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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms. Let (G1, ·) be a group and let (G2, ∗, d)
be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a
mapping h : G1 → G2 satisfies the inequality d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1,
then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In
other words, under what condition does there exists a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation. Hyers [2]
gave a first affirmative answer to the question of Ulam for Banach spaces. Let f : E → E′ be
a mapping between Banach spaces such that

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ δ (1.1)

for all x, y ∈ E and some δ > 0. Then there exists a unique additive mapping T : E → E′ such
that

∥
∥f(x) − T(x)∥∥ ≤ δ (1.2)
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for all x ∈ E.Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is R-linear.
In 1978, Rassias [3] provided a generalization of Hyers’ theorem which allows the Cauchy
difference to be unbounded. In 1991, Gajda [4] answered the question for the case p > 1,
which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of
functional equations (see [5–12]). The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.3)

is related to a symmetric biadditive mapping. It is natural that this equation is called
a quadratic functional equation. In particular, every solution of the quadratic functional
equation (1.3) is said to be a quadratic mapping. It is well known that a mapping f between
real vector spaces is quadratic if and only if there exits a unique symmetric biadditive
mapping B such that f(x) = B(x, x) for all x (see [5, 13]). The biadditive mapping B is given
by

B
(

x, y
)

=
1
4
(

f
(

x + y
) − f(x − y)). (1.4)

The Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.3) was
proved by Skof for mappings f : A → B, whereA is a normed space and B is a Banach space
(see [14]). Cholewa [15] noticed that the theorem of Skof is still true if relevant domain A is
replaced an abelian group. In [16], Czerwik proved the Hyers-Ulam-Rassias stability of the
functional equation (1.3). Grabiec [17] has generalized the results mentioned above.

In [18], Park and Bae considered the following quartic functional equation

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4
[

f
(

x + y
)

+ f
(

x − y) + 6f
(

y
)] − 6f(x). (1.5)

In fact, they proved that a mapping f between two real vector spaces X and Y is a solution
of (1.5) if and only if there exists a unique symmetric multiadditive mapping M : X4 → Y
such that f(x) = M(x, x, x, x) for all x. It is easy to show that the function f(x) = x4 satisfies
the functional equation (1.5), which is called a quartic functional equation (see also [19]). In
addition, Kim [20] has obtained the Hyers-Ulam-Rassias stability for a mixed type of quartic
and quadratic functional equation.

The Hyers-Ulam-Rassias stability of different functional equations in random normed
and fuzzy normed spaces has been recently studied in [21–26]. It should be noticed that in all
these papers the triangle inequality is expressed by using the strongest triangular norm TM.

The aim of this paper is to investigate the stability of the additive-quadratic functional
equation in random normed spaces (in the sense of Sherstnev) under arbitrary continuous
t-norms.

In this sequel, we adopt the usual terminology, notations, and conventions of the
theory of random normed spaces, as in [22, 23, 27–29]. Throughout this paper,Δ+ is the space
of distribution functions, that is, the space of all mappings F : R∪{−∞,∞} → [0, 1] such that
F is left-continuous and nondecreasing on R, F(0) = 0 and F(+∞) = 1. Also, D+ is a subset of
Δ+ consisting of all functions F ∈ Δ+ for which l−F(+∞) = 1, where l−f(x) denotes the left
limit of the function f at the point x, that is, l−f(x) = limt→x−f(t). The space Δ+ is partially
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ordered by the usual point-wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t)
for all t in R. The maximal element forΔ+ in this order is the distribution function ε0 given by

ε0(t) =

⎧

⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(1.6)

Definition 1.1 (see [28]). A mapping T : [0, 1]×[0, 1] → [0, 1] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm). Recall (see [30, 31]) that if T is a t-
norm and {xn} is a given sequence of numbers in [0, 1], then Tni=1xi is defined recurrently by
T1
i=1xi = x1 and T

n
i=1xi = T(T

n−1
i=1 xi, xn) for n ≥ 2. T∞

i=nxi is defined as T∞
i=1xn+i−1. It is known [31]

that for the Lukasiewicz t-norm, the following implication holds:

lim
n→∞

(TL)∞i=1xn+i−1 = 1 ⇐⇒
∞∑

n=1

(1 − xn) <∞. (1.7)

