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Two adjacent recursive processes converging to the mean value of a real-valued convex function
are given. Refinements of the Hermite-Hadamard inequality are obtained. Some applications to
the special means are discussed. A brief extension for convex mappings with variables in a linear
space is also provided.

1. Introduction

Let C be a nonempty convex subset of R and let f : C → R be a convex function. For a, b ∈ C,
the following double inequality

f

(
a + b

2

)
≤ 1

b − a

∫b

a

f(x)dx ≤ f(a) + f(b)
2

, (1.1)

is known in the literature as the Hermite-Hadamard inequality for convex functions. Such
inequality is very useful in many mathematical contexts and contributes as a tool for
establishing some interesting estimations.

In recent few years, many authors have been interested to give some refinements and
extensions of the Hermite-Hadamard inequality (1.1), [1–4]. Dragomir [1] gave a refinement
of the left side of (1.1) as summarized in the next result.
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Theorem 1.1. Let f : [a, b] → R be a convex function and letH : [0, 1] → R be defined by

H(t) :=
1

b − a

∫b

a

f

(
tx + (1 − t)

a + b

2

)
dx. (1.2)

ThenH is convex increasing on [0, 1], and for all t ∈ [0, 1], one has

f

(
a + b

2

)
= H(0) ≤ H(t) ≤ H(1) =

1
b − a

∫b

a

f(x)dx. (1.3)

Yang and Hong [3] gave a refinement of the right side of (1.1) as itemized below.

Theorem 1.2. Let f : [a, b] → R be a convex function and let F : [0, 1] → R be defined by

F(t) :=
1

2(b − a)

∫b

a

[
f

((
1 + t

2

)
a +

(
1 − t

2

)
x

)
+ f

((
1 + t

2

)
b +

(
1 − t

2

)
x

)]
dx. (1.4)

Then F is convex increasing on [0, 1], and for all t ∈ [0, 1], one has

1
b − a

∫b

a

f(x)dx = F(0) ≤ F(t) ≤ F(1) =
f(a) + f(b)

2
. (1.5)

From the above theorems we immediately deduce the following.

Corollary 1.3. With the above, there holds

H(t) ≤ 1
b − a

∫b

a

f(x)dx ≤ F(s), (1.6)

for all t, s ∈ [0, 1], with

inf
0≤t≤1

F(t) = sup
0≤t≤1

H(t) =
1

b − a

∫b

a

f(x)dx. (1.7)

The following refinement of (1.1) is also well-known.

Theorem 1.4. With the above, the following double inequality holds

(
f

(
a + b

2

)
≤
)
1
2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))

≤ 1
b − a

∫b

a

f(x)dx ≤ 1
2

(
f

(
a + b

2

)
+
f(a) + f(b)

2

)(
≤ f(a) + f(b)

2

)
.

(1.8)

For the sake of completeness and in order to explain the key idea of our approach to
the reader we will reproduce here the proof of the above known theorem.
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Proof. Applying (1.1) successively in the subintervals [a, (a+b)/2] and [(a+b)/2, b]we obtain

f

(
3a + b

4

)
≤ 2

b − a

∫ (a+b)/2

a

f(x)dx ≤ 1
2

(
f(a) + f

(
a + b

2

))
,

f

(
a + 3b

4

)
≤ 2

b − a

∫b

(a+b)/2
f(x)dx ≤ 1

2

(
f

(
a + b

2

)
+ f(b)

)
.

(1.9)

The desired result (1.8) follows by adding the above obtained inequalities (1.9).

In [4] Zabandan introduced an improvement of Theorem 1.4 as recited in the
following. Let (xn) and (yn) be the sequences defined by

xn =
1
2n

2n∑
i=1

f

(
a +

(
i − 1

2

)
b − a

2n

)
,

yn =
1
2n

[
f(a) + f(b)

2
+

2n−1∑
i=1

f

((
1 − i

2n

)
a +

i

2n
b

) ]
.

(1.10)

Theorem 1.5. With the above, one has the following inequalities:

f

(
a + b

2

)
= x0 ≤ · · · ≤ xn ≤ 1

b − a

∫b

a

f(x)dx ≤ yn ≤ · · · ≤ y0 =
f(a) + f(b)

2
(1.11)

with the relationship

inf
n≥0

yn = sup
n≥0

xn =
1

b − a

∫b

a

f(x)dx. (1.12)

Notation. Throughout this paper, and for the sake of presentation, the above expressions
H(t) and F(t) will be denoted by Ht(a, b) and Ft(a, b), and the sequences (xn), (yn) by
xn(a, b), yn(a, b), respectively. Further, the middle member of inequality (1.1), usually known
by the mean value of f in [a, b], will be denoted by mf(a, b), that is,

mf(a, b) :=
1

b − a

∫b

a

f(x)dx. (1.13)

2. Iterative Refinements of the Hermite-Hadamard Inequality

Let C be a nonempty convex subset of R and let f : C → R be a convex function. As already
pointed out, our fundamental goal in the present section is to give some iterative refinements
of (1.1) containing those recalled in the above. We start with our general viewpoint.
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2.1. General Approach

Examining the proof of Theorem 1.4 we observe that the same procedure can be again
recursively applied. More precisely, let us start with the next double inequality

