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The axi-symmetric Young-Laplace differential equation is analyzed. Solutions of this equation can
describe the outer or inner free surface of a static meniscus (the static liquid bridge free surface
between the shaper and the crystal surface) occurring in single crystal tube growth. The analysis
concerns the dependence of solutions of the equation on a parameter p which represents the
controllable part of the pressure difference across the free surface. Inequalities are established for p
which are necessary or sufficient conditions for the existence of solutions which represent a stable
and convex outer or inner free surfaces of a static meniscus. The analysis is numerically illustrated
for the static menisci occurring in silicon tube growth by edge-defined film-fed growth (EFGs)
technique. This kind of inequalities permits the adequate choice of the process parameter p. With
this aim this study was undertaken.
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1. Introduction

The first successful Si tube growth was reported in [1]. Also a theory of tube growth by E.F.G.
process is developed there to show the dependence of the tube wall thickness on the growth
variables. The theory concerns the calculation of the shape of the liquid-vapor interface (i.e.,
the free surface of the meniscus) and of the heat flow in the system. The inner and the outer
free surface shapes of the meniscus (Figure 1) were calculated from Young-Laplace capillary
equation, in which the pressure difference Δp across a point on the free surface is considered
to be Δp = ρ · g · Heff = constant, where Heff represents the effective height of the growth
interface (Figure 1). The above approximation of Δp is valid when Heff � h, where h is
the height of the growth interface above the shaper top. Another approximation used in
[1] is that the outer and inner free surface shapes are approximated by circular segments.
With these relatively tight tolerances concerning the menisci in conjunction with the heat
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flow calculation in the system, the predictive model developed in [1] has been shown to be
useful tool understanding the feasible limits of the wall thickness control. A more accurate
predictive model would require an increase of the acceptable tolerance range introduced by
approximation.

The growth process was scaled up by Kaljes et al. in [2] to grow 15 cm diameter silicon
tubes. It has been realized that theoretical investigations are necessary for the improvement
of the technology. Since the growth system consists of a small die type (1 mm width) and
a thin tube (order of 200μm wall thickness), the width of the melt/solid interface and the
meniscus are accordingly very small. Therefore, it is essential to obtain accurate solution for
the free surface of the meniscus, the temperature, and the liquid-crystal interface position in
this tinny region.

For single crystal tube growth by edge-defined film-fed growth (E.F.G.) technique, in
hydrostatic approximation the free surface of a static meniscus is described by the Young-
Laplace capillary equation [3]:

γ ·
(

1
R1

+
1
R2

)
= ρ · g · z − p. (1.1)

Here γ is the melt surface tension, ρ denotes the melt density, g is the gravity acceleration,
1/R1, 1/R2 denote the main normal curvatures of the free surface at a point M of the free
surface, z is the coordinate of M with respect to the Oz axis, directed vertically upwards,
and p is the pressure difference across the free surface. For the outer free surface, p = pe =
pm − peg − ρ · g ·H and for the inner free surface, p = pi = pm − pig − ρ · g ·H.

Here pm denotes the hydrodynamic pressure in the meniscus melt, peg, p
i
g denote the

pressure of the gas flow introduced in the furnace in order to release the heat from the outer
and inner walls of the tube, respectively, and H denotes the melt column height between the
horizontal crucible melt level and the shaper top level. When the shaper top level is above
the crucible melt level, then H > 0, and when the crucible melt level is above the shaper top
level, then H < 0 (see Figure 1).

To calculate the outer and inner free surface shapes of the static meniscus, it is
convenient to employ the Young-Laplace (1.1) in its differential form. This form of the (1.1)
can be obtained as a necessary condition for the minimum of the free energy of the melt
column [3].

For the growth of a single crystal tube of inner radius ri ∈ (Rgi, (Rgi + Rge)/2) and
outer radius re ∈ ((Rgi +Rge)/2, Rge) the axi-symmetric differential equation of the outer free
surface is given by

z′′ =
ρ · g · z − pe

γ

[
1 +
(
z′
)2
]3/2
− 1
r
·
[
1 +
(
z′
)2
]
· z′ for r ∈

[
re, Rge

]
, (1.2)

which is the Euler equation for the energy functional

Ie(z) =
∫Rge
re

{
γ ·
[
1 +
(
z′
)2
]1/2

+
1
2
· ρ · g · z2 − pe · z

}
· r · dr,

z(re) = he > 0, z
(
Rge

)
= 0.

(1.3)
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Figure 1: Axisymmetric meniscus geometry in the tube growth by E.F.G. method.

The axi-symmetric differential equation of the inner free surface is given by

z′′ =
ρ · g · z − pi

γ

[
1 +
(
z′
)2
]3/2
− 1
r
·
[
1 +
(
z′
)2
]
· z′ for r ∈

[
Rgi, ri

]
, (1.4)

which is the Euler equation for the energy functional

Ii(z) =
∫ ri
Rgi

{
γ ·
[
1 +
(
z′
)2
]1/2

+
1
2
· ρ · g · z2 − pi · z

}
· r · dr,

z
(
Rgi

)
= 0, z(ri) = hi > 0.

(1.5)

The state of the arts at the time 1993-1994, concerning the dependence of the shape of the
meniscus free surface on the pressure difference p for small and large bond numbers, in
the case of the growth of single crystal rods by E.F.G. technique, are summarized in [4].
According to [4], for the general differential equation (1.2), (1.4) describing the free surface
of a liquid meniscus, there are no complete analysis and solution. For the general equation
only numerical integrations were carried out for a number of process parameter values that
were of practical interest at the moment.

Later, in 2001, Rossolenko shows in [5] that the hydrodynamic factor is too small
to be considered in the automated single crystal tube growth. Finally, in [6] the authors
present theoretical and numerical study of meniscus dynamics under axi-symmetric and
asymmetric configurations. In [6] the meniscus free surface is approximated by an arc of
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constant curvature, and a meniscus dynamics model is developed to consider meniscus
shape and its dynamics, heat and mass transfer around the die-top and meniscus. Analysis
reveals the correlations among tube wall thickness, effective melt height, pull-rate, die-top
temperature, and crystal environmental temperature.

