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1. Introduction, Definitions, and Notations

After Carlitz [1] gave q-extensions of the classical Bernoulli numbers and polynomials, the
q-extensions of Bernoulli and Euler numbers and polynomials have been studied by several
authors. Many authors have studied on various kinds of q-analogues of the Euler numbers
and polynomials (cf., [1–39]).T Kim [7–23] has published remarkable research results for
q-extensions of the Euler numbers and polynomials and their interpolation functions. In
[13], T Kim presented a systematic study of some families of multiple q-Euler numbers
and polynomials. By using the q-Volkenborn integration on Zp, he constructed the p-adic
q-Euler numbers and polynomials of higher order and gave the generating function of
these numbers and the Euler q-ζ-function. In [20], Kim studied some families of multiple
q-Genocchi and q-Euler numbers using the multivariate p-adic q-Volkenborn integral on Zp,
and gave interesting identities related to these numbers. Recently, Kim [21] studied some
families of q-Euler numbers and polynomials of Nölund’s type using multivariate fermionic
p-adic integral on Zp.
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Many authors have studied the Apostol-Bernoulli polynomials, the Apostol-Euler
polynomials, and their q-extensions (cf., [1, 6, 25, 27, 28, 33–41]). Choi et al. [6] studied some
q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and
multiple Hurwitz zeta function. In [24], Kim et al. defined Apostol’s type q-Euler numbers
and polynomials using the fermionic p-adic q-integral and obtained the generating functions
of these numbers and polynomials, respectively. They also had the distribution relation for
Apostol’s type q-Euler polynomials and obtained q-zeta function associated with Apostol’s
type q-Euler numbers and Hurwitz type q-zeta function associated with Apostol’s type q-
Euler polynomials for negative integers.

In this paper, we will present new q-extensions of Apostol’s type Euler polynomials
using the fermionic p-adic integral on Zp, and then we give interpolation functions and the
Hurwitz type zeta functions of these polynomials. We also give q-extensions of Apostol’s type
Euler polynomials of higher order using the multivariate fermionic p-adic integral on Zp.

Let p be a fixed odd prime number. Throughout this paper Zp,Qp, C, and Cp will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers,
the complex number field, and the completion of algebraic closure of Qp. Let N be the set
of natural numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of
Cp with |p|p = p−vp(p) = p−1. When one talks of q-extension, q is variously considered as an
indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally
assumes |q| < 1. If q ∈ Cp, then one assumes |q − 1|p < 1.

Now we recall some q-notations. The q-basic natural numbers are defined by [n]q =
(1 − qn)/(1 − q) and the q-factorial by [n]q! = [n]q[n − 1]q · · · [2]q[1]q. The q-binomial
coefficients are defined by

(
n
k

)
q

=
[n]q!

[k]q![n − k]q!
=

[n]q[n − 1]q · · · [n − k + 1]q
[k]q!

(see [20]). (1.1)

Note that limq→ 1( n
k )q = ( n

k ) = n!/(n − k)!k!, which is the binomial coefficient. The q-shift
factorial is given by

(
b; q

)
0 = 1,

(
b; q

)
k = (1 − b)

(
1 − bq

) · · ·(1 − bqk−1
)
. (1.2)

Note that limq→ 1(b; q)k = (1 − b)k. It is well known that the q-binomial formulae are defined
as

(
b; q

)
k = (1 − b)

(
1 − bq

) · · ·(1 − bqk−1
)
=

k∑
i=0

(
k
i

)
q

q

(
i
2

)
(−1)ibi,

1(
b; q

)
k

=
∞∑
i=0

(
k + i − 1

i

)
q

bi, (see [20]).

(1.3)

Since
( −k

l

)
= (−1)l( k+l−1

l

)
, it follows that

1

(1 − z)k
= (1 − z)−k =

∞∑
l=0

(−k
l

)
(−z)l =

∞∑
l=0

(
k + l − 1

l

)
zl. (1.4)
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Hence it follows that

1(
z; q

)
k

=
∞∑
n=0

(
n + k − 1

n

)
q

zn, (1.5)

which converges to 1/(1 − z)k =
∑∞

n=0
(
n+k−1

n

)
zn as q → 1.

