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1. Introduction

Portfolio management problem concerns itself with allocating one’s assets among alternative
securities to maximize the return of assets and to minimize the investment risk. The pioneer
work on this problem was Markowitz’s mean variance model [1], and the solution of his
mean-variance methodology has been the center of the consequent research activities and
forms the basis for the development of modern portfolio management theory. Commonly,
the portfolio management problem has the following mathematical description.

Assume that there are n kinds of securities. The return rate of the jth security is
denoted as Rj , j = 1, . . . , n. Let xj be the proportion of total assets devoted to the jth security,
then it is obvious that

n∑

j=1

xj = 1. (1.1)
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In the real setting, due to uncertainty, the return rates Rj , j = 1, 2, . . . n, are random
parameters. Hence, the total return of the assets

R(x) =
n∑

j=1

Rjxj (1.2)

is also random. In this situation, the risk of investment has to be taken into consideration. In
the classical model, this risk is measured by the variance of R(x). If V ∈ Rn×n is the covariance
matrix of the vector R = (R1, R2, . . . , Rn)

T , then the variance of R(x) is

V (R(x)) = xTVx. (1.3)

Therefore, a portfolio management problem can be formulated into the following
biobjectives programming problem:

maximize R(x) = RTx,

minimize V (R(x)) = xTVx,

subject to eTx = 1,

1 ≥ x ≥ 0,

(1.4)

where e is a vector of all ones. Up to our knowledge, almost all of the existing models of
portfolio management problems evolved from the basic model (1.4).

Summarily, the past attempts on the portfolio management problems concentrated on
two major issues. The first one is to propose new models. In this connection, some recent
notable contributions mainly include the following:

(i) mean-absolute deviation model (Simaan [2]),

(ii) maximizing probability model (Williams [3]),

(iii) different types of mean-variance models (Best and Jaroslava [4], Konna and Suzuki
[5] and Yoshimoto [6]),

(iv) min-max models (Cai et al. [7], Deng et al. [8]),

(v) interval programming models (Giove et al. [9], Ida [10], Lai et al. [11]),

(vi) fuzzy goal programming model (Parra et al. [12]),

(vii) admissible efficient portfolio selection model (Zhang and Nie [13]),

(viii) possibility approach model with highest utility score (Carlsson et al. [14]),
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(ix) upper and lower exponential possibility distribution basedmodel (Tanaka and Guo
[15]),

(x) model with fuzzy probabilities (Huang [16, 17], Tanaka and Guo [15]).

The second issue is about the numerical solution algorithms for the distinct models.
One of the fundamental ways is to reformulate (1.4) into a deterministic single-objective
optimization problem. For example, in the researches of Best [4, 18], Pang [19], Kawadai
and Konno [20], Perold [21], Sharpe [22], Szegö [23] and Yoshimoto [6], they assumed that
the return of each security, the variance, and the covariances among them can be estimated
by the investor prior to decision. Under this assumption, the problem (1.4) is a deterministic
problem. Furthermore, if an aversion coefficient λ is introduced, the problem (1.4) can be
transformed into the following standard quadratic programming problem:

minimize f(x) = −(1 − λ)μTx + λxTVx

subject to eTx = 1,

b ≥ x ≥ a,

(1.5)

where μ ∈ Rn is the expected value vector of R, and a, b ∈ Rn are two given vectors denoting
the lower and the upper bounds of decision vector, respectively.

Obviously, if λ = 0 in (1.5), then it implies that the return is maximized regardless
of the investment risk. On the other hand, if λ = 1, then the risk is minimized without
consideration on the investment income. Increasing value of λ in the interval [0, 1] indicates
an increasingly weight of the invest risk, and vice versa.

For a fixed λ ∈ (0, 1), it is noted that (1.5) is a quadratic programming problem.
Since it has been shown that the matrix V is positive semidefinite, the problem (1.5) is a
convex quadratic programming (CQP). For a CQP, there exist a lot of efficient methods to
find its minimizers. Among them, active-set methods, interior-point methods, and gradient-
projection methods have been widely used since the 1970s. For their detailed numerical
performances, one can see [24–30] and the references therein. However, the efficiency
of those methods seriously depends on the factorization techniques of matrix at each
iteration, often exploiting the sparsity in V for a large-scale quadratic programming. So,
from the viewpoint of smaller storage requirements and computation cost, the methods
mentioned above must not be most suitable for solving the problem (1.5) if V is a dense
matrix.