In the present paper the shape of the inner and outer free surfaces of the static meniscus
is analyzed as function of p, the controllable part of the pressure difference across the free
surface, and the static stability of the free surfaces is investigated. The novelty with respect
to the considerations presented in literature consists in the fact that the free surface is not
approximated as in [1, 6], by an arc with constant curvature, and the pressure of the gas flow
introduced in the furnace for releasing the heat from the tube wall is taken in consideration.
The setting of the thermal conditions is not considered in this paper.

2. Meniscus Outer Free Surface Shape Analysis in
the Case of Tube Growth

Consider the differential equation

z′′ =
ρ · g · z − pe

γ

[
1 +
(
z′
)2
]3/2
− 1
r
·
[
1 +
(
z′
)2
]
· z′ for

Rgi + Rge

2
≤ r ≤ Rge, (2.1)

and αc, αg such that 0 < αc < π/2 − αg, αg ∈ (0, π/2).

Definition 2.1. A solution z = z(x) of the (2.1) describes the outer free surface of a static
meniscus on the interval [re, Rge] ((Rgi + Rge)/2 < re < Rge) if possesses the following
properties:

(a) z′(re) = − tan(π/2 − αg),

(b) z′(Rge) = − tanαc, and

(c) z(Rge) = 0 and z(r) is strictly decreasing on [re, Rge].

The described outer free surface is convex on [re, Rge] if in addition the following inequality
holds:

(d) z′′(r) > 0 ∀r ∈ [re, Rge].

Theorem 2.2. If there exists a solution of (2.1), which describes a convex outer free surface of a static
meniscus on the closed interval [re, Rge], then the following inequalities hold:

− γ ·
π/2 −

(
αc + αg

)
Rge − re

· cosαc +
γ

Rge
· sinαc

≤ pe ≤ −γ ·
π/2 −

(
αc + αg

)
Rge − re

· sinαg + ρ · g ·
[
Rge − re

]
· tan

(π
2
− αg

)
+
γ

re
· cosαg.

(2.2)
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Proof. Let z(r) be a solution of (2.1), which describes a convex outer free surface of a static
meniscus on the closed interval [re, Rge] and α(r) = − arctan z′(r). The function α(r) verifies
the equation

α′(r) =
pe − ρ · g · z(r)

γ
· 1

cosα(r)
− 1
r
· tanα(r) (2.3)

and the boundary conditions

α(re) =
π

2
− αg, α

(
Rge

)
= αc. (2.4)

Hence, there exists r ′ ∈ (re, Rge) such that the following equality holds:

pe = −γ ·
π/2 −

(
αc + αg

)
Rge − re

· cosα
(
r ′
)
+ ρ · g · z

(
r ′
)
+
γ

r ′
· sinα

(
r ′
)
. (2.5)

Since z′′(r) > 0 on �re, Rge�, z′(r) is strictly increasing and α(r) = − arctan z′(r) is strictly
decreasing on [re, Rge], therefore the values of α(r) are in the range �αc, π/2 − αg� and the
following inequalities hold:

αc ≤ α
(
r ′
)
≤ π

2
− αg,

sinαg ≤ cosα
(
r ′
)
≤ cosαc,

sinαc ≤ sinα
(
r ′
)
≤ cosαg,

− tan
(π

2
− αg

)
≤ z′(r) ≤ − tanαc,

ρ · g ·
(
Rge − r

)
· tanαc ≤ ρ · g · z(r) ≤ ρ · g ·

(
Rge − r

)
· tan

(π
2
− αg

)
.

(2.6)

Equality (2.5) and inequalities (2.6) imply inequalities (2.2).

Corollary 2.3. If re = Rge/n with 1 < n < 2 · Rge/(Rgi + Rge), then inequalities (2.2) become

− γ ·
π/2 −

(
αc + αg

)
Rge

· n

n − 1
· cosαc +

γ

Rge
· sinαc

≤ pe ≤ −γ ·
π/2 −

(
αc + αg

)
Rge

· n

n − 1
· sinαg +

ρ · g · Rge · (n − 1)
n

· tan
(π

2
− αg

)

+
γ

Rge
· n · cosαg.

(2.7)
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Corollary 2.4. If n → 2 · Rge/(Rgi + Rge), then re → (Rgi + Rge)/2 and (2.7) becomes

− 2 · γ ·
π/2 −

(
αc + αg

)
Rge − Rgi

· cosαc +
γ

Rge
· sinαc

≤ pe ≤ −2 · γ ·
π/2 −

(
αc + αg

)
Rge − Rgi

· sinαg +
ρ · g ·

(
Rge − Rgi

)
2

· tan
(π

2
− αg

)

+
2 · γ

Rgi + Rge
· cosαg.

(2.8)

If n → 1, then re → Rge and pe → −∞.

Theorem 2.5. Let n be such that 1 < n < 2 · Rge/(Rgi + Rge). If pe satisfies the inequality

pe < −γ ·
π/2 −

(
αc + αg

)
Rge

· n

n − 1
· cosαc +

γ

Rge
· sinαc, (2.9)

then there exists re in the closed interval [Rge/n, Rge] such that the solution of the initial value
problem

z′′ =
ρ · g · z − pe

γ
·
[

1 +
(
z′
)2
]3/2
− 1
r
·
[
1 + (z′)2

]
· z′ for

Rgi + Rge

2
< r ≤ Rge

z
(
Rge

)
= 0, z′

(
Rge

)
= −tanαc, 0 < αc <

π

2
− αg, αg ∈

(
0,
π

2

) (2.10)

on the interval [re, Rge] describes the convex outer free surface of a static meniscus.

Proof. Consider the solution z(r) of the initial value problem (2.10). Denote by I the maximal
interval on which the function z(r) exists and by α(r) the function α(r) = − arctan z′(r)
defined on I. Remark that for α(r) the equality (2.3) holds.