For a fixed odd positive integer d with (p, d) = 1, let

X = Xd = lim
→
N

Z

dpNZ
, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dp Zp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.6)

where a ∈ Z lies in 0 ≤ a < dpN . The distribution is defined by

μq

(
a + dpNZp

)
=

qa[
dpN

]
q

. (1.7)

Let UD(Zp) be the set of uniformly differentiable functions on Zp. For f ∈ UD(Zp), the
p-adic invariant q-integral is defined as

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1[
pN

]
q

pN−1∑
x=0

f(x)qx. (1.8)

The fermionic p-adic invariant q-integral on Zp is defined as

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1[
pN

]
−q

pN−1∑
x=0

f(x)
(−q)x, (1.9)

where [x]−q = (1 − (−q)n)/(1 + q). The fermionic p-adic integral on Zp is defined as

I−1
(
f
)
= lim

q→ 1
I−q

(
f
)
=
∫

Zp

f(x)dμ−1(x). (1.10)
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It follows that I−1(f1) = −I−1(f)+2f(0),where f1(x) = f(x+1). For n ∈ N, let fn(x) = f(x+n).
we have

I−1
(
fn
)
= (−1)nI−1

(
f
)
+

n−1∑
l=0

(−1)n−1−lf(l). (1.11)

For details, see [7–21].
The classical Euler numbers En and the classical Euler polynomials En(x) are defined,

respectively, as follows:

2
et + 1

=
∞∑
n=0

En
tn

n!
,

2
et + 1

ext =
∞∑
n=0

En(x)
tn

n!
. (1.12)

It is known that the classical Euler numbers and polynomials are interpolated by the Euler
zeta function and Hurwitz type zeta function, respectively, as follows:

ζE(s) =
∞∑
n=1

(−1)n
ns

, ζE(s, x) =
∞∑
n=0

(−1)n
(n + x)s

, s ∈ C, (see [10]). (1.13)

In Section 2, we define new q-extensions of Apostol’s type Euler polynomials using
the fermionic p-adic integral on Zp which will be called the q-λ-Euler polynomials . Then we
obtain the interpolation functions and the Hurwitz type zeta functions of these polynomials.
In Section 3, we define q-extensions of Apostol’s type Euler polynomials of higher order using
the multivariate fermionic p-adic integral on Zp. We have the interpolation functions of these
higher-order q-λ-Euler polynomials. In Section 4, we also give (h, q)-extensions of Apostol’s
type Euler polynomials of higher order and have the multiple Euler zeta functions of these
(h, q)-λ-Euler polynomials.

2. q-Extensions of Apostol’s Type Euler Polynomials

First, we assume that q ∈ Cp with |1 − q|p < 1. In Cp, the q-Euler polynomials are defined by

En,q(x) =
∫

Zp

qy
[
x + y

]n
qdμ−1

(
y
)
, (2.1)

and En,q(0) = En,q are called the q-Euler numbers. Then it follows that

En,q(x) =
2(

1 − q
)n

n∑
l=0

(
n
l

)
(−1)lqlx 1

1 + ql+1
. (2.2)

The generating functions of En,q(x) are defined as

Fq(t, x) =
∞∑
n=0

En,q(x)
tn

n!
=
∫

Zp

qye[x+y]qtdμ−1
(
y
)
. (2.3)
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By (2.3), the interpolation functions of the q-Euler polynomials En,q(x) are obtained as
follows:

Fq(t, x) =
∞∑
n=0

2(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)l

(
qlx

1 + ql+1

)
tn

n!

= 2
∞∑

m=0
(−1)mqm

∞∑
n=0

1(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lq(x+m)l t

n

n!

= 2
∞∑

m=0
(−1)mqm

∞∑
n=0

[x +m]nq
tn

n!

= 2
∞∑

m=0
(−1)mqme[x+m]qt.

(2.4)

Thus, we have the following theorem.