Fortunately, recent research shows that the conjugate gradient methods can remedy
the drawback in factorization of Hessian matrix for an unconstrained minimization problem.
At each conjugate-gradient iteration, it is only involved with computing the gradient of
objective function. For details in this direction, see, for example, [31–34].

Motivated by the advantage of the conjugate gradient methods, the first aim of this
paper is to reformulate problem (1.5) as an equivalent unconstrained optimization problem.
Then, we are going to develop an efficient algorithm based on conjugate gradient methods
to find its solution. The effectiveness of such algorithm will be tested by implementing the
designed algorithm to solve some real problems from the stock market in China.
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The lay out of the paper is as follows. Section 2 is devoted to the reformulation of the
original constrained problem. Some features of the subproblem will be presented. Then, in
Section 3, we are going to develop a penalty algorithm based on conjugate gradient methods.
Section 4 will provide applications of the proposed algorithm. The last section concludes with
some final remarks.

2. Reformulation

Firstly, for brevity, denote

c =
(
cj
)
n×1 = −(1 − λ)μ, Q =

(
qij
)
n×n = 2λV. (2.1)

Then, the problem (1.5) reads

minimize f(x) = cTx +
1
2
xTQx

subject to eTx = 1,

a ≤ x ≤ b.

(2.2)

Since the covariance matrix V is symmetric positive semidefinite, Q also has such
property. Thus, f(x) is a convex function.

For the equality constraint eTx = 1 and the inequality constraints a ≤ x ≤ b in (2.2), we
define a function P : Rn+1 → R, which is used to describe the constraints violation:

P(x; θ) =
θ

2

[(
eTx − 1

)2
+ ‖min(x − a, 0)‖2 + ‖min(b − x, 0)‖2

]
, (2.3)

where θ > 0 is called penalty parameter, and ‖·‖ denotes the 2-norm of vector. If x is a feasible
point of problem (2.2), then

P(x; θ) = 0. (2.4)

Actually, the larger the absolute value of P(x; θ) is, the further x from the feasible region is.
The function F : Rn+1 → R,

F(x; θ) = cTx +
1
2
xTQx

+
θ

2

[(
eTx − 1

)2
+ ‖min(x − a, 0)‖2 + ‖min(b − x, 0)‖2

] (2.5)

is said to be a penalty function of the problem (2.2). It is noted that F has the following
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features:

(1) F is a piecewise quadratic polynomial;

(2) F is piecewise continuously differentiable;

(3) If Q is positive semidefinite, then F is a piecewise convex quadratic function.

For example, let n = 2, and denote

c(x; θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
c1 − θ

c2 − θ

⎞

⎠, x ∈ D1 =
{
(x1, x2)T : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2

}
,

⎛

⎝
c1 − θ − θa1

c2 − θ

⎞

⎠, x ∈ D2 =
{
(x1, x2)T : x1 < a1, a2 ≤ x2 ≤ b2

}
,

⎛

⎝
c1 − θ − θb1

c2 − θ

⎞

⎠, x ∈ D3 =
{
(x1, x2)T : x1 > b1, a2 ≤ x2 ≤ b2

}
,

⎛

⎝
c1 − θ

c2 − θ − θa2

⎞

⎠, x ∈ D4 =
{
(x1, x2)T : a1 ≤ x1 ≤ b1, x2 < a2

}
,

⎛

⎝
c1 − θ

c2 − θ − θb2

⎞

⎠, x ∈ D5 =
{
(x1, x2)T : a1 ≤ x1 ≤ b1, x2 > b2

}
,

⎛

⎝
c1 − θ − θa1

c2 − θ − θa2

⎞

⎠, x ∈ D6 =
{
(x1, x2)T : x1 < a1, x2 < a2

}
,

⎛

⎝
c1 − θ − θa1

c2 − θ − θb2

⎞

⎠, x ∈ D7 =
{
(x1, x2)T : x1 < a1, x2 > b2

}
,

⎛

⎝
c1 − θ − θb1

c2 − θ − θa2

⎞

⎠, x ∈ D8 =
{
(x1, x2)T : x1 > b1, x2 < a2

}
,

⎛

⎝
c1 − θ − θb1

c2 − θ − θb2

⎞

⎠, x ∈ D9 =
{
(x1, x2)T : x1 > b1, x2 > b2

}
.
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Q(x; θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
q11 + θ q12 + θ