Since

z′′
(
Rge

)
> 0, z′

(
Rge

)
= − tanαc < 0, z′

(
Rge

)
> − tan

(π
2
− αg

)
, (2.11)

there exists r ′ ∈ I, 0 < r ′ < Rge such that for any r ∈ [r ′, Rge] the following inequalities hold:

z′′(r) > 0, z′(r) ≤ − tanαc, z′(r) ≥ − tan
(π

2
− αg

)
. (2.12)

Let r∗ be defined by

r∗ = inf
{
r ′ ∈ I | 0 < r ′ < Rge such that for any r ∈

[
r ′, Rge

]
inequalities (2.12)hold

}
. (2.13)

It is clear that r∗ ≥ 0 and for any r ∈ (r∗, Rge� inequalities (2.12) hold.
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From (2.12) and (2.13) it follows that z′(r) is strictly increasing and bounded on
(r∗, Rge�. Therefore z′(r∗ + 0) = limr→ r∗, r>r∗z

′(r) exists and satisfies

− tan
(π

2
− αg

)
≤ z′(r∗ + 0) ≤ − tanαc. (2.14)

Moreover, since z(r) is strictly decreasing and possesses bounded derivative on (r∗, Rge�,
z(r∗ + 0) = limr→ r∗, r>r∗z(r) exists too, it is finite, and satisfies

0 <
(
Rge − r∗

)
· tanαc ≤ z(r∗ + 0) ≤

(
Rge − r∗

)
· tan

(π
2
− αg

)
< +∞. (2.15)

We will show now that r∗ > Rge/n and z′(r∗ + 0) = − tan(π/2 − αg). In order to show that
r∗ > Rge/n we assume the contrary, that is, that r∗ ≤ Rge/n . Under this hypothesis we
have

α(r∗ + 0) − α
(
Rge

)
= −α′

(
r ′
)
·
[
Rge − r∗

]

=
[
−
pe
γ

+
ρ · g · z(r ′)

γ
+

sinα(r ′)
r ′

]
·
Rge − r∗
cosα(r ′)

>

[
π/2 −

(
αc + αg

)
Rge

· n

n − 1
· cosαc −

1
Rge
· sinαc +

ρ · g · z(r ′)
γ

+
sinα(r ′)

r ′

]

·
Rge − r∗
cosα(r ′)

>
π

2
−
(
αc + αg

)
(2.16)

for some r ′ ∈ (r∗, Rge). Hence α(r∗ + 0) > π/2 − αg. This last inequality is impossible, since
according to the inequality (2.14), we have α(r∗ + 0) ≤ π/2 − αg . Therefore, r∗, defined by
(2.14), satisfies r∗ > Rge/n.

In order to show that z′(r∗ + 0) = − tan(π/2 − αg) we remark that from the definition
(2.14) of r∗ it follows that at least one of the following three equalities holds:

z′(r∗ + 0) = − tanαc, z′(r∗ + 0) = − tan
(π

2
− αg

)
, z′′(r∗ + 0) = 0. (2.17)

Since z′(r∗ + 0) < z′(r) ≤ − tanαc for any r ∈ (r∗, Rge� it follows that the equality z′(r∗ + 0) =
− tanαc is impossible. Hence, we obtain that at r∗ at least one of the following two equalities
holds: z′′(r∗ + 0) = 0, z′(r∗ + 0) = − tan(π/2−αg). We show now that the equality z′′(r∗ + 0) = 0
is impossible. For that we assume the contrary, that is, z′′(r∗ + 0) = 0. Under this hypothesis,
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from (2.12) we have:

pe = g · ρ · z(r∗ + 0) +
γ

r∗
· sinα(r∗ + 0)

> g · ρ ·
(
Rge − r∗

)
· tanαc +

γ

Rge
· sinαc

>
γ

Rge
· sinαc − γ ·

π/2 −
(
αc + αg

)
Rge

· n

n − 1
· cosαc

> pe

(2.18)

what is impossible.
In this way we obtain that the equality z′(r∗ + 0) = − tan(π/2 − αg) holds.
For re = r∗ the solution of the initial value problem (2.8) on the interval [re, Rge]

describes a convex outer free surface of a static meniscus.

Corollary 2.6. If for pe the following inequality holds:

pe < −2 · γ ·
π/2 −

(
αc + αg

)
Rge − Rgi

· cosαc +
γ

Rge
· sinαc, (2.19)

then there exists re in the interval ((Rgi + Rge)/2, Rge) such that the solution of the initial value
problem (2.10) on the interval [re, Rge] describes a convex outer free surface of a static meniscus.

Corollary 2.7. If for 1 < n′ < n < 2 · Rge/(Rgi + Rge) the following inequalities hold:

− γ ·
π/2 −

(
αc + αg

)
Rge

· n′

n′ − 1
· sinαg + ρ · g · Rge ·

n′ − 1
n′

· tan
(π

2
− αg

)
+

γ

Rge
· n′ cosαg

< pe < −γ ·
π/2 −

(
αc + αg

)
Rge

· n

n − 1
· cosαc +

γ

Rge
· sinαc,

(2.20)

then there exists re in the interval [Rge/n, Rge/n
′] such that the solution of the initial value problem

(2.10) on the interval [re, Rge] describes a convex outer free surface of a static meniscus. The existence
of re and the inequality re ≥ Rge/n follows from Theorem 2.5. The inequality re ≤ Rge/n

′ follows
from Corollary 2.3.

Remark 2.8. The solution of the initial value problem (2.10) is convex at Rge (i.e., z′′(Rge) > 0)
if and only if

pe <
γ

Rge
· sinαc. (2.21)
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That is because z′′(Rge) > 0 if and only if α′(Rge) = −z′′(Rge) · cos2αc < 0, that is,

pe
γ
− sinαc

Rge
< 0⇐⇒ pe <

γ

Rge
· sinαc. (2.22)

Moreover, if pe < γ/Rge · sinαc, the solution z(r) of the initial value problem (2.8) is convex
everywhere (i.e., z′′(r) > 0 for r ∈ I, 0 < r ≤ Rge). That is because the change of convexity
implies the existence of r ′ ∈ I, 0 < r ′ < Rge such that α(r ′) > αc, z(r ′) > 0 and pe = ρ ·g ·z(r ′) +
γ/r ′ · sinα(r ′) > γ/Rge · sinαc, what is impossible.