Theorem 2.1. Assume q ∈ Cp with |1 − q|p < 1. Then one has

Fq(t, x) =
∞∑
n=0

En,q(x)
tn

n!
= 2

∞∑
m=0

(−1)mqme[x+m]qt. (2.5)

Differentiating Fq(t, x) at x = 0 shows that

En,q(x) =
dnFq(t, x)

dtn

∣∣∣∣∣
t=0

= 2
∞∑

m=0
(−1)mqm[x +m]nq . (2.6)

In C, we assume that q ∈ C with |q| < 1. The q-Euler polynomials En,q(x) are defined by

2
∞∑

m=0
(−1)mqme[x+m]qt =

∞∑
n=0

En,q(x)
tn

n!
. (2.7)

By (2.7), we have

En,q(x) = 2
∞∑

m=0
(−1)mqm[x +m]nq

=
2(

1 − q
)n

n∑
l=0

(
n
l

)
(−1)lqlx 1

1 + ql+1
.

(2.8)

For s ∈ C, the Hurwitz type zeta functions for the q-Euler polynomials En,q(x) are given as

ζq,E(s, x) =
∞∑

m=0

(−1)mqm
[x +m]sq

, x /= 0,−1,−2, . . . . (2.9)
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For k ∈ Z+, we have from (2.9) that

ζq,E(−k, x) =
∞∑

m=0
[x +m]kq(−1)mqm = Ek,q(x). (2.10)

Now we give new q-extensions of Apostol’s type Euler polynomials. For n ∈ N, let Cpn = {ω |
ωpn = 1} be the cyclic group of order pn. Let Tp be the p-adic locally constant space defined by

Tp =
⋃
n≥1

Cpn = lim
n→∞

Cpn . (2.11)

First, we assume that q ∈ Cp with |1 − q|p < 1. For λ ∈ Tp, we define q-Euler polynomials of
Apostol’s type using the fermionic p-adic integral as follows:

En,q,λ(x) =
∫

Zp

qyλy
[
x + y

]n
qdμ−1

(
y
)
, (2.12)

and we will call them the q-λ-Euler polynomials. Then En,q,λ(0) = En,q,λ are defined as the q-λ-Euler
numbers. From (2.12), we have

En,q,λ(x) =
2(

1 − q
)n

n∑
l=0

(
n
l

)
(−1)lqlx 1

1 + λql+1
. (2.13)

Let Fq,λ(t, x) =
∑∞

n=0 En,q,λ(x)(tn/n!). From (2.12), we easily derive

Fq,λ(t, x) =
∫

Zp

qyλye[x+y]qtdμ−1
(
y
)
. (2.14)

On the other hand, we have

∫
Zp

qyλye[x+y]qtdμ−1
(
y
)

=
∞∑
n=0

2(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lqlx 1

1 + λql+1
tn

n!

= 2
∞∑

m=0
(−1)mqmλm

∞∑
n=0

[x +m]nq
tn

n!
.

(2.15)

From (2.14) and (2.15), we obtain the following theorem.

Theorem 2.2. Assume that q ∈ Cp with |1 − q|p < 1. For λ ∈ Tp, let Fq,λ(t, x) =∑∞
n=0 En,q,λ(x)(tn/n!). Then one has

Fq,λ(t, x) =
∫

Zp

qyλye[x+y]qtdμ−1
(
y
)
= 2

∞∑
m=0

(−1)mqmλme[x+m]qt. (2.16)
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In C, we assume that q ∈ C with |q| < 1. Let λ ∈ C with |λ| < 1. We define the q-λ-Euler
polynomials En,q,λ(x) to be satisfied the following equation:

Fq,λ(t, x) = 2
∞∑

m=0
(−1)mqyλye[x+m]qt =

∞∑
n=0

En,q,λ(x)
tn

n!
. (2.17)

When we differentiate both sides of (2.17) at t = 0, we have

dnFq,λ(t, x)
dtn

∣∣∣∣∣
t=0

= 2
∞∑

m=0
(−1)mqmλm[x +m]nq = En,q,λ(x). (2.18)

Hence we have the interpolation functions of the q-λ-Euler polynomials as follows:

En,q,λ(x) = 2
∞∑

m=0
(−1)mqmλm[x +m]nq . (2.19)

For s ∈ C, we define the Hurwitz type zeta function of the q-λ-Euler polynomials as

ζq,E,λ(s, x) = 2
∞∑

m=0

(−1)mqmλm
[m + x]sq

, (2.20)

where x /= 0,−1,−2, . . . . For k ∈ Z+, we have

ζq,E,λ(−k, x) = 2
∞∑

m=0
(−1)mqmλm[x +m]kq = Ek,q,λ(x). (2.21)

3. q-Extensions of Apostol’s Type Euler Polynomials of Higher Order

In this section, we give the q-extension of Apostol’s type Euler polynomials of higher order
using the multivariate fermionic p-adic integral.

First, we assume that q ∈ Cp with |1 − q|p < 1. Let λ ∈ Tp. We define the q-λ-Euler
polynomials of order r as follows:

E
(r)
n,q(x) =

∫
Zp

· · ·
∫

Zp

qy1+···+yr
[
x + y1 + · · · + yr

]n
qλ

y1+···+yrdμ−1
(
y1
) · · ·dμ−1

(
yr

)
. (3.1)

Note that E(r)
n,q,λ(0) = E

(r)
n,q,λ are called the q-λ-Euler number of order r. Using the multivariate

fermionic p-adic integral, we obtain from (3.1) that

E
(r)
n,q,λ(x) =

2r(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lqlx 1(

1 + λql+1
)r . (3.2)
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Let F(r)
q,λ(t, x) be the generating functions of E(r)

n,q,λ(x) defined by

F
(r)
q,λ(t, x) =

∞∑
n=0

E
(r)
n,q,λ(x)

tn

n!
. (3.3)

By (2.12) and (3.3), we have

F
(r)
q,λ(t, x) = 2r

∞∑
n=0

1(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lqlx

∞∑
m=0

(
r +m − 1

m

)
(−1)mλmq(l+1)m tn

n!

= 2r
∞∑

m=0

(
r +m − 1

m

)
(−1)mλmqm

∞∑
n=0

1(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lql(x+m) t

n

n!

= 2r
∞∑

m=0

(
r +m − 1

m

)
(−1)mλmqm

∞∑
n=0

[x +m]nq
tn

n!
.

(3.4)

Thus we have the following theorem.

Theorem 3.1. Assume that q ∈ Cp with |1 − q|p < 1. For r ∈ N and λ ∈ Tp, let F
(r)
q,λ(t, x) =∑∞

n=0 E
(r)
n,q,λ

(x)(tn/n!). Then one has

F
(r)
q,λ(t, x) = 2r

∞∑
m=0

(
r +m − 1

m

)
(−1)mλmqme[x+m]qt,

E
(r)
n,q,λ(x) = 2k

∞∑
m=0

(
r +m − 1

m

)
(−1)mλmqm[x +m]nq .

(3.5)

In C, we assume that q ∈ C with |q| < 1 and λ ∈ C with λ = e2πi/f for f ∈ N. We define the
q-λ-Euler polynomial E(r)

n,q,λ(x) of order k as follows:

F
(r)
q,λ(t, x) = 2r

∞∑
m=0

(
r +m − 1

m

)
(−1)mλmqme[x+m]qt

=
∞∑
n=0

E
(r)
n,q,λ(x)

tn

n!
.

(3.6)

From (3.6), we have

dkF
(r)
q,λ(t, x)

dtk

∣∣∣∣∣∣
t=0

= E
(r)
k,q,λ(x) = 2r

∞∑
m=0

(
r +m − 1

m

)
(−1)mλmqm[x +m]kq . (3.7)

For s ∈ C, we define the multiple Hurwitz type zeta functions for q-λ-Euler polynomials as

ζ
(r)
q,E,λ(s, x) = 2r

∞∑
m=0

(
r +m − 1

n

)
(−1)mλmqm
[m + x]sq

, (3.8)
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where x /= 0,−1,−2, . . . . In the special case s = −k with k ∈ Z+, we have

ζ
(r)
q,E,λ(−k, x) = E

(r)
k,q,λ(x). (3.9)

4. (h, q)-Extension of Apostol’s Type Euler Polynomials of Higher Order

In this section, we give the (h, q)-extension of q-λ-Euler polynomials of higher order using
the multivariate fermionic p-adic integral.