q21 + θ q22 + θ

⎞

⎠, x ∈ D1,

⎛

⎝
q11 + 2θ q12 + θ

q21 + θ q22 + θ

⎞

⎠, x ∈ D2 ∪D3,

⎛

⎝
q11 + θ q12 + θ

q21 + θ q22 + 2θ

⎞

⎠, x ∈ D4 ∪D5,

⎛

⎝
q11 + 2θ q12 + θ

q21 + θ q22 + 2θ

⎞

⎠, x ∈ D6 ∪D7 ∪D8 ∪D9.

(2.6)

Then, F(x; θ) has the following more compact form:

F(x; θ) = c0 + c(x; θ)Tx +
1
2
xTQ(x; θ)x, (2.7)

where c0 is a constant scalar.
Next, we are going to present some properties of F.

Proposition 2.1. Given n, the piecewise function F consists of

20C0
n + 2C1

n + 22C2
n + · · · + 2nCn

n (2.8)

pieces.

Proposition 2.2. Assume that k ≤ n. For any { i1, i2, . . . , ik } ⊆ { 1, 2 . . . , n}, define a matrix

Ai1i2···ik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1 2 1 1 1 1 1 1

. . .

1 1 1 2 1 1 1 1

. . .

. . .

1 1 1 1 1 1 2 1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

...

· · ·
· · · · · · i1

...

· · · · · · · · · i2

...

...
· · · · · · · · · ik

...

, (2.9)

where each of the other rows is (1 1 · · · 1). Then, the following results hold.
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(1) R(Ai1i2···ik) = k + 1, where R(·) denotes the rank of a matrix.

(2) For a fixed k, all matrices Ai1i2···ik , where {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, have the same
eigenvalues and eigenvectors.

(3) When k < n−1, all matricesAi1i2···ik , where {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, have nonnegative
eigenvalue, and hence they are positive semidefinite. When k ≥ n − 1, they are positive
definite matrices.

Proof. From the construction of F and the linear algebra theory, it is not difficult to prove the
above two propositions. We omit it.

In the following, we turn to state the relation between the global minimizer of F and
that of the original problem (1.5).

Theorem 2.3. For a given sequence {θk}, suppose that θk → +∞ as k → +∞. Let x(k) be an exact
global minimizer of F(x; θ(k)). Then, every accumulation point x∗ of {x(k)} is a solution of problem
(1.5).

Proof. Let x be a global solution of problem (1.5). Then, for any feasible point x, we have

f(x) ≤ f(x). (2.10)

Since x(k) is an exact global minimizer of F(x; θ(k)) for the fixed θk, it follows that

F
(
x(k); θ(k)

)
≤ F
(
x; θ(k)

)
. (2.11)

By definition, (2.11) is equivalent to

f
(
x(k)
)
+
θ(k)

2

[(
eTx(k) − 1

)2
+
∥∥∥min

(
x(k) − a, 0

)∥∥∥
2
+
∥∥∥min

(
b − x(k), 0

)∥∥∥
2
]

≤ f(x) +
θ(k)

2

[(
eTx − 1

)2
+ ‖min(x − a, 0)‖2 + ‖min(b − x, 0)‖2

]

= f(x),

(2.12)

where the last equality is from the feasibility of x. So, it is obtained that

(
eTx(k) − 1

)2
+
∥∥∥min(x(k) − a, 0)

∥∥∥
2
+
∥∥∥min(b − x(k), 0)

∥∥∥
2 ≤ 2

θ(k)

[
f(x) − f

(
x(k)
)]

. (2.13)

Let x∗ be an accumulation point of {x(k)}. Without loss of generality, assume that

lim
k→+∞

x(k) = x∗. (2.14)
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Then, by taking the limit of k → ∞ on both sides of (2.13), we have