Theorem 2.9. If a solution z1 = z1(r) of (2.1) describes a convex outer free surface of a static
meniscus on the interval [re, Rge] ((Rgi + Rge)/2 < re < Rge), then it is a weak minimum for the
energy functional of the melt column:

Ie(z) =
∫Rge
re

{
γ ·
[

1 +
(
z′
)2
]1/2

+
1
2
· ρ · g · z2 − pe · z

}
· r · dr

z(re) = z1(re), z
(
Rge

)
= z1

(
Rge

)
= 0.

(2.23)

Proof. Since (2.1) is the Euler equation for (2.23), it is sufficient to prove that the Legendre
and Jacobi conditions are satisfied in this case.

Denote by F(r, z, z′) the function defined as

F
(
r, z, z′

)
= r ·

{
1
2
· ρ · g · z2 − pe · z + γ ·

[
1 +
(
z′
)2
]1/2
}
. (2.24)

It is easy to verify that we have

∂2F

∂z′2
=

r · γ[
1 + (z′)2

]3/2
> 0. (2.25)

Hence, the Legendre condition is satisfied.
The Jacobi equation

[
∂2F

∂z2
− d

dr

(
∂2F

∂z ∂z′

)]
· η − d

dr

[
∂2F

∂z′2
· η′
]
= 0 (2.26)

in this case is given by

d

dr

⎛
⎜⎝ r · γ[

1 + (z′)2
]3/2

· η′

⎞
⎟⎠ − ρ · g · r · η = 0. (2.27)
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For (2.27) the following inequalities hold:

r · γ[
1 + (z′)2

]3/2
≥ r · γ · cos3

(π
2
− αg

)
= r · γ · sin3αg, −ρ · g · r ≤ 0. (2.28)

Hence, the equation

(
η′ · r · γ · sin3αg

)′
= 0 (2.29)

is a Sturm type upper bound for (2.27) [7].
Since every nonzero solution of (2.29) vanishes at most once on the interval [re, Rge],

the solution η(r) of the initial value problem

d

dr

⎛
⎜⎝ r · γ[

1 + (z′)2
]3/2

· η′

⎞
⎟⎠ − ρ · g · r · η = 0,

η(re) = 0, η′(re) = 1

(2.30)

has only one zero on the interval [re, Rge] [7]. Hence the Jacobi condition is satisfied.

Definition 2.10. A solution z = z(r) of (2.1) which describes the outer free surface of a static
meniscus is said to be stable if it is a weak minimum of the energy functional of the melt
column.

Remark 2.11. Theorem 2.9 shows that if z = z(r) describes a convex outer free surface of a
static meniscus on the interval [re, Rge], then it is stable.

Theorem 2.12. If the solution z = z(r) of the initial value problem (2.10) is concave (i.e., z”(r) < 0)
on the interval [re, Rge] ((Rgi +Rge)/2 < re < Rge), then it does not describe the outer free surface of
a static meniscus on [re, Rge].

Proof. z′′(r) < 0 on [re, Rge] implies that z′(r) is strictly decreasing on [re, Rge]. Hence z′(re) >
z′(Rge) = − tanαc > − tan(π/2 − αg).

Theorem 2.13. If pe > γ/Rge ·sinαc and there exists re ∈ ((Rgi+Rge)/2, Rge) such that the solution
of the initial value problem (2.10) is the outer free surface of a static meniscus on [re, Rge], then for pe
the following inequalities hold:

γ

Rge
· sinαc < pe ≤ ρ · g ·

(
Rge − re

)
· tan

(π
2
− αg

)
+
γ

re
· cosαg. (2.31)

Proof. Denote by z(r) the solution of the initial value problem (2.10) which is assumed to
represent the outer free surface of a static meniscus on the closed interval [re, Rge]. Let α(r)
be defined as in Theorem 2.2. for r ∈ [re, Rge]. Since pe > γ/Rge · sinαc, we have z′′(Rge) =
−(1/cos2αc) · α′(Rge) < 0. Hence α′(Rge) > 0 and therefore α(r) < α(Rge) = αc for r < Rge, r
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close to Rge. Taking into account the fact that α(re) = π/2 − αe > αc it follows that there exists
r ′ ∈ (re, Rge) such that α′(r ′) = 0.

Therefore pe = ρ · g · z(r ′) + γ/r ′ · sinα(r ′). Since 0 ≤ α(r ′) ≤ π/2 − αg and re < r
′, the

following inequality holds: γ/r ′ · sin α(r ′) < γ/re · cosαg . On the other hand z(r ′) < z(re) ≤
(Rge − re) · tan(π/2 − αg). Using the above evaluations we obtain inequalities (2.31).

Remark 2.14. If re appearing in Theorem 2.13 is represented as re = Rge/n, 1 < n <
2 · Rge/(Rgi + Rge), then inequality (2.31) becomes

γ

Rge
· sinαc < pe ≤ ρ · g ·

n − 1
n
· Rge · tan

(π
2
− αg

)
+

γ

Rge
· n · cosαg. (2.32)

For n → 2 · Rge/(Rgi + Rge) inequality (2.32) becomes

γ

Rge
· sinαc < pe ≤ ρ · g ·

Rge − Rgi

2 · Rge
· tan

(π
2
− αg

)
+

2 · γ(
Rgi + Rge

) · cosαg (2.33)

Theorem 2.15. Let n be 1 < n < 2 · Rge/(Rgi + Rge). If for pe the following inequality holds:

pe > ρ · g · Rge ·
n − 1
n
· tanαc +

n

Rge
· γ, (2.34)

then the solution z(r) of the initial value problem (2.10) is concave on the interval I ∩ [Rge/n, Rge]
where I is the maximal interval of the existence of z(r).

