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proofs of the theorems in the paper concerns the positive quadratic forms.
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1. Introduction

In 1954, Harold Seymour Shapiro proposed the inequality for a cyclic sum in n variables as
follows:

X1 X2 Xn-1 X,
e n " n

n
+ + - Z 7 (1.1)
Xo+ X3 X3+ X4 Xp+XxX1 XxX1+xp 2

where x; > 0, x; + xi,1 > 0, and xj., = x; for i € N. Although (1.1) was settled in 1989 by
Troesch [1], the history of long year proofs of this inequality was interesting, and the certain
problems remain (see [1-8]). Motivated by the directions of generalizations and proofs of
(1.1), we consider the following inequality:

X1 X2 Xn-1 Xn
+ + -+ +
px2 + gxs3 pX3 +qxs PXn + g4x1 px1 +gx2

n

P(n,p,q) :=
(1.2)

2 ,
pPtq
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where p,g > 0 and p + g > 0. It is clear that (1.2) is true for n = 3. Indeed, by the Cauchy
inequality, we have

5 X1 X2
(1 +x2+x3)" = ("WWJF VW x2(paxs + gx1)
2
(1.3)
+Vﬁ x3(px1 +qx2)>

<P3,p,q)(p+q)(x1x2 + x2x3 + x3x7).

It follows that

6]) > (x1 + X + JC3)2 > 3 (1 4)
T (ptq)(mixa+ xaxz +x3x1) T PHq

P(3,p,

Obviously, (1.2) is true for every n > 4if p =0 or g = 0.

In this note, by studying (1.2) in the case n = 4, we show that it is true when p > g, and
false when p < q. Moreover, we give a sufficient condition of p, g under which (1.2) is true in
the case n = 5. It is worth saying that if p < g, then (1.2) is false for every even n > 4. Two
open questions are discussed at the end of this paper.

2. Main Result

Without loss generality of (1.2), we assume that p + g = 1. However, (1.2) for n = 4 now is of
the form

X1 X2 X3 X4

— > .
P(4p.q) pxa2 + gx;3 " px3 + gxs i pxs + gxy " px1+qxy 4 (2.1)

Theorem 2.1. It holds that (2.1) is true for p > q, and it is false for p < g.

Proof. By the Cauchy inequality, we have

(x1 + Xy + X3 + X4)2
(2.2)

<P(4,p,q) [x1(px2 + qx3) + x2(px3 + gxs) + x3(pxs + gx1) + x4 (px1 + qx2) .-

Hence

(x1 + X2 + X3 + X4)2

P(4,p,q) > (2.3)

PX1X2 + 2GX1X3 + pX1X4 + PX2X3 + 2GX2x4 + px3x4'
It is an equality if and only if

px2 +qx3 = pX3 + gxa = pXs + gx1 = px1 + Gx2. (24)
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Consider the following quadratic form:

w(x1,%,X3,%4) = (1 + X2 + X3 + xg)°

(2.5)
— 4(px1X2 + 2qx1X3 + PX1X4 + PX2X3 + 2GX0X4 + PX3X4).
By a simple calculation we obtain the canonical quadratic form w as follows:
4q9(2p -1
w(t1, ta, t3, ta) = 5 + 4pgts + a( z ) £, (2.6)
where
ti=x1+(1-2p)x2+ (1-4q)x3+ (1 -2p)xs,
1-2
th =xp + pX3 — ﬂx4, (27)
P P
t3 = X3 — X4

It is easily seen that if p > g, thatis, p > 1/2, then w > 0 for all ¢, 5,3 € R. This implies that
w is positive. We thus have P(4,p, q) > 4.

Now let us consider the cases when w vanishes. This depends considerably on the
comparison of p with gq. If p = g, that is, p = 1/2, then the quadratic form w attains 0 at
ti =x1—x3 =0and t, = x, — x4 = 0. By (2.4) we assert that P(4,p,q) = 4 whenever x; = x3
and x; = x4. Also, if p > 1/2, then w vanishes if and only if

ti=x1+(1-2p)x2+ (1-4q)x3+ (1 -2p)xs =0,

px3 - ﬂx4 =0, (2.8)
p

Combining these facts with (2.4) we conclude that P(4,p, q) =4 when x; = x; = x3 = x4.
Now we give a counter-example to (2.1) in the case p < g, thatis, p < 1/2. Let x1 =
X3 =a,x; = x4 =b,and a#b. We will prove that

a b a b a b
pb+qa+pa+qb+pb+qa+pa+qb _2<pb+qa+pa+qb> <4 (2.9)

It is obvious that

(29) == p(2q-1)(a® +1?) +2(p* +q* —q)ab> 0= p(1-2p)(a~b)>>0.  (210)

The last inequality is evident as a# b and p < 1/2, so (2.9) follows.
The theorem is proved. O
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Remark 2.2. Let A denote the matrix of the quadratic form w in the canonical base of the real
vector space R*. Namely,

1 1-2p 1-49 1-2p
1-2 1 1-2p 1-4

A= P P 1 . (2.11)
1-49 1-2p 1 1-2p

1-2p 1-49 1-2p 1

Let Dy, D5, D3, and D4 be the principal minors of orders 1, 2, 3, and 4, respectively, of A. By
direct calculation we obtain

Di=1, D,=4pg,  Ds=16g°(2p-1), D4=0. (2.12)

Then w is positive if and only if D; > 0 for every i = 1,2,3,4. We find the first part of
Theorem 2.1.

Thanks to the idea of using positive quadratic form we now study (1.2) in the case
n = 5. It is sufficient to consider the case p + g = 1. By the Cauchy inequality, we reduce our
work to the following inequality

5
¢(x1,...,%5) = lez +(2-5p)x1x2 + (2 -59)x1x3 + (2 - 5q) x1X4
i-1
(2.13)
+(2-5p)x1xs5 + (2= 5p)x2x3 + (2= 59) x2x4 + (2 — 5q) x2X5

+ (2-5p)x3x4 + (2 - 59) x3x5 + (2 = 5p) x4x5 > 0.
The matrix of ¢ in an appropriate system of basic vectors is of the form

2 2-5p 2-59 2-59 2-5p
2-5p 2 2-5p 2-5q 2-5q
B=-12-5¢q 2-5p 2 2-5p 2-5q |, (2.14)
2-5q 2-5q 2-5p 2 2-5p
2-5p 2-5q 2-5q 2-5p 2

which has the principal minors

5p(4-5 25g(5pg — 1 125(1 - 5pq)?
p, =PG5 Babpg-1) 12501 5pg)”

Dy =1, 1 , 3 1 , 8
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This implies that the necessary and sufficient condition for the positivity of the quadratic
form ¢ is

SRR EPMPELAE: 2.16)
10 10

We thus obtain a sufficient condition under which (1.2) holds for n = 5.
Theorem 2.3. If (5-/5)/10 < p < (5 +/5) /10, then (1.2) is true for n = 5.

Remark 2.4. Consider (1.2) in the case n > 4, n is even, and p < q. According to the proof of
the second part of Theorem 2.1, this inequality is false. Indeed, we choose x1 = x3 = --- = g,
Xp = x4 = --- = b. By the above counter-example, we conclude P(n,p,q) <n/(p +q).

Open Questions. (a) Find pairs of nonnegative numbers p, g so that (1.2) is true for every
n>4.
(b) For certain n > 5, which is sufficient condition of the pair p, g so that (1.2) is true.
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