0 ≤
(
eTx∗ − 1

)2
+ ‖min(x∗ − a, 0)‖2 + ‖min(b − x∗, 0)‖2

≤ lim
k→+∞

2
θ(k)

[
f(x) − f

(
x(k)
)]

= 0,
(2.15)

where the last equality follows from θ(k) → +∞. It follows that

eTx∗ = 1, a ≤ x∗ ≤ b. (2.16)

Therefore, we have proved that x∗ is a feasible point.
In the following, we prove that x∗ is a global minimizer of problem (1.5).
Because

f(x∗) ≤ f(x∗) + lim
k→+∞

θ(k)

2

[(
eTx(k) − 1

)2
+
∥∥∥min

(
x(k) − a, 0

)∥∥∥
2
+
∥∥∥min

(
b − x(k), 0

)∥∥∥
2
]

≤ f(x),
(2.17)

x∗ is a global minimizer of f .
The desired result has been proved.

Without difficulty, the following result can be proved.

Theorem 2.4. Suppose that x is a solution of problem (1.5). Then, x is a global minimizer of F(·; θ)
for any θ.

Based on Theorems 2.3 and 2.4, we will develop an algorithm to search for a solution
of problem (1.5) by solving a sequence of piecewise quadratical programming problems.

3. Penalty Algorithm Based on Conjugate Gradient Method

Among all methods for the unconstrained optimization problems, the conjugate gradient
method is regarded as one of the most powerful approaches due to its smaller storage
requirements and computation cost. Its priorities over other methods have been addressed
in many literatures. For example, in [27, 32, 34–38], the global convergence theory and the
detailed numerical performances on the conjugate gradient methods have been extensively
investigated.

Since the number of the possible selected securities in the investment management is
large and the matrix Q(x; θ) may be dense, it is natura that the conjugate gradient method is
selected to find the minimizer of F for some given θ. However, it is noted that (2.7) is not a
classical quadratic function. The standard procedures of minimizing a quadratic function can
not be directly employed. To develop a new algorithm, we first propose an rule of updating
the coefficients in F.
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Regarding the coefficients of the quadratic terms in

θ

2

[
‖min(x − a, 0)‖2 + ‖min(b − x, 0)‖2

]
, (3.1)

we modify Q = (qij) according to the following update rule:

qij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qij , if i /= j,

qii, if i = j, ai ≤ xi ≤ bi,
(
qii + θ

)
, if i = j, ai > xi or xi > bi.

(3.2)

Regarding the coefficients of the linear terms in

θ

2

[
‖min(x − a, 0)‖2 + ‖min(b − x, 0)‖2

]
, (3.3)

we modify c = (ci) according to the following update rule:

ci =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ci, if ai ≤ xi ≤ bi,

(ci − θai), if xi < ai,

(ci − θbi), if xi > bi.

(3.4)

Define

Q � Q + θeeT , c � c − θe. (3.5)

The conjugate gradient method will be employed into an ordinary minimization of quadratic
function:

minF(x; θ) = c0 + cTx +
1
2
xTQx, (3.6)

where θ is a given parameter. It is easy to see that

∇Fx(x; θ) = Qx + c. (3.7)

Although there exist several variants on the conjugate gradient method, the
fundamental computing procedures for the solution of (3.6) include the following two steps.
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(1) At the current iterate point x(l), determinate a search direction:

d(l) =

⎧
⎨

⎩
−
(
Qx(0) + c

)
for l = 0,

−
(
Qx(l) + c

)
+ βld

(l−1) for l ≥ 1,
(3.8)

where βl is chosen such that d(l) is a conjugate direction of d(l−1) with respect to the matrixQ.

(2) Along the direction d(l), choose a step size αl such that, at the new iterate point

x(l+1) = x(l) + αld
(l), (3.9)

the absolute value of the function F(·; θ) decreases sufficiently.
The following lemma presents a method to determine the search direction.

Lemma 3.1. If

βl =

(
Qx(l) + c

)T
Qd(l−1)

(
d(l−1))TQd(l−1)

, (3.10)

d(l) = −
(
Qx(l) + c

)
+ βld

(l−1), (3.11)

then d(l) in (3.8) is a conjugate direction of d(l−1) with respect to Q.