Proof. Consider α(r) = − arctan z′(r) and remark that for r ∈ I ∩ [Rge/n, Rge
] the following

relations hold:

α′(r) =
1

cosα(r)
·
[
pe
γ
−
ρ · g · z(r)

γ
− sinα(r)

r

]

≥ 1
cosα(r)

·
[
ρ · g · Rge(n − 1)

γ · n · tanαc +
n

Rge
−
ρ · g · Rge(n − 1)

γ · n · tanαc −
n

Rge

]

≥ 0.
(2.35)

Hence: z′′(r) = −(1/cos2α(r)) · α′(r) ≤ 0 for r ∈ I ∩ [Rge/n, Rge
].

3. Meniscus Inner Free Surface Shape Analysis in
the Case of Tube Growth

Consider now the differential equation

z′′ =
ρ · g · z − pi

γ

[
1 +
(
z′
)2
]3/2
− 1
r
·
[
1 +
(
z′
)2
]
· z′ for r ∈

[
Rgi,

Rgi + Rge

2

]
, (3.1)

and αc, αg such that 0 < αc < π/2 − αg , αg ∈ (0, π/2).
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Definition 3.1. A solution z = z(x) of (3.1) describes the inner free surface of a static meniscus
on the interval [Rgi, ri] (Rgi < ri < (Rgi + Rge)/2) if possesses the following properties:

(a) z′(Rgi) = tanαc,

(b) z′(ri) = tan(π/2 − αg), and

(c) z(Rgi) = 0 and z(r) is strictly increasing on [Rgi, ri].

The described inner free surface is convex on [Rgi, ri] if in addition the following inequality
holds:

(d) z′′(r) > 0 ∀r ∈ [Rgi, ri].

Theorem 3.2. If there exists a solution of (3.1), which describes a convex inner free surface of a static
meniscus on the closed interval [Rgi, ri], then the following inequalities hold:

− γ ·
π/2 −

(
αc + αg

)
ri − Rgi

· cosαc −
γ

Rgi
· cosαg

≤ pi ≤ −γ ·
π/2 −

(
αc + αg

)
ri − Rgi

· sinαg + ρ · g ·
[
ri − Rgi

]
· tan

(π
2
− αg

)
−
γ

ri
· sinαc.

(3.2)

Proof. Let z(r) be a solution of (3.1), which describes a convex inner free surface of a static
meniscus on the closed interval [Rgi, ri] and α(r) = arctan z′(r). The function α(r) verifies the
equation

α′(r) =
ρ · g · z(r) − pi

γ
· 1

cosα(r)
− 1
r
· tanα(r) (3.3)

and the boundary conditions

α
(
Rgi

)
= αc, α(ri) =

π

2
− αg. (3.4)

Hence, there exists r ′ ∈ (Rgi, ri) such that the following equality holds:

pi = −γ ·
π/2 −

(
αc + αg

)
ri − Rgi

· cosα
(
r ′
)
+ ρ · g · z

(
r ′
)
−
γ

r ′
· sinα

(
r ′
)
. (3.5)

Since z′′(r) > 0 on [Rgi, ri], z′(r) is strictly increasing and α(r) = arctan z′(r) is strictly
increasing on [Rgi, ri], therefore the following inequalities hold:

αc ≤ α
(
r ′
)
≤ π

2
− αg,

sinαg ≤ cosα
(
r ′
)
≤ cosαc,

sinαc ≤ sinα
(
r ′
)
≤ cosαg,

ρ · g ·
(
r ′ − Rgi

)
· tanαc ≤ ρ · g · z

(
r ′
)
≤ ρ · g ·

(
r ′ − Rgi

)
· tan

(π
2
− αg

)
.

(3.6)

Equality (3.5) and inequalities (3.6) imply inequalities (3.2).
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Corollary 3.3. If ri = m · Rgi with 1 < m < (Rgi + Rge)/2 · Rgi, then inequalities (3.2) become

− γ ·
π/2 −

(
αc + αg

)
(m − 1) · Rgi

· cosαc −
γ

Rgi
· cosαg

≤ pi ≤ −γ ·
π/2 −

(
αc + αg

)
(m − 1) · Rgi

· sinαg + ρ · g · Rgi · (m − 1) · tan
(π

2
− αg

)
−

γ

m · Rgi
· sinαc.

(3.7)

Corollary 3.4. Ifm → (Rgi + Rge)/2 · Rge, then ri → (Rgi + Rge)/2 and (3.7) becomes

− 2 · γ ·
π/2 −

(
αc + αg

)
Rge − Rgi

· cosαc −
γ

Rgi
· cosαg

≤ pi ≤ −2 · γ ·
π/2 −

(
αc + αg

)
Rge − Rgi

· sinαg +
ρ · g ·

(
Rge − Rgi

)
2

· tan
(π

2
− αg

)

−
2 · γ

Rgi + Rge
· sinαc.

(3.8)

Ifm → 1, then ri → Rgi and pi → −∞.

Theorem 3.5. Let m be such that 1 < m < (Rgi + Rge)/2 · Rgi. If pi satisfies the inequality

pi < −γ ·
π/2 −

(
αc + αg

)
(m − 1) · Rgi

· cosαc +
γ

Rgi
· cosαg, (3.9)

then there exists ri in the closed interval [Rgi,m·Rgi] such that the solution of the initial value problem

z′′ =
ρ · g · z − pi

γ
·
[

1 +
(
z′
)2
]3/2
− 1
r
·
[
1 +
(
z′
)2
]
· z′ for Rgi < r ≤

Rgi + Rge

2
,

z
(
Rgi

)
= 0, z′

(
Rgi

)
= tanαc, 0 < αc <

π

2
− αg, αg ∈

(
0,
π

2

) (3.10)

on the interval [Rgi, ri] describes the convex inner free surface of a static meniscus.