Definition 1.2 (see [29]). A random normed space (briefly, RN-space) is a triple (X, μ, T), where
X is a vector space, T is a continuous t-norm, and μ is a mapping from X into D+ such that
the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) μαx(t) = μx(t/|α|) for all x ∈ X, α/= 0;

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ‖ · ‖) defines a random normed space (X, μ, TM), where

μx(t) =
t

t + ‖x‖ (1.8)

for all t > 0, and TM is the minimum t-norm. This space is called the induced random normed
space.

Definition 1.3. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists a positive integerN such that μxn−x(ε) > 1 − λwhenever n ≥N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there
exists a positive integerN such that μxn−xm(ε) > 1 − λwhenever n ≥ m ≥N.
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(3) An RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X.

Theorem 1.4 (see [28]). If (X, μ, T) is an RN-space and {xn} is a sequence such that xn → x, then
limn→∞μxn(t) = μx(t) almost everywhere.

Recently, Gordji et al. establish the stability of cubic, quadratic and additive-quadratic
functional equations in RN-spaces (see [32, 33]).

In this paper, we deal with the following functional equation:

f
(

2x + y
)

+ f
(

2x − y) = 4
[

f
(

x + y
)

+ f
(

x − y)] + 2
[

f(2x) − 4f(x)
] − 6f

(

y
)

(1.9)

on RN-spaces. It is easy to see that the function f(x) = ax4 + bx2 is a solution of (1.9).
In Section 2, we investigate the general solution of the functional equation (1.9) when

f is a mapping between vector spaces and in Section 3, we establish the stability of the
functional equation (1.9) in RN-spaces.

2. General Solution

We need the following lemma for solution of (1.9). Throughout this section, X and Y are
vector spaces.

Lemma 2.1. If a mapping f : X → Y satisfies (1.9) for all x, y ∈ X, then f is quadratic-quartic.

Proof. We show that the mappings g : X → Y defined by g(x) := f(2x)−16f(x) and h : X →
Y defined by h(x) := f(2x) − 4f(x) are quadratic and quartic, respectively.

Letting x = y = 0 in (1.9), we have f(0) = 0. Putting x = 0 in (1.9), we get f(−y) = f(y).
Thus the mapping f is even. Replacing y by 2y in (1.9), we get

f
(

2x + 2y
)

+ f
(

2x − 2y
)

= 4
[

f
(

x + 2y
)

+ f
(

x − 2y
)]

+ 2
[

f(2x) − 4f(x)
] − 6f

(

2y
)

(2.1)

for all x, y ∈ X. Interchanging x with y in (1.9), we obtain

f
(

2y + x
)

+ f
(

2y − x) = 4
[

f
(

y + x
)

+ f
(

y − x)] + 2
[

f
(

2y
) − 4f

(

y
)] − 6f(x) (2.2)

for all x, y ∈ X. Since f is even, by (2.2), one gets

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4
[

f
(

x + y
)

+ f
(

x − y)] + 2
[

f
(

2y
) − 4f

(

y
)] − 6f(x) (2.3)

for all x, y ∈ X. It follows from (2.1) and (2.3) that

[

f
(

2
(

x + y
)) − 16f

(

x + y
)]

+
[

f
(

2
(

x − y)) − 16f
(

x − y)]

= 2
[

f(2x) − 16f(x)
]

+ 2
[

f
(

2y
) − 16f

(

y
)] (2.4)
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for all x, y ∈ X. This means that

g
(

x + y
)

+ g
(

x − y) = 2g(x) + 2g
(

y
)

(2.5)

for all x, y ∈ X. Therefore, the mapping g : X → Y is quadratic.
To prove that h : X → Y is quartic, we have to show that

h
(

x + 2y
)

+ h
(

x − 2y
)

= 4
[

h
(

x + y
)

+ h
(

x − y) + 6h
(

y
)] − 6h(x) (2.6)

for all x, y ∈ X. Since f is even, the mapping h is even. Now if we interchange x with y in the
last equation, we get

h
(

2x + y
)