Proof. Owing to

(
d(l)
)T

Qd(l−1) =
(
−
(
Qx(l) + c

)
+ βld

(l−1)
)T

Qd(l−1)

=

(
−(Qx(l) + c) +

(Qx(l) + c)TQd(l−1)

(d(l−1))TQd(l−1)
d(l−1)

)T

Qd(l−1)

= 0,

(3.12)

the desired result is obtained.

Actually, the formula (3.10) is called HS method.
In the case that the step size αl is chosen by exact linear search along the direction d(l),

that is,

αl = −

(
Qx(l) + c

)T
d(l)

(
d(l)
)T
Qd(l)

, (3.13)

we have the following global convergence theorem.
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Theorem 3.2. Let x(0) be an arbitrary initial vector. Let {x(l), l = 1, 2, . . .} be a sequence generated by
the conjugate gradient algorithm defined by (3.8)–(3.13). Then, either

lim
l→+∞

F
(
x(l); θ

)
= −∞, (3.14)

or

lim inf∇xF
(
x(l); θ

)
= 0. (3.15)

In particular, if x∗ is an accumulation point of the sequence {x(l) : l = 1, 2, . . .}, then x∗ is a
global minimizer of F(·; θ).

Remark 3.3. If βl is computed by

βl =

∥∥∥Qx(l) + c
∥∥∥
2

∥∥∥Qx(l−1) + c
∥∥∥
2
, (3.16)

then the results in Theorem 3.2 still hold. Equation (3.16) is called FR method.

Based on the discussion above, we now come to develop a penalty algorithm based on
conjugate gradient method in the last of this section.

Algorithm 1 (Penalty Algorithm Based on Conjugate Gradient Method).

Step 0 (Initialization). Given constant scalars θ > 1, λ ∈ [0, 1], δ > 0, ε > 0 and ρ. Input the
expected return vector μ, and compute Q and c. Choose an initial solution x(0). Set k := 0,
l := 0, and x(l) := x(k).

Step 1 (Reformulation). If

∥∥∥Qx(l) + c
∥∥∥ ≤ ε, (3.17)

then set

x(k) := x(l), (3.18)

and go to Step 4; otherwise, go to Step 2.

Step 2 (Search Direction). Compute the search direction d(l) by (3.8) and (3.10).

Step 3 (Exact Line Search). Compute αl by (3.13), and update

x(l) :=
(
x(l) + αld

(l)
)
. (3.19)

Return to Step 1.
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Table 1: Numerical performance of Algorithm 1.

Problem n CPU of HS CPU of FR k θ P(x∗; θ∗)
1 10 1′′ 1′′ 3 104 2.5652e − 005
2 20 1′′ 8′′ 3 104 1.3314e − 005
3 30 1′′ 5′′ 3 104 5.9817e − 005
4 40 4′′ 5′8′′ 4 105 1.1302e − 005
5 50 2′′ 11′′ 4 105 2.4787e − 005
6 60 2′′ 46′′ 3 104 8.5817e − 005
7 70 4′′ 12′′ 4 105 1.7759e − 005
8 80 4′′ 1′43′′ 4 105 2.8436e − 005
9 90 2′′ 1′26′′ 4 105 9.6836e − 005
10 100 3′′ 6′48′′ 4 105 4.8977e − 005

Step 4 (Feasibility Test). Check feasibility of x(k) in problem (2.2). If

P
(
x(k); θ

)
≤ δ, (3.20)

the algorithm terminates; otherwise, go to Step 5.

Step 5 (Update). Set l := 0, x(l) := x(k), θ := ρθ. At the new iterate point x(k), modify the matrix
Q and the vector c by (3.2) and (3.4), respectively. Set k := k + 1, and return to Step 1.

Remark 3.4. (1) In Algorithm 1, the index k denotes the number of updating penalty
parameter, and l denotes the number of iterations of conjugate gradient method for
unconstrained subproblem (3.6).