Proof. Consider the solution z(r) of the initial value problem (3.10). Denote by I the maximal
interval on which the function z(r) exists and by α(r) the function α(r) = arctan z′(r) defined
on I. Remark that for α(r) the following equality holds:

α′(r) =
1

cosα(r)
·
[
ρ · g · z(r) − pi

γ
− sinα(r)

r

]
. (3.11)
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Since

z′′
(
Rgi

)
> 0, z′

(
Rgi

)
= tanαc > 0, z′

(
Rgi

)
< tan

(π
2
− αg

)
, (3.12)

there exists r ′ ∈ I, Rgi < r ′ < (Rgi + Rge)/2 such that for any r ∈ [r ′, Rgi] the following
inequalities hold:

z′′(r) > 0, z′(r) > 0, z′(r) < tan
(π

2
− αg

)
. (3.13)

Let r∗ be defined by

r∗=sup
{
r ′ ∈I | Rgi <r

′ <
Rgi+Rge

2
such that for any r ∈

[
Rgi, r

′] inequalities (3.13) hold
}
.

(3.14)

It is clear that r∗ ≤ (Rgi + Rge)/2 and for any r ∈ [Rgi, r
∗) inequalities (3.13) hold. Moreover,

z′(r∗ − 0) = limr→ r∗, r<r∗z
′(r) exists and satisfies, z′(r∗ − 0) > 0 and z′(r∗ − 0) ≤ tan(π/2 − αg).

Hence z(r∗ − 0) = limr→ r∗, r<r∗z(r) is finite, it is strictly positive, and for every r ∈ [Rgi, r
∗) the

following inequalities hold:

tanαc ≤ z′(r∗ − 0) ≤ tan
(π

2
− αg

)
,

(
r∗ − Rgi

)
· tanαc ≤ z(r∗ − 0) ≤

(
r∗ − Rgi

)
· tan

(π
2
− αg

)
.

(3.15)

We will show now that r∗ ≤ m · Rgi and z′(r∗ − 0) = tan(π/2 − αg).
In order to show that r∗ ≤ m · Rgi, we assume the contrary, that is, r∗ > m · Rgi. Under

this hypothesis we have

α(r∗ − 0) − α
(
Rgi

)
= α′
(
r ′
)
·
(
r∗ − Rgi

)

=
1

cosα(r ′)
·
[
−
pi
γ

+
ρ · g · z(r ′)

γ
− sinα(r ′)

r ′

]
·
(
r∗ − Rgi

)

>
r∗ − Rgi

cosα(r ′)
·
[
π/2 −

(
αc + αg

)
Rgi

· 1
m − 1

· cosαc +
1
Rgi
· cosαg +

ρ · g · z(r ′)
γ

− sinα(r ′)
r ′

]

>
π

2
−
(
αc + αg

)
(3.16)

for some r ′ ∈ (Rgi, r
∗). Hence α(r∗ − 0) > π/2 − αg and it follows that there exists r1 such

that Rgi < r1 < r∗ and α(r1) = π/2 − αg . This last inequality is impossible according to the
definition of r∗.
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Therefore, r∗ defined by (3.14) satisfies r∗ < m · Rgi.
In order to show that z′(r∗ − 0) = tan(π/2 − αg) we remark that from the definition

(3.14) of r∗ it follows that at least one of the following three equalities holds:

z′(r∗ − 0) = tanαc, z′(r∗ − 0) = tan
(π

2
− αg

)
, z′′(r∗ − 0) = 0. (3.17)

Since z′(r∗ − 0) > z′(r) > tanαc for r ∈ (Rgi, r
∗), it follows that the equality z′(r∗ − 0) = tanαc

is impossible.
Hence we obtain that in r∗ at least one of the following two equalities holds:

z′′(r∗ − 0) = 0, z′(r∗ − 0) = tan
(π

2
− αg

)
. (3.18)

We show now that the equality z′′(r∗ − 0) = 0 is impossible. For this we assume the contrary,
that is, z′′(r∗ − 0) = 0. Under this hypothesis, from (3.11), we have

pi = ρ · g · z(r∗ − 0) −
γ

r∗
· sin α(r∗ − 0)

> −
γ

Rgi
· cosαg

> −
γ

Rgi
· cosαg − γ ·

1
m − 1

·
[
π/2 −

(
αc + αg

)]
Rgi

· cosαc

> pi,

(3.19)

what is impossible.
In this way we obtain that the equality z′′(r∗ − 0) = tan(π/2 − αg) holds.
For ri = r∗ the solution of the initial value problem (3.10) on the interval [Rgi, ri]

describes a convex inner free surface of a static meniscus.

Corollary 3.6. If for pi the following inequality holds

pe < −2 · γ ·
π/2 −

(
αc + αg

)
Rge − Rgi

· cosαc −
γ

Rgi
· cosαg, (3.20)

then there exists ri in the interval (Rgi, (Rgi + Rge)/2) such that the solution of the initial value
problem (3.10) on the interval [Rgi, ri] describes a convex inner free surface of a static meniscus.

Corollary 3.7. If for 1 < m′ < m < (Rgi + Rge)/2 · Rgi the following inequalities hold:

− γ ·
π/2 −

(
αc + αg

)
(m′ − 1) · Rgi

· sinαg + ρ · g · Rgi ·
(
m′ − 1

)
· tan

(π
2
− αg

)
−

γ

m′ · Rgi
· sinαc

< pi < −γ ·
π/2 −

(
αc + αg

)
(m − 1) · Rgi

· cosαc −
γ

Rgi
· cosαg,

(3.21)
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then there exists ri in the interval [m′ ·Rgi,m ·Rgi] such that the solution of the initial value problem
(3.10) on the interval [Rgi, ri] describes a convex inner free surface of a static meniscus.

The existence of ri and the inequality ri ≤ m · Rgi follows from Theorem 3.5. The
inequality ri ≥ m′ · Rgi follows from the Corollary 3.3.

Theorem 3.8. If a solution z1 = z1(r) of (3.1) describes a convex inner free surface of a static
meniscus on the interval [Rgi, ri] (ri ∈ (Rgi, (Rgi + Rge)/2)), then it is a weak minimum for the
energy functional of the melt column:

Ii(z) =
∫ ri
Rgi

{
γ ·
[
1 +
(
z′
)2
]1/2

+
1
2
· ρ · g · z2 − p · z

}
· r · dr,

z
(
Rgi

)
= z1

(
Rgi

)
= 0, z(ri) = z1(ri).

