)|x — x;|. Then
_ — 26 1 1
A<l B= t 26 2n+2y < 242y’
(t+ly-x))™ (t+ |y - xil) ly - xi
(2.53)
_ o 1 dtdp 1
TK4,3 S J‘ f 2n+2y n+1(y) 'S 2n+2y "
ly—xil>(1/2) i) (/2] |y = x;] t |x - xil

For any (y,t) € Ky4, the inequalities [x — y| > (1/2)|x —x;|, 0 < t < 2|x — x|, and t > |y — x|
hold, from which we obtain

- f2nt2y+2e _ 1
A S’ 2n+2y+2¢e”’ B< {2n+2y”’
|x — x|
2.54
2|x—x;] [2n+2y+2¢ 1 d ( ) At 1 ( )
TKys < Y < .
s~ 0 ly-sil<t |x _ xi|2n+27+26 p2n+2y i+l ~ |.’)C _ xi|2n+2y
If (y,t) € K45, we have |y — x;| > |x — x;|. Then
Z . ; 2n+2y-2e _ f2n+2y-2¢ E - 126
“\t+ |x _ | ~oL o 2n+2y-2e’ = 2n+2y+26 7
Yy | — x;] |y - xil
(2.55)
TR < ly-xl  j2n+2y-2¢ 126 dtdu(y) _ 1
45 S “2n+2y—2e mi2pe26 il ™ o2y
[y=xi|>x-x;|/ 0 |x — x;] Iy - Xi| |x — xi
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If (y,t) € K46, we have t < 3|x — x;| and it follows that

- 2n+2y+2e _ t26
<
AN |x—X'|2n+2y+2E, B < |y N |2n+2y+26'
i A
. (2.56)
~ X=X 2n+2y+2e 26
TK465I f i t dulyat 1
/ 0 -t |x _ xi|2n+2y+25 |]/ —x; |2n+2y+26 i+l |x _ xi|2n+2y
If (y,t) € Ky7, we get [y — xi| ~ |[x — x;| and t < |x — x;|. Then we have
B f 2n+2y _ t26
A< —— , BS ————=/
- <|x_y|> ~ |x_xi|2n+2y+25
- (2.57)
- n+2y
TK - (3/2)|x—x] t 26 d‘u(y)dt - 1
47~ _ 2n+2y+26  pn+l ~ 2n+2y "
0 <t \ [X = V| Joc - xi Joc = x|
O

3. Proof of Theorems

Proof of Theorem 1.4. To prove Theorem 1.4, we will choose a = 16v/d and f§ = 3a.

Let f € L'(u) and A > a®!| f|l11¢y /Il Applying Lemma 2.2 to f and )\, we obtain a
family of almost disjoint cubes {Q;};. With the notation w;, ¢;, R; the same as in Lemma 2.2,
we can decompose f = g +b, with that g = f yra\y,q, + X @i and b = 3 (w;f - ¢;) = 3; bi.
And R“ can be decomposed as R? = (BR;)° U (BR; \ aQ;) U aQ;. By (a.1) of Lemma 2.2, we
have pu(UZy aQi) < (C/A) 7 [ | fldp < (C/) [ fldp.

Thus, to prove that 81,18 of weak type (1,1), we only need to prove

y{xeRd\OaQi:gxlﬂ(f)(x)>)L}§%J|f|dy. (3.1)
i=1

Since f = g+band Sy (f) < gjw( )+ g}‘hﬂ(b), we only need to show that both g and b satisfy
the inequality (2.4).

For g, it follows from (b.1) of Lemma 2.2 that || 3} ¢il[r1(,) < ZfQi|f|d‘u S Nz
and we have [|g]lr1) < [ fll < oo. Using L*>-boundedness of g;’# and (a.3) and (b.2) from
Lemma 2.2, we obtain

—”f”f W (3.2)

°° . C C
fxem\ Jaos i, (0w >} < § [l § flslans



16 Journal of Inequalities and Applications

To prove that b satisfies inequality (3.1), it suffices to show that

I b d S b 1 S 1 . .
J‘Rd\uiwl aQig/\,M( )(x) ‘l/l ~ “ ||L (n) ~ ”f”L () (3 3)

Since b = 3 ;(w; f - ¢j) = 3;; bi, we have that

* b))y < f * () (x)d
I RAUZ, aQigA’” # Z Rd\aQigA’” a

: Z [IRd\aRigX’”(bi)(X)d# " f

gi,ﬂ(bi)(x)dy] (3.4)

aRi\aQ;