+ h
(

2x − y) = 4
[

h
(

x + y
)

+ h
(

x − y) + 6h(x)
] − 6h

(

y
)

(2.7)

for all x, y ∈ X. Thus, it is enough to prove that h satisfies (2.7). Replacing x and y by 2x and
2y in (1.9), respectively, we obtain

f
(

2
(

2x + y
))

+ f
(

2
(

2x − y)) = 4
[

f
(

2
(

x + y
))

+ f
(

2
(

x − y))] + 2
[

f(4x) − 4f(2x)
] − 6f

(

2y
)

(2.8)

for all x, y ∈ X. Since g(2x) = 4g(x) for all x ∈ X,

f(4x) = 20f(2x) − 64f(x) (2.9)

for all x ∈ X. By (2.8) and (2.9), we get

f
(

2
(

2x + y
))

+ f
(

2
(

2x − y)) = 4
[

f
(

2
(

x + y
))

+ f
(

2
(

x − y))] + 32
[

f(2x) − 4f(x)
] − 6f

(

2y
)

(2.10)

for all x, y ∈ X. By multiplying both sides of (1.9) by 4, we get

4
[

f
(

2x + y
)

+ f
(

2x − y)] = 16
[

f
(

x + y
)

+ f
(

x − y)] + 8
[

f(2x) − 4f(x)
] − 24f

(

y
)

(2.11)

for all x, y ∈ X. If we subtract the last equation from (2.10), we obtain

h
(

2x + y
)

+ h
(

2x − y) = [f(2(2x + y
)) − 4f

(

2x + y
)]

+
[

f
(

2
(

2x − y)) − 4f
(

2x − y)]

= 4
[

f
(

2
(

x + y
)) − 4f

(

x + y
)]

+ 4
[

f
(

2
(

x − y)) − 4f
(

x − y)]

+ 24
[

f(2x) − 4f(x)
] − 6

[

f
(

2y
) − 4f

(

y
)]

= 4
[

h
(

x + y
)

+ h
(

x − y) + 6h(x)
] − 6h

(

y
)

(2.12)

for all x, y ∈ X.
Therefore, the mapping h : X → Y is quartic. This completes the proof of the lemma.
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Theorem 2.2. A mapping f : X → Y satisfies (1.9) for all x, y ∈ X if and only if there exist a
unique symmetric multiadditive mappingM : X4 → Y and a unique symmetric bi-additive mapping
B : X ×X → Y such that

f(x) =M(x, x, x, x) + B(x, x) (2.13)

for all x ∈ X.

Proof. Let f satisfy (1.9) and assume that g, h : X → Y are mappings defined by

g(x) := f(2x) − 16f(x), h(x) := f(2x) − 4f(x) (2.14)

for all x ∈ X. By Lemma 2.1, we obtain that the mappings g and h are quadratic and quartic,
respectively, and

f(x) =
1
12
h(x) − 1

12
g(x) (2.15)

for all x ∈ X.
Therefore, there exist a unique symmetric multiadditive mappingM : X4 → Y and a

unique symmetric bi-additive mapping B : X × X → Y such that (1/12)h(x) = M(x, x, x, x)
and (−1/12)g(x) = B(x, x) for all x ∈ X [5, 18]. So

f(x) =M(x, x, x, x) + B(x, x) (2.16)

for all x ∈ X. The proof of the converse is obvious.

3. Stability

Throughout this section, assume that X is a real linear space and (Y, μ, T) is a complete RN-
space.