(3.22)

Proof. It is similar to the proof of Theorem 2.9.

Definition 3.9. A solution z = z(r) of (3.1) which describes the inner free surface of a static
meniscus is said to be stable if it is a weak minimum of the energy functional of the melt
column.

Remark 3.10. Theorem 3.8 shows that if z = z(r) describes a convex inner free surface of a
static meniscus on the interval [Rgi, ri], then it is stable.

Remark 3.11. The solution of the initial value problem (3.10) is convex at Rgi (i.e., z′′(Rgi) > 0)
if and only if

pi < −
γ

Rgi
· sinαc. (3.23)

Theorem 3.12. If z(r) represents the inner free surface of a static meniscus on the closed interval
[Rgi, ri] (ri < (Rgi + Rge)/2) which possesses the following properties:

(a) z(r) is convex at Rgi, and

(b) the shape of z(r) changes once on the interval (Rgi, ri), that is, there exists a point r ′ ∈
(Rgi, ri) such that z′′(r) > 0 for r ∈ [Rgi, ri), z′′(r ′) = 0 and z′′(r) < 0 for r ∈ (r ′, ri],

then there exists r1
i ∈ (Rgi, ri) such that z′(r1

i ) = tan(π/2 − αg) and for pi the following inequality
holds:

−
γ

Rgi
< pi < −

γ

Rgi
· sinαc. (3.24)

Proof. Since α(r) = arctan z′(r) increases on [Rgi, r
′) and decreases on (r ′, ri], and α(ri) =

π/2 − αg > αc, there exists r1
i ∈ (Rgi, ri) such that α(r1

i ) = π/2 − αg . The maximum value α(r ′)
is less than π/2. From (3.11) we have

pi = ρ · g · z
(
r ′
)
−
γ

r ′
· sinα

(
r ′
)
, (3.25)
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Figure 2: z versus r for pe = −1100; −1000; −700 [Pa].
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Figure 3: α versus r for pe = −1100; −1000; −700 [Pa].

and therefore

−
γ

Rgi
< pi < −

γ

Rgi
· sinαc. (3.26)

Remark 3.13. If the solution z(r) of the initial value problem (3.10) is concave (i.e., z′′(r) < 0)
on the interval [Rgi, ri] (ri ∈ (Rgi, (Rgi + Rge)/2)), then it does not describe the inner free
surface of a static meniscus on [Rgi, ri].
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Figure 4: z versus r for pe = −1000; −900; −800 [Pa].

Theorem 3.14. Letm be 1 < m < (Rgi + Rge)/2 · Rgi. If for pi the following inequality holds:

pi >
γ

Rgi
+ ρ · g · (m − 1) · Rgi · tan

(π
2
− αg

)
, (3.27)

then the solution z(r) of the initial value problem (3.10) is concave on the interval I ∩ [Rgi,m · Rgi]
where I is the maximal interval of the existence of z(r).

Proof. Consider α(r) = arctan z′(r) and remark that for r ∈ I ∩ [Rgi,m · Rgi] the following
relations hold:

α′(r) =
1

cosα(r)
·
[
ρ · g · z(r)

γ
−
pi
γ
− sinα

r

]

≤ 1
cosα(r)

·
[
ρ · g · (m − 1) · Rgi

γ
· tan

(π
2
− αg

)
− n

Rgi

−
ρ · g · (m − 1) · Rgi

γ
· tan

(π
2
− αg

)
− sinα

r

]

< 0.

(3.28)

Hence z′′(r) = −1/(cos2α(r)) · α′(r) < 0 for r ∈ I ∩ [Rgi,m · Rge].
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Figure 5: α versus r for pe = −1000; −900; −800 [Pa].
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Figure 6: z versus r for pe = −2500; −2000; −1000 [Pa].

4. Numerical Illustration

Numerical computations were performed for a Si cylindrical tube for the following data:

Rge = 75.5 · 10−3 [m], Rgi1 = 74.5 · 10−3 [m], αc = 0.523 [rad], αg = 0.192 [rad],

ρ = 2.5 · 103
[
kg/m3

]
, γ = 7.2 · 10−1 [N/m], g = 9.81

[
m/s2

]
,

n = 1.006, n′ = 1.0006, m = 1.0067, m′ = 1.0006.
(4.1)
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The objective was to verify if the necessary conditions are also sufficient, or if the
sufficient conditions are also necessary. Moreover, the above data were used in experiments
and the computed results can be tested against the experiments in order to evaluate the
accuracy of the theoretical predictions. This test is not the subject of this paper.

For the considered numerical data, inequality (2.7) becomes

−1179.443 [Pa] ≤ pe ≤ −194.682 [Pa]. (4.2)

Integration of (2.10) shows that for pe = −1100; −1000 [Pa] there exists re ∈ (Rge/n, Rge)
such that the solution is a convex outer free surface of a static meniscus on [re, Rge], but for
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Figure 10: z versus r for pe = 4.768; 5; 10; 100 [Pa].

pe = −700 [Pa] there is no re ∈ (Rge/n, Rge) such that the solution is a convex outer free
surface of a static meniscus on [re, Rge] (Figures 2 and 3). Hence, inequality (2.7) is not a
sufficient condition.

For the same numerical data inequality (2.9) becomes pe < −1179.443 [Pa]. We have
already obtained that for pe = −1100; −1000 [Pa] there exists re in the interval [Rge/n, Rge]
such that the solution of (2.10) describes a convex outer free surface of a static meniscus on
the interval [re, Rge]. Hence, inequality (2.9) is not a necessary condition.