= Z(A, + Bl)
If we can prove
Ai S ’[Q‘ |fldu,  Bi < ’[Q‘ | fldp, (3.5)

then we finish the proof of Theorem 1.4.
We first estimate B; and divide it into two parts

psf s @a [ )k

(3.6)

= Bi,l + Bi,2-

By the assumption of L? boundedness of g} W and the fact that R; is the (B, f"*!) doubling
cube, it is easy to see that

1/2
gI,ﬂ(%)(x)rdﬂ(x)] p(aR)"?

Bip < j R_gi,,l(‘l’i) (x)dp(x) < [I

aR,-

(3.7)

1/2
<|[ Joau]| ure < [ irian
aR; Qi
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Next we estimate B; ;. By the Minkowski’s inequality, Fubini’s theorem and condition (b) of
¢ that |gr(x)| < Co(1 + |x|)_"_6, we have the following estimate:

el
aR\aQ; | J R4
[ An d ( )d 1/2
t 2du(y)dt
< z I _ -z du(z)du(x
[ J el Riﬂ<t+|x_y|> w(y-2 Y ] k)

[ ‘ An ; 2n+26 du(y)dt 1/2
< _ _— —_ d d .
=~ IQi|f(Z)|IaRi\aQi :[Ri“ <t i |x _ y|> <t i |]/ _ z|> {3+l ] p(x)dp(z)

(3.8)

1/2

2
du(y)dt
i+l d‘u(x)

An/2
t
<m> f ¢i(y - 2wi(2)f(2)dp(z)

Choose € > 0 small enough such that € < §, 2n + 2e < An and 2e < n.
For any subset E C R%*!, we denote

2n+2e 2n+2e
TE = f b ! dp(y)dt (3.9)
E\t+|x—y| t+ |y —z| g3n+1

Let x; be Q's center. Using the above notations, it is easy to see that

An 2n+26
f ! ! du(y)dt < TR, (3.10)
R \ £+ |x = y| t+ |y -z| g3n+1

By Lemma 2.3, we will have the following inequalities:

g (fwi)(x) < Tl IQ,- | fwildu(z), (3.11)

d

B < [ Ir@laua) | ) < [ @M, e

aR; \aQ, |

where we used Lemma 2.1 to estimate

1 1 1
| ) < [ s+ [ o
aR\ag; X = Xil aR\R: [X = xi R\pQ; 1 — xil"
(3.13)

+ 7 dp(x) < Capucy-
Jin\aQ,- lx — x|" apmCo
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We now estimate A;. Let r; = (v/d/2)I(R;). Recall that A; = JRd\aRigI,ﬂ(bi)(x)dy(x), and

J‘ 81, (bi) (x)dp(x)
RA\aR;

An/2 2d ( )d 12
t u(y)dt
< - - z)bi(z)du(z du(x)
IRd\aRi f|y—x,-|szx,-—z| <t+|x—y|> '[%(y PRI gl g
J‘ J‘ < t >)Lrl/2
+ —_—
Re\aR; | ) ly-xil>2p-zl | \ £+ % = V]
P 1/2
d dt
<[w-2) —w(y—xi))bi(z)dy(z)‘ OB auo

= Al + AL
(3.14)

We first estimate A;. By the Minkowski’s inequality, Fubini’s theorem and property (b) of g,
we can obtain that

Al<C f 1bi(2)|
R;

An 2n+26 1/2
¢ t du(y)dt
x j f £y dp(x)du(z).
Ri\aR; [J ly-xil<2b-z| \ I+ [X = Y] t+ |y - z| t

(3.15)

If we prove

An 2n+26 2¢
f t t duly)at (3.16)
y-xi<2ix-z \ t + [x = Y] t+ |y -z e

forany z € R; and x € (aR;)¢, then

An 21426 1/2
d dt
[ : t HDB duy <1, 617)
RA\aR; |y—xi|<2|xi-z| f+ |x - yl t+ |y - Z| g

and by Lemma 2.2, we conclude that A! < jRi|b,~(z)|d‘u(z) < fQilf(z)|d‘u(z).
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Now choose € > 0 small enough such that € < 6, 2n +2¢ < An and 2¢ < n. Then for any
z € R; and x € (aR;)¢, note that |x — y| ~ |x — x|