Theorem 3.1. Let f : X → Y be a mapping with f(0) = 0 for which there is ρ : X × X → D+

(ρ(x, y) is denoted by ρx,y) with the property:

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−2f(2x)+8f(x)+6f(y)(t) ≥ ρx,y(t) (3.1)

for all x, y ∈ X and all t > 0. If

lim
n→∞

T∞
i=1

(

T
(

ρ2n+i−1x,2n+i−1x
(

22n+i+1t
))

, T

(

ρ2n+i−1x,2·2n+i−1x

(

22n+it
4

)

, ρ0,2n+i−1x

(

22n+it
3

)))

= 1,

lim
n→∞

ρ2nx,2ny
(

22nt
)

= 1

(3.2)
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for all x, y ∈ X and all t > 0, then there exists a unique quadratic mapping Q1 : X → Y such that

μf(2x)−16f(x)−Q1(x)(t) ≥ T∞
i=1

(

T

(

ρ2i−1x,2i−1x
(

2i+1t
)

, T

(

ρ2i−1x,2·2i−1x

(

2it
4

)

, ρ0,2i−1x

(

2it
3

))))

(3.3)

for all x ∈ X and all t > 0.

Proof. Putting y = x in (3.1), we obtain

μf(3x)−6f(2x)+15f(x)(t) ≥ ρx,x(t) (3.4)

for all x ∈ X and all t > 0. Letting y = 2x in (3.1), we get

μf(4x)−4f(3x)+4f(2x)+8f(x)−4f(−x)(t) ≥ ρx,2x(t) (3.5)

for all x ∈ X and all t > 0. Putting x = 0 in (3.1), we obtain

μ3f(y)−3f(−y)(t) ≥ ρ0,y(t) (3.6)

for all y ∈ X and all t > 0. Replacing y by x in (3.6), we see that

μ3f(x)−3f(−x)(t) ≥ ρ0,x(t) (3.7)

for all x ∈ X and all t > 0. It follows from (3.5) and (3.7) that

μf(4x)−4f(3x)+4f(2x)+4f(x)(t) ≥ T
(

ρx,2x

(
t

2

)

, ρ0,x

(
2t
3

))

(3.8)

for all x ∈ X and all t > 0. If we add (3.4) to (3.8), then we have

μf(4x)−20f(2x)+64f(x)(t) ≥ T
(

ρx,x(2t), T
(

ρx,2x

(
t

4

)

, ρ0,x

(
t

3

)))

. (3.9)

Let

ψx,x(t) = T
(

ρx,x(2t), T
(

ρx,2x

(
t

4

)

, ρ0,x

(
t

3

)))

(3.10)

for all x ∈ X and all t > 0. Then we get

μf(4x)−20f(2x)+64f(x)(t) ≥ ψx,x(t) (3.11)
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for all x ∈ X and all t > 0. Let g : X → Y be a mapping defined by g(x) := f(2x) − 16f(x).
Then we conclude that

μg(2x)−4g(x)(t) ≥ ψx,x(t) (3.12)

for all x ∈ X and all t > 0. Thus we have

μg(2x)/22−g(x)(t) ≥ ψx,x
(

22t
)

(3.13)

for all x ∈ X and all t > 0. Hence

μg(2k+1x)/22(k+1)−g(2kx)/22k(t) ≥ ψ2kx,2kx

(

22(k+1)t
)

(3.14)

for all x ∈ X, all t > 0 and all k ∈ N. This means that

μg(2k+1x)/22(k+1)−g(2kx)/22k
(

t

2k+1

)

≥ ψ2kx,2kx

(

2k+1t
)

(3.15)

for all x ∈ X, all t > 0 and all k ∈ N. By the triangle inequality, from 1 > 1/2+ 1/22 + · · ·+ 1/2n,
it follows that

μg(2nx)/22n−g(x)(t) ≥ Tnk=1
(

μg(2kx)/22k−g(2k−1x)/22(k−1)
(
t

2k

))

≥ Tni=1
(

ψ2i−1x,2i−1x

(

2it
))

(3.16)

for all x ∈ X and all t > 0. In order to prove the convergence of the sequence {g(2nx)/22n},
we replace x with 2mx in (3.16) to obtain that

μg(2n+mx)/22(n+m)−g(2mx)/22m(t) ≥ Tni=1
(

ψ2i+m−1x,2i+m−1x

(

2i+2mt
))

. (3.17)

Since the right-hand side of the inequality (3.17) tends to 1 as m and n tend to
infinity, the sequence {g(2nx)/22n} is a Cauchy sequence. Thus we may define Q1(x) =
limn→∞(g(2nx)/22n) for all x ∈ X.