For the same numerical data inequality (2.19) becomes pe < −1061.728 [Pa].
Integration shows that for pe = −1000; −900; −800 [Pa] there exists re ∈ ((Rgi + Rge)/2, Rge),
such that the solution of (2.10) describes a convex outer free surface of a static meniscus
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Figure 12: z versus r for pe = 15 [Pa].

on the closed interval [re, Rge] (Figures 4 and 5). Hence, inequality (2.19) is not a necessary
condition.

For the same numerical data inequality (2.20) becomes −2580 < pe < −1179.443 [Pa].
Integration of (2.10) illustrates the above phenomenon for pe = −2000; −2500 [Pa] (Figures
6 and 7) and also the fact that the condition is not necessary (see pe = −1000 [Pa]).

For the same numerical data inequality (2.21) becomes pe < 4.768 [Pa]. Integration of
(2.10) illustrates the above phenomenon for pe = 2; 3; 4 [Pa] (Figures 8 and 9).

For the considered numerical data inequality (2.32) becomes 4.768 [Pa] < pe <
66.23 [Pa]. Integration shows that for pe = 4.768 [Pa] there is no re ∈ (Rge/n, Rge) such that the
solution of (2.10) is a nonglobally convex outer free surface of a static meniscus on [re, Rge].
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Figure 14: z versus r for pi = −1000; −900; −550 [Pa].

Moreover, for pe = 5; 10; 100 [Pa] it is not anymore the outer free surface of a static meniscus
(Figures 10 and 11). Hence, inequality (2.32) is not a sufficient condition.

For the same numerical data inequality (2.33) becomes 4.768 [Pa] ≤ pe ≤ 72.5 [Pa].
We have already obtained that for pe = 5; 10 [Pa] (Figure 10) the solution of (2.10) is not
anymore the outer free surface of a static meniscus. Hence, inequality (2.33) is not a sufficient
condition.

For the same numerical data inequality (2.34) becomes pe > 15.9696 [Pa]. Integration
of (2.10) for pe = 15 [Pa] proves that the solution is globally concave on [Rge/n, Rge] (Figures
12 and 13). Hence, inequality (2.34) is not a necessary condition.
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Figure 15: α versus r for pi = −1000; −900; −550 [Pa].
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Figure 16: z versus r for pi = −1000; −900; −800 [Pa].

For the considered numerical data inequality (3.7) becomes −1076.682 [Pa] ≤ pi ≤
−177.201 [Pa]. Integration of (3.10) shows that for pi = −1000; −900 [Pa] there exists ri ∈
(Rgi,m · Rgi) such that the solution is a convex inner free surface of a static meniscus on
[Rgi, ri], but for pi = −550 [Pa] there is no ri ∈ (Rgi,m · Rgi) such that the solution is a convex
inner free surface of a static meniscus on [Rgi, ri] (Figures 14 and 15). Hence, inequality (3.7)
is not a sufficient condition.

For the considered numerical data (3.9) becomes pi < −1076.682 [Pa]. We have already
obtained that for pi = −1000; −900 [Pa] there exists ri ∈ (Rgi,m · Rgi) such that the solution of
(3.10) describes a convex inner free surface of a static meniscus on [Rgi, ri]. Hence, inequality
(3.9) is not a necessary condition.
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Figure 17: α versus r for pi = −1000; −900; −800 [Pa].
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Figure 18: z versus r for pi = −2500; −2000; −1500; −500 [Pa].

For the considered numerical data (3.20) becomes pi < −1075.98 [Pa]. Integration of
(3.10) shows that for pi = −1000; −900; −800 [Pa] there exists ri ∈ (Rgi, (Rgi + Rge)/2) such
that the solution describes a convex inner free surface of a static meniscus on [Rgi, ri] (Figures
16 and 17). Hence, inequality (3.20) is not a necessary condition.

For the considered numerical data (3.21) becomes −2613 [Pa] < pi < −1076.68 [Pa].
Integration of (3.10) illustrates the above phenomenon for pi = −1500; −2000; −2500 [Pa] and
also the fact that the condition is not necessary (Figures 18 and 19) (see pi = −500 [Pa]).

For the same numerical data inequality (3.23) becomes pi < −4.8322 [Pa]. Integration
of (3.10) illustrates the above phenomenon for pi = −7; −6; −5 [Pa] (Figures 20 and 21).

For the considered numerical data inequality (3.24) becomes −9.664 [Pa] < pi <
−4.827 [Pa]. Integration shows that for pi = −5 [Pa] there exists ri ∈ (Rgi,m · Rgi) such
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Figure 20: z versus r for pi = −7; −6; −5 [Pa].

that the solution of (3.10) is a nonglobally convex inner free surface of a static meniscus on
[Rgi, ri], but for pi = −6; −7 [Pa] it is not anymore the inner free surface of a nonglobally static
meniscus (Figures 20 and 21). Hence, (3.24) is not a sufficient condition.

For the same numerical data (3.27) becomes pi > 72.6422 [Pa]. Integration of (3.8) for
pi = 70 [Pa] proves that the solution is globally concave on [Rgi,m · Rgi] (Figures 22 and 23).
Hence, (3.27) is not a necessary condition.

5. Conclusions

(1) Inequalities (2.2) and (2.7) localize regions on the pressure axis where the outer pressure
has to be taken in order to obtain convex outer free surface.
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Inequalities (2.9), (2.19), and (2.20) localize regions on the pressure axis, having the
property that if the outer pressure is taken in this region, then a convex outer free surface is
obtained.

Inequalities (2.31) and (2.32) localize region on the pressure axis, where the outer
pressure has to be taken in order to obtain a convex-concave outer free surface.

(2) Inequalities (3.2) and (3.7) localize regions on the pressure axis where the inner
pressure has to be taken in order to obtain convex inner free surface.

Inequalities (3.5), (3.20), and (3.21) localize regions on the pressure axis, having the
property that if the inner pressure is taken in this region, then a convex inner free surface is
obtained.
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Inequality (3.24) localizes region on the pressure axis, where the inner pressure has to
be taken in order to obtain a convex-concave inner free surface.

(3) By computation these values are found in a real case, and the “accuracy”
(sufficiency or necessity) of the reported inequalities is discussed.
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