(2) For some fixed θ, it is easy to see that the condition

P
(
x(k); θ

)
=

θ(k)

2

[(
eTx(k) − 1

)2
+
∥∥∥min

(
x(k) − a, 0

)∥∥∥
2
+
∥∥∥min

(
b − x(k), 0

)∥∥∥
2
]
≤ δ (3.21)

implies that x(k) is feasible. From Theorem 2.3, it leads that x(k) is a global minimizer of the
original problem (1.5) if x(k) is a global minimizer of problem (3.6).

4. Numerical Experiments

In this section, we are going to test the effectiveness of Algorithm 1. All the test problems
come from the real stockmarket in China, in 2007. The computer procedures are implemented
on MATLAB 6.5.

In our numerical experiments, the initial solution is chosen to satisfy

eTx(0) = 1, (4.1)
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Table 2: Optimal solutions of the ten problems.

the optimal solution x∗

Problem 1 x∗(3) = 0.6691;x∗(6) = 0.3311;
other components of x∗ are zeros

Problem 2 x∗(18) = 1.0000;
other components of x∗ are zeros

Problem 3 x∗(4) = 0.6985;x∗(28) = 0.3021;
other components of x∗ are zeros

Problem 4 x∗(38) = 1.0000;
other components of x∗ are zeros

Problem 5 x∗(38) = 0.8859;x∗(49) = 0.1142;
other components of x∗ are zeros

Problem 6 x∗(14) = 1.0000;
other components of x∗ are zeros

Problem 7 x∗(51) = 0.8486;x∗(61) = 0.1516;
other components of x∗ are zeros

Problem 8 x∗(21) = 0.1175;x∗(78) = 0.8827;
other components of x∗ are zeros

Problem 9 x∗(9) = 0.2215;x∗(25) = 0.6690;
other components of x∗ are zeros

Problem 10 x∗(67) = 0.3086;x∗(79) = 0.5138;x∗(97) = 0.1797;
other components of x∗ are zeros

the bound vector a is a vector of all zeros, and b is a vector of all ones. We take the initial
penalty parameter θ = 10 and the aversion coefficient λ = 0.5. The tolerance of error is taken
as

ε = 10−7, δ = 10−4. (4.2)

We implement Algorithm 1 to solve ten real problems. Each of them has a different
dimension ranging from 10 to 100. In these problems, the expected return rates of each stock
come from the monthly data in the stock market of China, in 2007. In Table 3 , we list the data
used to form a real problem whose size of dimension is 30.

In Table 1, we report the numerical behavior of Algorithm 1 for all ten problems.
In Table 1, n is the dimensional size of each problem; the third and the forth columns

report the CPU time when βl is evaluated by HS method and FR method, respectively. k
indicates the number of updating penalty parameter, θ is the penalty parameter, and P(x∗; θ∗)
denotes the value of penalty term.

In Table 2, we list the obtained optimal solution for each problem.

5. Final Remarks

In this paper, the biobjectives optimization model of portfolio management was reformulated
as an unconstrained minimization problem. We also presented the properties of the obtained
quadratic function.
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Table 3: The return rates collected from the stock market in China, 2007.

1 2 3 4 5 6 7 8 9 10 11 12

No.1 0.4600 0.1900 0.1800 0.1130 0.2400 0.4600 0.4200 0.1500 0.1700 0.1140 0.2100 0.4200

No.2 0.6420 0.6560 0.6630 0.6990 0.6080 0.5420 0.6210 0.5550 0.6590 0.5810 0.6850 0.6210

No.3 0.1190 0.0590 0.2100 0.1100 0.1200 0.1190 0.1280 0.0580 0.2100 0.1100 0.1300 0.1280

No.4 0.0800 −0.0350 −0.2540 0.0830 0.0960 0.0800 0.1000 −0.0340 −0.2440 0.1100 0.1200 0.1000

No.5 0.7170 0.0940 0.4400 0.1430 0.6880 0.7170 0.7080 0.0190 0.3100 0.1470 0.6810 0.7080

No.6 0.0151 0.0105 0.0749 0.0081 0.0133 0.0151 0.0179 0.0083 0.0309 0.0090 0.1390 0.0179

No.7 0.2530 0.2430 0.3100 0.0480 0.1500 0.2530 0.2470 0.2440 0.3000 0.0480 0.1500 0.2470