Now we show that Q1 is a quadratic mapping. Replacing x, y with 2nx and 2ny in
(3.1), respectively, we get

μ((g(2n(2x+y))+g(2n(2x−y))−4g(2n(x+y))−4g(2n(x−y))−2g(2n+1x)+8g(2nx)+6g(2ny))/4n)(t)

≥ ρ(2nx,2ny)
(

22nt
)

.
(3.18)

Taking the limit as n → ∞, we find that Q1 satisfies (1.9) for all x, y ∈ X. By Lemma 2.1, the
mapping Q1 : X → Y is quadratic.

Letting the limit as n → ∞ in (3.16), we get (3.3) by (3.10).
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Finally, to prove the uniqueness of the quadratic mapping Q1 subject to (3.3), let us
assume that there exists another quadratic mapping Q′

1 which satisfies (3.3). Since Q1(2nx) =
22nQ1(x), Q′

1(2
nx) = 22nQ′

1(x) for all x ∈ X and all n ∈ N, from (3.3), it follows that

μQ1(x)−Q′
1(x)(2t)

= μQ1(2nx)−Q′
1(2

nx)

(

22n+1t
)

≥ T
(

μQ1(2nx)−g(2nx)
(

22nt
)

, μg(2nx)−Q′
1(2

nx)

(

22nt
))

≥ T
(

T∞
i=1

(

T

(

ρ2n+i−1x,2n+i−1x
(

22n+i+1t
)

, T

(

ρ2n+i−1x,2·2n+i−1x

(

22n+it
4

)

, ρ0,2n+i−1x

(

22n+it
3

))))

,

T∞
i=1

(

T

(

ρ2n+i−1x,2n+i−1x
(

22n+i+1t
)

, T

(

ρ2n+i−1x,2n+i−1x

(

22n+it
4

)

, ρ0,2n+i−1x

(

22n+it
3

)))))

(3.19)

for all x ∈ X and all t > 0. Letting n → ∞ in (3.19), we conclude thatQ1 = Q′
1, as desired.

Theorem 3.2. Let f : X → Y be a mapping with f(0) = 0 for which there is ρ : X × X → D+

(ρ(x, y) is denoted by ρx,y) with the property:

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−2f(2x)+8f(x)+6f(y)(t) ≥ ρx,y(t) (3.20)

for all x, y ∈ X and all t > 0. If

lim
n→∞

T∞
i=1

(

T

(

ρ2n+i−1x,2n+i−1x
(

24n+3i+1t
)

,

T

(

ρ2n+i−1x,2·2n+i−1x

(

24n+3it
4

)

, ρ0,2n+i−1x

(

24n+3it
3

))))

=1,

lim
n→∞

ρ2nx,2ny
(

24nt
)

= 1

(3.21)

for all x, y ∈ X and all t > 0, then there exists a unique quartic mapping Q2 : X → Y such that

μf(2x)−4f(x)−Q2(x)(t) ≥ T∞
i=1

(

T

(

ρ2i−1x,2i−1x
(

23i+1t
)

, T

(

ρ2i−1x,2·2i−1x

(

23it
4

)

, ρ0,2i−1x

(

23it
3

))))

(3.22)

for all x ∈ X and all t > 0.

Proof. Putting y = x in (3.20), we obtain

μf(3x)−6f(2x)+15f(x)(t) ≥ ρx,x(t) (3.23)
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for all x ∈ X and all t > 0. Letting y = 2x in (3.20), we get

μf(4x)−4f(3x)+4f(2x)+8f(x)−4f(−x)(t) ≥ ρx,2x(t) (3.24)

for all x ∈ X and all t > 0. Putting x = 0 in (3.20), we obtain

μ3f(y)−3f(−y)(t) ≥ ρ0,y(t) (3.25)

for all y ∈ X and all t > 0. Replacing y by x in (3.25), we get

μ3f(x)−3f(−x)(t) ≥ ρ0,x(t) (3.26)

for all x ∈ X and all t > 0. It follows from (3.5) and (3.26) that

μf(4x)−4f(3x)+4f(2x)+4f(x)(t) ≥ T
(

ρx,2x

(
t

2

)