J_ ¢ An ¢ 2n+26 d/l(y)dt

-2z \E+ |x =y t+|y -z ol
<J‘ f 2n+2e f 2n+2e d[/l(y)dt
T AN R L t+|y -z g
. f fri ¢ 2n+2e ¢ 2n+2e d/i(y)dt
~Jy-zian o \ t+ |[x -y t+ |y -z gl

. j J'oo ¢ 2n+2e ¢ 2n+2e dﬂ(y)dt
y-ziand n \E+ X =Y t+ |y -z el

. J‘ J‘rl_< ¢ >2n+2e< ¢ >ne dt d#(]/)
- |y—z|§3r,- 0 |x - ]/| |y - Z| o

2n+2e 2
. J‘ r’ t dtdu(y) . 7°
y-zl<3rd 1, |x _ yl 3n+l ~ |x _ xi|2n+26

Next we estimate A?. By property (c) of ¢ and 2|x; - z| < |y — x;|, we have

(3.18)

n+y+6 Y16

1 |x,~—z|>Y t . rit
-z) - -x)| <= < ,  (3.19
=2 -t < 5 (B F2) (5 = etz O

since |x; — z| < r;. Using the above inequality, Minkowski’s inequality and Fubini’s theorem,
we get

a2 scf 1bi(2)|
R;

An 2y 25 1/2
i du(y)dt
i I f < : > - 21+2y+26 #EZB du(x)du(z).
RA\aR; ly—xi[>2|x;-z] t+ |x - yl (t+ |y B xi|) ™ ;

(3.20)

So by Lemma 2.4, for x € R?\ aR; and any z € R;

A
I t ' £ du(y)dt 1 (3.21)
b2 \EH X =Y/ (e fy - )20 0T e
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Then we get

¢ An T2yt25 d ( )dt 1/2
4[ »[ < > i 2n+2y+26 i er du(x) $1, (3.22)
r\ar, [ |y-x2m-z \E+ X = Y| ) (b4 |y —x|)0

and we will have A? < fRilbi(z)ld,u(z) < fQi|f(z)|d,u(z). With the estimates of

Ax [ b@ie s | @,

(3.23)
s [ @i s | @,
we obtain that
Ak [ @i < [ 17 1duca) (3:24)
Thus,
[ g emw < [ e, (325
RA\aR; R;
Therefore we finish the proof of Theorem 1.4. O

Proof of Theorem 1.5. Note that the definition of H'(y) is independent of the choice of the
constant p, we can assume that p = a, still with a = 16V/4d. By Theorem 1.4, the operator
8\, s bounded from L!(y) to L*(u). By a standard argument, we only need to prove that
||g)*L/#(b) lL1 () < |ble for any atomic block b with supp(b) C R. Write

j S0 @dp() = f SO ) + LRgI,Ab)(x)d#(x) (326)

=+ )

By definition of b, we have ||b||11(,) < [blm1(w- By (3.25) in the proof of Theorem 1.4, we can
get

Is f R PCOITOE IR|b(Z)|d#(Z) < blis - (3.27)
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To estimate 5, let b = 3’; A;a; be as in Definition 1.1 and write

)= .[uR\UangI'ﬂ(b)(x)d#(x) + J‘ angi,ﬂ(b)(X)dy(x)

U

(3.28)
<SIl[  s@)@aue s ZI[ st @) @aduto,
] a 24 i ] ol i

By the assumption of L? boundedness of 4% and the Holder inequality,

[ giuta)@duco

< (a2 < C

* * 1/2
ip 2 ip | ) ||af||L2(y) - [u(aQ))] (3:29)

< Cllajll,. - u(aQy) < Clu(@Q))So ] - p(aQ)) < C.