No.8 0.3400 0.3006 0.3500 0.2280 0.4800 0.3400 0.3400 0.3026 0.3500 0.2270 0.4800 0.3400

No.9 0.0804 0.0579 0.1190 0.0420 0.0600 0.0804 0.0833 0.0597 0.1070 0.0430 0.0600 0.0833

No.10 0.0360 0.0230 0.0300 0.0140 0.0360 0.0360 0.0740 0.0210 0.0420 0.0150 0.0540 0.0740

No.11 0.0050 0.0130 0.0234 0.0020 0.0020 0.0050 0.0046 0.0130 0.0187 0.0020 0.0014 0.0046

No.12 0.2897 0.3100 0.4303 0.1153 0.1930 0.2897 0.2893 0.3200 0.3893 0.1151 0.1927 0.2893

No.13 0.7690 0.8060 0.9050 0.5340 0.4980 0.7690 0.7670 0.8090 0.8600 0.4350 0.5700 0.7670

No.14 0.0160 0.0110 0.0258 0.0006 0.0050 0.0160 −0.0230 0.0170 0.0171 −0.0242 −0.0220 −0.0230
No.15 0.0820 0.0370 0.0640 0.0200 0.0550 0.0820 0.0770 0.0370 0.0690 0.0200 0.0490 0.0770

No.16 0.4714 0.3607 0.6000 0.1275 0.2700 0.4714 0.4295 0.3585 0.5700 0.1275 0.2600 0.4295

No.17 0.2280 0.0950 0.1240 0.0820 0.1650 0.2280 0.2150 0.0970 0.1250 0.0812 0.1520 0.2150

No.18 0.0107 0.0053 0.0120 0.0040 0.0070 0.0107 0.0108 0.0416 −0.0400 0.0040 0.0120 0.0108

No.19 0.1400 0.2000 0.2400 0.0518 0.1100 0.1400 0.1400 0.2000 0.2300 0.0512 0.1200 0.1400

No.20 0.1500 0.1600 0.2100 0.0400 0.1100 0.1500 0.1500 0.1500 0.2000 0.0400 0.1100 0.1500

No.21 0.9850 1.3137 1.3200 0.2567 0.6100 0.9850 0.8130 1.3179 1.2900 0.1336 0.4300 0.8130

No.22 0.4717 0.4800 0.5730 0.0150 0.4271 0.4717 0.4285 0.2500 0.2338 0.0130 0.3816 0.4285

No.23 0.2500 0.1250 0.3300 0.0780 0.2000 0.2500 0.2400 0.1260 0.3400 0.0770 0.2000 0.2400

No.24 0.0310 0.0600 0.0880 0.0060 0.0300 0.0310 0.0240 0.0600 0.0950 0.0060 0.0190 0.0240

No.25 0.1190 0.0590 0.2100 0.1100 0.1200 0.1190 0.1280 0.0580 0.2100 0.1100 0.1300 0.1280

No.26 0.0110 0.0139 0.0140 0.0040 0.0090 0.0110 0.0020 0.0137 0.0080 0.0010 0.0010 0.0020

No.27 0.0100 0.0640 0.0515 −0.0350 0.0040 0.0100 −0.0700 0.0630 −0.0061 −0.0690 −0.0733 −0.0700
No.28 0.2680 0.2770 0.4320 0.0230 0.1900 0.2680 0.2680 0.2740 0.4320 0.0220 0.1880 0.2680

No.29 0.0061 −0.0060 −0.6742 0.0033 0.0050 0.0061 0.0131 −0.0220 −0.4474 0.0039 0.0099 0.0131

No.30 0.0600 −0.2200 −2.2300 0.0250 0.0400 0.0600 0.0450 −0.0100 −1.5700 0.0080 0.0300 0.0450

Regarding the features of the optimization models in portfolio management, a class of
penalty algorithms based on the conjugate gradient method was developed. The numerical
performance of the proposed algorithm in solving the real problems verifies its effectiveness.

Acknowledgments

The authors are grateful to the editors and the anonymous three referees for their suggestions,
which have greatly improved the presentation of this paper. This work is supported by the
National Natural Science Fund of China (grant no.60804037) and the project for Excellent
Talent of New Century, Ministry of Education, China(grant no.NCET-07-0864).