, ρ0,x

(
2t
3

))

(3.27)

for all x ∈ X and all t > 0. If we add (3.23) to (3.27), then we have

μf(4x)−20f(2x)+64f(x)(t) ≥ T
(

ρx,x(2t), T
(

ρx,2x

(
t

4

)

, ρ0,x

(
t

3

)))

. (3.28)

Let

ψx,x(t) = T
(

ρx,x(2t), T
(

ρx,2x

(
t

4

)

, ρ0,x

(
t

3

)))

(3.29)

for all x ∈ X and all t > 0. Then we get

μf(4x)−20f(2x)+64f(x)(t) ≥ ψx,x(t) (3.30)

for all x ∈ X and all t > 0. Let h : X → Y be a mapping defined by h(x) := f(2x) − 4f(x).
Then we conclude that

μh(2x)−16h(x)(t) ≥ ψx,x(t) (3.31)

for all x ∈ X and all t > 0. Thus we have

μh(2x)/24−h(x)(t) ≥ ψx,x
(

24t
)

(3.32)
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for all x ∈ X and all t > 0. Hence

μh(2k+1x)/24(k+1)−h(2kx)/24k(t) ≥ ψ2kx,2kx

(

24(k+1)t
)

(3.33)

for all x ∈ X, all t > 0 and all k ∈ N. This means that

μh(2k+1x)/24(k+1)−h(2kx)/24k
(

t

2k+1

)

≥ ψ2kx,2kx

(

23(k+1)t
)

(3.34)

for all x ∈ X, all t > 0 and all k ∈ N. By the triangle inequality, from 1 > 1/2+ 1/22 + · · ·+ 1/2n,
it follows that

μh(2nx)/24n−h(x)(t) ≥ Tnk=1
(

μh(2kx)/24k−h(2k−1x)/24(k−1)
(
t

2k

))

≥ Tni=1
(

ψ2i−1x,2i−1x

(

23it
))

(3.35)

for all x ∈ X and all t > 0. In order to prove the convergence of the sequence {h(2nx)/24n},
we replace x with 2mx in (3.35) to obtain that

μh(2n+mx)/24(n+m)−h(2mx)/24m(t) ≥ Tni=1
(

ψ2i+m−1x,2i+m−1x

(

23i+4mt
))

. (3.36)

Since the right-hand side of (3.36) tends to 1 as m and n tend to infinity, the sequence
{h(2nx)/24n} is a Cauchy sequence. Thus we may define Q2(x) = limn→∞(h(2nx)/24n) for
all x ∈ X.

Now we show thatQ2 is a quartic mapping. Replacing x, y with 2nx and 2ny in (3.20),
respectively, we get

μ(h(2n(2x+y))+h(2n(2x−y))−4h(2n(x+y))−4h(2n(x−y))−2h(2n+1x)+8h(2nx)+6h(2ny))/16n(t)

≥ ρ2nx,2ny
(

24nt
)

.
(3.37)

Taking the limit as n → ∞, we find that Q2 satisfies (1.9) for all x, y ∈ X. By Lemma 2.1 we
get that the mapping Q2 : X → Y is quartic.

Letting the limit as n → ∞ in (3.35), we get (3.22) by (3.29).
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Finally, to prove the uniqueness of the quartic mapping Q2 subject to (3.24), let
us assume that there exists a quartic mapping Q′

2 which satisfies (3.22). Since Q2(2nx) =
24nQ2(x) and Q′

2(2
nx) = 24nQ′

2(x) for all x ∈ X and all n ∈ N, from (3.22), it follows that

μQ2(x)−Q′
2(x)(2t)

= μQ2(2nx)−Q′
2(2

nx)

(

24n+1t
)

≥ T
(

μQ2(2nx)−h(2nx)
(

24nt
)

, μh(2nx)−Q′
2(2

nx)

(

24nt
))

,

≥ T
(

T∞
i=1

(

T

(

ρ2n+i−1x,2n+i−1x
(

24n+3i+1t
)