By (3.11) in the proof of Theorem 1.4,

1
[ geeaes | o e aum)aue
aR\a, |x=xj|"J g,

aR\aQ;

1
——dp(x) (3.30)
R\aQ, |x — x|

< Nl f
a

1
o du()
aR\aQ; |X = X}

S ”ai“Ll(‘u)J‘

Sllajll. - #(Q)) - Soyr, (3.31)

where R; is a cube and has the same center as Q; and I(R;) = I(R), x; is the center of Q;. From
(3.29) to (3.30), we use the conclusion

[ ) Sso (3:32)
aR)\aQ; | X = x;]
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As a matter of fact, let N = N, QiR and then by the definition of N, we get that
N
(xR]- \ de C U <dk+1Q]' \ akQ]'),
k=1

1 N 1
f <Y f ————dp(x)
ak)\a@; | = ;| o wignarg |x - xj (3.33)

§ N ‘ll(llk+1Qj) - N ﬂ(txk+1Q]')
T (/1)) T G (a1 Q)"

,S Squ,R = SQ].,R.
Using (3.30) and the fact that
-1
||aj||L°°(y) < [1(pQj)Sar] (3.34)

we have

f o S (@) ) S a1 S
1’4 a ]'

(3.35)
S [#(“QJ)SQj,R]_l #(Q)) - Sgr S 1.
From (3.29) and (3.35), we can obtain that
[ sto@au < Shl (336)
We have
J2 < 1blg - (3.37)
Combining (3.27) and (3.37), we finish the proof of Theorem 1.5. O

Proof of Theorem 1.6. Now we begin to prove Theorem 1.6. First we claim that there is a
positive constant C such that for any f € L®(u) and (44, (4\/3)"+1)—doubling cube Q, the
following inequality holds:

@fggiﬂ (N @du(y) < ClIfll g + inf 81, () ®)- (3.38)
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To prove (3.38), for each fixed cube Q, let B be the smallest ball which contains Q and has the
same center as Q. Then 2B C 4/dQ. We decompose f as

f(x) = f(x)x2B + f(xX)xrar2B = f1(x) + fa(x). (3.39)

By the Holder’s inequality and L?(p) boundedness of 8\ We have

1/2
1 . 1 . 2 ”fl”LZ( )
mJ‘QgW( fY®Ap() € s [J‘Q|glrﬂ(f1)(x)' d#(x)] TI(O) RES #(Q—)l/;
1/2
4(2B) u(4vdQ) (3.40)

1/2
Wiy (557) £ 10| =g

S AN

We denote by 7 the radius of B. Note that |x — z| >  for any x € Q and for any z € R \ 2B,
then by Minkowski’s inequality, we have

&1 (f2) (%)
An/2 2 1/2
= S _ du(y)dt
i J‘J‘Riﬂ <t + |x - yl > flx—zlylpt(y Z)fz (Z)d‘u(z) i+l
An/2 2 1/2
L - du(y)dt
: J‘J‘Rf“ <t + |x - y| > le_z|2r¢t(y 2)f(2)dp(z) i+l
An/2 2 1/2
i du(y)dt
’ Hmﬂ <m> flleg‘l’f(y - z) f1(z)dpu(z) pree
An/2 2 p ( )dt 1/2
1 b uy
S8 (f)(x) + ff]Rf” <t+ = > J‘|x—z|<rqft(y - z) f1(z)du(z) P

(3.41)
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Since we have the following estimate:

JJ.

2 1/2
du(y)dt

tn+1

An/2
t
<m > | o-2p@wme

2n+2e 2n+2e 1/2
t t du(y)dt
- L i ™ e du(z).
Whewf . <f ) () %) a0

We claim

J’ ¢ 2n+2e ¢ 2n+2e dﬂ(y)dt - 1
R t+|x—y| t+|y—Z| $3n+1 ~ |Z_x|2n.

Then

2n+2e 2n+2e 1/2
d dt
f f _t t Hy )1 du(z) < 1.
r<|x—z|<3r R+ f+ |x - ]/| t+ |y - Z| £

By (3.42), (3.44), and (3.45), we can obtain

g;,y(f2)(x) 5 gx,‘u(f) (X) + ||f||L°°(y)

(3.42)

(3.43)

(3.44)

(3.45)

The method to prove (3.43) is quite similar as to prove (2.4) in the proof of Theorem 1.4 and

we omit it.

Thus, to prove (3.38), we only need to prove for any x, y € Q, the following inequality

holds:

21, ()@ =81, (L) )| S 1 [l

(3.46)

We note that g7  can be looked as a vector valued Calderén-Zygmund singular integral

operator in the following Hilbert space H:

H= {h il = (fjfwm(t, y)|2d”tfj{1)dt>l/2 < oo}.