Journal of Inequalities and Applications 15

References

[1] H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, pp. 77–91, 1952.
[2] Y. Simaan, “Estimation risk in portfolio selection: the mean variance model versus the mean absolute

deviation model,” Management Science, vol. 43, pp. 1437–1446, 1997.
[3] J. O. Williams, “Maximizing the probability of achieving investment goals,” Journal of Portfolio

Management, vol. 24, pp. 77–81, 1997.
[4] M. J. Best and H. Jaroslava, “The efficient frontier for bounded assets,” Mathematical Methods of

Operations Research, vol. 52, no. 2, pp. 195–212, 2000.
[5] H. Konno and K. Suzuki, “A mean-variance-skewness optimization model,” Journal of Operations

Research Society of Japan, vol. 38, pp. 137–187, 1995.
[6] A. Yoshimoto, “The mean-variance approach to portfolio optimization subject to transaction costs,”

Journal of the Operations Research Society of Japan, vol. 39, no. 1, pp. 99–117, 1996.
[7] X. Cai, K. L. Teo, X. Yang, and X. Y. Zhou, “Portfolio optimization under a minimax rule,”Management

Science, vol. 46, no. 7, pp. 957–972, 2000.
[8] X. T. Deng, Z. F. Li, and S. Y. Wang, “A minimax portfolio selection strategy with equilibrium,”

European Journal of Operational Research, vol. 166, no. 1, pp. 278–292, 2005.
[9] S. Giove, S. Funari, and C. Nardelli, “An interval portfolio selection problem based on regret

function,” European Journal of Operational Research, vol. 170, no. 1, pp. 253–264, 2006.
[10] M. Ida, “Solutions for the portfolio selection problem with interval and fuzzy coefficients,” Reliable

Computing, vol. 10, no. 5, pp. 389–400, 2004.
[11] K. K. Lai, S. Y. Wang, J. P. Xu, S. S. Zhu, and Y. Fang, “A class of linear interval programming problems

and its application to portfolio selection,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 698–
704, 2002.

[12] M. A. Parra, A. B. Terol, and M. V. R. Uria, “A fuzzy goal programming approach to portfolio
selection,” European Journal of Operational Research, vol. 133, no. 2, pp. 287–297, 2001.

[13] W. G. Zhang and Z. K. Nie, “On admissible efficient portfolio selection problem,” Applied Mathematics
and Computation, vol. 159, pp. 357–371, 2004.

[14] C. Carlsson, R. Fullér, and P. Majlender, “A possibilistic approach to selecting portfolios with highest
utility score,” Fuzzy Sets and Systems, vol. 131, no. 1, pp. 13–21, 2002.

[15] H. Tanaka and P. Guo, “Portfolio selection based on upper and lower exponential possibility
distributions,” European Journal of Operational Research, vol. 114, pp. 115–126, 1999.

[16] X. X. Huang, “Fuzzy chance-constrained portfolio selection,” Applied Mathematics and Computation,
vol. 177, no. 2, pp. 500–507, 2006.

[17] X. X. Huang, “Two new models for portfolio selection with stochastic returns taking fuzzy
information,” European Journal of Operational Research, vol. 180, no. 1, pp. 396–405, 2007.

[18] M. J. Best and R. R. Grauer, “The efficient set mathematics when mean-variance problems are subject
to general linear constrains,” Journal of Economics and Business, vol. 42, pp. 105–120, 1990.

[19] J. S. Pang, “A new and efficient algorithm for a class of portfolio selection problems,” Operations
Research, vol. 28, no. 3, part 2, pp. 754–767, 1980.

[20] N. Kawadai and H. Konno, “Solving large scale mean-variance models with dense non-factorable
covariance matrices,” Journal of the Operations Research Society of Japan, vol. 44, no. 3, pp. 251–260,
2001.

[21] A. F. Perold, “Large-scale portfolio optimization,” Management Science, vol. 30, no. 10, pp. 1143–1160,
1984.

[22] W. F. Sharpe, Portfolio Theory and Capital Markets, McGraw-Hil, New York, NY, USA, 1970.
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