, T

(

ρ2n+i−1x,2·2n+i−1x

(

24n+3it
4

)

, ρ0,2n+i−1x

(

24n+3it
3

))))

,

T∞
i=1

(

T

(

ρ2n+i−1x,2n+i−1x
(

24n+3i+1t
)

T

(

ρ2n+i−1x,2·2n+i−1x

(

24n+3it
4

)

, ρ0,2n+i−1x

(

24n+3it
3

)))))

(3.38)

for all x ∈ X and all t > 0. Letting n → ∞ in (3.38), we get that Q2 = Q′
2, as desired.

Theorem 3.3. Let f : X → Y be a mapping with f(0) = 0 for which there is ρ : X × X → D+

(ρ(x, y) is denoted by ρx,y) with the property:

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−2f(2x)+8f(x)+6f(y)(t) ≥ ρx,y(t) (3.39)

for all x, y ∈ X and all t > 0. If

lim
n→∞

T∞
i=1

(

T

(

ρ2n+i−1x,2n+i−1x
(

24n+3i+1t
)

,

T

(

ρ2n+i−1x,2·2n+i−1x

(

24n+3it
4

)

, ρ0,2n+i−1x

(

24n+3it
3

))))

=1,

lim
n→∞

ρ2nx,2ny
(

22nt
)

= 1

(3.40)

for all x, y ∈ X and all t > 0, then there exist a unique quadratic mapping Q1 : X → Y and a unique
quartic mapping Q2 : X → Y such that

μf(x)−Q1(x)−Q2(x)(t)

≥ T
(

T∞
i=1

(

T

(

ρ2i−1x,2i−1x

(

2it
12

)

, T

(

ρ2i−1x,2·2i−1x

(

2it
4 · 24

)

, ρ0,2i−1x

(

2it
3 · 24

))))

,

T∞
i=1

(

T

(

ρ2i−1x,2i−1x

(

23it
24

)

, T

(

ρ2i−1x,2·2i−1x

(

23it
4 · 24

)

, ρ0,2i−1x

(

23it
3 · 24

)))))

(3.41)
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for all x ∈ X and all t > 0.

Proof. By Theorems 3.1 and 3.2, there exist a quadratic mapping Q′
1 : X → Y and a quartic

mapping Q′
2 : X → Y such that

μf(2x)−16f(x)−Q′
1(x)(t) ≥ T∞

i=1

(

T

(

ρ2i−1x,2i−1x
(

2i+1t
)

, T

(

ρ2i−1x,2·2i−1x

(

2it
4

)

, ρ0,2i−1x

(

2it
3

))))

,

μf(2x)−4f(x)−Q′
2(x)(t) ≥ T∞

i=1

(

T

(

ρ2i−1x,2i−1x
(

23i+1t
)

, T

(

ρ2i−1x,2·2i−1x

(

23it
4

)

, ρ0,2i−1x

(

23it
3

))))

(3.42)

for all x ∈ X and all t > 0. It follows from the last inequalities that

μf(x)+(1/12)Q′
1(x)−(1/12)Q′

2(x)(t)

≥ T
(

μf(2x)−16f(x)−Q′
1(x)

(
t

24

)

, μf(2x)−4f(x)−Q′
2(x)

(
t

24

))

≥ T
(

T∞
i=1

(

T

(

ρ2i−1x,2i−1x

(

2it
12

)

, T

(

ρ2i−1x,2·2i−1x

(

2it
4 · 24

)

, ρ0,2i−1x

(

2it
3 · 24

))))

,

T∞
i=1

(

T

(

ρ2i−1x,2i−1x

(

23it
24

)

, T

(

ρ2i−1x,2·2i−1x

(

23it
4 · 24

)

, ρ0,2i−1x

(

23it
3 · 24

)))))

(3.43)

for all x ∈ X and all t > 0. Hence we obtain (3.41) by letting Q1(x) = −(1/12)Q′
1(x) and

Q2(x) = (1/12)Q′
2(x) for all x ∈ X. The uniqueness property of Q1 and Q2 is trivial.
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