(3.47)
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In fact, g7 , can be written by

’ 1/2
du(y)dt
g (3.48)

A/2
t
(;q;;ﬂ> [0iv-2r@auc)

= [ gy (f) ()]

g =( [,

H’

where ¢, (f)(x) = (t/(t +|x - y|)))‘"/2 [¢:(y — z) f(z)du(z). Also note that for u,v € Q,

81 (2) @) = 81, () @) = [llgy (1) @Il = Ny () @)l

< oy (f2) @) = w1y (f2) @) 4 (3.49)
=1,

where ¢, (f)(x) = (t/(t+ |x — y|)))‘"/2jqft(y - z) f(z)dz. We will divide I into four parts,
namely,
T < |[|opey (f2) () = gty (f2) (@) | Xttuyistro-yiser | 1
gty (f2) @) = gty (f2) @) X (1w-yistio-yise |
+ ey (f2) ) = oty (f2) @) | Xttumyictio-yion | 11 (350)

+ ey (f2) () = ¢ty (f2) @) | Xthu-yistlo-yist) | 7

= Il +12+I3+I4.
Then
L <CM(f)(x), fori=1,...,4. (3.51)

This can be obtained from the same idea used before, see also the main step in [14], here we
omit the proof of it.

From (3.38), we get that for f € L*(y), if gzlﬂ(f)(xo) < oo for some point xp € R?, then
4% (f) is p-finite almost everywhere and in this case we have

mq (g7,.(f)) - ess inf g7, () ) S 1S llie gy (352)

provided that Q is a (4V/4d, (4\/3)"+1)—d0ubling cube.
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To prove g;,y( f) € RBLO(u), we still need to prove that g;,#( f) satisfies

mo(g1,(f)) ~mr(g1,(f)) < CSor (3.53)

for any two ((4v/d), (4v/d)"*")-doubling cubes Q C R.
Let a; = 4v/d and set N = Ngr+1, then

S (f)(x) <Cgy  (fxma) + 81, (fX(uQ)f)
< Cgy, (fxmo) + &1y (fXaroume) + &1y (X (o))
< 87, (fxee) + 5381, (et ovato) () (3.54)
+[st, (fxray)® =8t (Fx@ray) )]
+ 81, (o)) @)-

Again, we can get the conclusion under the nondoubling condition which is similar to
the proof of (2.2) in [14] that

|81, (Fxera) ) 0 = 81, (Fxray) @] S 1F g (3.55)

For any x € Q and each fixed k € N, similar to the proof of (2.4) from Lemma 2.3, we have
that

g;,‘u <fXa’;+1Q\a;<Q> (%)

2n+2e 2n+2e 1/2
t t du(y)dt
< Cf |f(2)] f PR #35/“ du(z)
A1Q\Q rat \ t+ |x -y b+ |y -z t

2n+2e 2n+2e 172
t t du(y)dt
SC”f”Lw(#)J‘u’l‘”Q\a’fQ [J‘Ri"l(t""x_yl) <t+|y_z|> £3n+1 ] d[/l(z)

1
< Cll gy | e

(3.56)
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Therefore we have

Nor

2.8, (f Xai‘“Q\an) (x) < C| fll 1 Sar- (3.57)
k=1
Next we estimate g7 ( Noy©) (). By an estimate similar to (3.45), we have
i\ X (@) \Y)- By

Sip (fxwg)c) W) 28, @) + 1l - (3.58)
By (3.54), (3.55), (3.57), and (3.58), we can get that
81u () ) < 81, (fX@) ) + | fll oy Sar + | fll oy + 81, () (). (3.59)
Take mean value over Q for x and over R for y, we get
mo(81,,(F)) Sma(8,, (Fxa0)) + I1f |y Sar + mr (g1, (f))- (3.60)
Therefore
mo (g1, (f)) - mx(g1,(f))

(3.61)
< Cllfll - So.r + mo (81, (f xe0) ) + mr(85,(Fxaya))-

Since by Holder’s inequality, the L?(u) boundedness assumption of 8, and the fact that Q is

(a1, a**1)-doubling, we have that
1 g

1/2
c " 2
mo(gy,(fxmo) ) < —U g (fXamQ) () d#(x)]
(s1,(F1m0)) < o] s

< C”fXalQ”LZ(y) < C”f||L°<>(,4).”("‘1Q)1/2 (3.62)
ORI ((ORS

< Cllf Ml

which completes the proof of Theorem 1.6. O

Using Theorems 1.4 and 1.5 and [4, Theorem 3.1], Corollary 1.7 is obvious.
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