Assume that q ∈ Cp with |1 − q|p < 1. For h ∈ Z, we define (h, q)-λ-Euler polynomials
of order r as follows:

E
(h,r)
n,q,λ(x) =

∫
Zp

q
∑r

j=1(h−j+1)yj λ
∑r

j=1 yj
[
x + y1 + · · · + yr

]n
qdμ−1

(
y1
) · · ·dμ−1

(
yr

)

=
2r(

1 − q
)n

n∑
l=0

(
n
l

)
(−1)lqlx∏r

i=1

(
1 + λqh−r+l+i

) .
(4.1)

Note that E(h,r)
n,q,λ

(0) = E
(h,r)
n,q,λ

are called the (h, q)-λ-Euler numbers.
When h = r, the (h, q)-λ-Euler polynomials are

E
(r,r)
n,q,λ(x) =

2r(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lqlx 1(

1 + λqk+l
) · · · (1 + λql+1

)

=
2r(

1 − q
)n

n∑
l=0

(
n
l

)
(−1)lqlx 1(−λql+1; q)r

=
∞∑

m=0

(
r +m − 1

m

)
q

(−1)mλmqm 2r(
1 − q

)n
n∑
l=0

(
n
l

)
(−1)lql(x+m)

= 2r
∞∑

m=0

(
r +m − 1

m

)
q

(−1)mλmqm[x +m]nq ,

(4.2)

where
(
r+m−1

m

)
q is the Gaussian binomial coefficient. From (4.2), we obtain the following

theorem.

Theorem 4.1. Assume that q ∈ Cp with |1 − q|p < 1. For r ∈ N and λ ∈ Tp, let F
(r,r)
q,λ

(t, x) =∑∞
n=0 E

(r,r)
n,q,λ

(x)(tn/n!). Then one has

F
(r,r)
q,λ (t, x) = 2r

∞∑
m=0

(
r +m − 1

m

)
q

(−1)mλmqme[x+m]qt. (4.3)
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In C, assume that q ∈ C with |q| < 1 and λ ∈ C with |λ| < 1. Then we can define (h, q)-λ-Euler
polynomials E(r,r)

n,q,λ
(x) for h = r as follows:

F
(r,r)
q,λ (t, x) = 2r

∞∑
m=0

(
r +m − 1

m

)
q

(−1)mλmqme[x+m]qt

=
∞∑
n=0

E
(r,r)
n,q,λ(x)

tn

n!
.

(4.4)

Differentiating both sides of (4.4) at t = 0, we have

dkF
(r,r)
q,λ (t, x)

dtk

∣∣∣∣∣∣
t=0

= 2r
∞∑

m=0

(
r +m − 1

m

)
q

(−1)mλmqm[x +m]kq

= E
(r,r)
k,q,λ(x).

(4.5)

From (4.5), we have

2r
∞∑

m=0

(
r +m − 1

m

)
q

(−1)mλmqme[x+m]qt =
∞∑
n=0

E
(r,r)
n,q,λ(x)

tn

n!
. (4.6)

Then we have

E
(r,r)
k,q,λ(x) = 2r

∞∑
m=0

(
r +m − 1

m

)
q

(−1)mλmqm[x +m]kq . (4.7)

For s ∈ C, we define the Hurwitz type zeta function of q-λ-Euler polynomials of order r as

ζ
(r,r)
q,E,λ(x, s) = 2r

∞∑
m=0

(
r +m − 1

m

)
q

(−1)mλmqm
[m + x]sq

, (4.8)

where x /= 0,−1,−2, . . . .
From (4.4) and (4.8), we easily see that

ζ
(r,r)
q,λ (x,−k) = E

(r,r)
k,q,λ(x), k ∈ N. (4.9)
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