∀a, b ∈ C, Φ0(a, b) ≤ mf(a, b) :=
1

b − a

∫b

a

f(x)dx ≤ Ψ0(a, b), (2.1)

where Φ0,Ψ0 : C × C → R are two given functions. Assume that, by the same procedure as
in the proof of Theorem 1.4 we have

Φ0(a, b) ≤ Φ1(a, b) ≤ mf(a, b) ≤ Ψ1(a, b) ≤ Ψ0(a, b), (2.2)

with the following relationships

Φ1(a, b) =
1
2
Φ0

(
a,

a + b

2

)
+
1
2
Φ0

(
a + b

2
, b

)
,

Ψ1(a, b) =
1
2
Ψ0

(
a,

a + b

2

)
+
1
2
Ψ0

(
a + b

2
, b

)
.

(2.3)

Reiterating successively the same, we then construct two sequences, denoted by
Φn(a, b) and Ψn(a, b), satisfying the following inequalities:

Φn(a, b) ≤ Φn+1(a, b) ≤ mf(a, b) ≤ Ψn+1(a, b) ≤ Ψn(a, b), (2.4)

where Φn(a, b) and Ψn(a, b) are defined by the recursive relationships

Φn+1(a, b) =
1
2
Φn

(
a,

a + b

2

)
+
1
2
Φn

(
a + b

2
, b

)
,

Ψn+1(a, b) =
1
2
Ψn

(
a,

a + b

2

)
+
1
2
Ψn

(
a + b

2
, b

)
.

(2.5)

The initial data Φ0(a, b) and Ψ0(a, b), which of course depend generally of the convex
function f , are for the moment upper and lower bounds of inequality (1.1), respectively, and
satisfying

∀a, b ∈ C, Φ0(a, b) ≤ Φ1(a, b), Ψ1(a, b) ≤ Ψ0(a, b). (2.6)

Summarizing the previous approach, we may state the following results.

Theorem 2.1. With the above, the sequence (Φn(a, b))n is increasing and (Ψn(a, b))n is a decreasing
one. Moreover, the following inequalities:

Φ0(a, b) ≤ · · · ≤ Φn(a, b) ≤ mf(a, b) ≤ Ψn(a, b) ≤ · · · ≤ Ψ0(a, b), (2.7)

hold true for all n ≥ 0.
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Proof. Follows from the construction of Φn(a, b) and Ψn(a, b). It is also possible to prove the
same by using the above recursive relationships defining Φn(a, b) and Ψn(a, b). The proof is
complete.

Corollary 2.2. The sequences (Φn(a, b))n and (Ψn(a, b))n both converge and their limits are,
respectively, the lower and upper bounds of mf(a, b), that is,

sup
n≥0

Φn(a, b) ≤ mf(a, b) ≤ inf
n≥0

Ψn(a, b). (2.8)

Proof. According to inequalities (2.7), the sequence (Φn(a, b))n is increasing upper bounded
by Ψ0(a, b) while (Ψn(a, b))n is decreasing lower bounded by Φ0(a, b). It follows that
(Φn(a, b))n and (Ψn(a, b))n both converge. Passing to the limits in inequalities (2.7)we obtain
(2.8), which completes the proof.

Now, we will observe a question arising naturally from the above study: what is the
explicit form of Φn(a, b) (and Ψn(a, b)) in terms of n, a, b? The answer to this is given in the
following result.

Theorem 2.3. With the above, for all n ≥ 1, there hold

Φn(a, b) =
1
2n

2n∑
i=1

Φ0

(
(2n − i + 1)a + (i − 1)b

2n
,
(2n − i)a + ib

2n

)
,

Ψn(a, b) =
1
2n

2n∑
i=1

Ψ0

(
(2n − i + 1)a + (i − 1)b

2n
,
(2n − i)a + ib

2n

)
.

(2.9)

Proof. Of course, it is sufficient to show the first formulae which follows from a simple
induction with a manipulation on the summation indices. We omit the routine details.

After this, we can put the following question: what are the explicit limits of the
sequences (Φn(a, b))n and (Ψn(a, b))n? Before giving an answer to this question in a special
case, we may state the following examples.

Example 2.4. Of course, the first choice of Φ0(a, b) and Ψ0(a, b) is to take the upper and lower
bounds of (1.1), respectively, that is,

Φ0(a, b) = f

(
a + b

2

)
, Ψ0(a, b) =

f(a) + f(b)
2

. (2.10)

With this choice, we have

Φ1(a, b) =
1
2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))
,

Ψ1(a, b) =
1
2

(
f

(
a + b

2

)
+
f(a) + f(b)

2

)
,

(2.11)
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which, respectively, correspond to the lower and upper bounds of (1.8). By convexity of
f , it is easy to see that the inequalities (2.6) are satisfied. In this case we will prove in the
next subsection that (Φn(a, b))n and (Ψn(a, b))n coincide with (xn(a, b))n and (yn(a, b))n,
respectively, and so both converge tomf(a, b).

Example 2.5. Following Corollary 1.3 we can take

Φ0(a, b) = Ht(a, b), Ψ0(a, b) = Fs(a, b), (2.12)

for fixed t, s ∈ [0, 1]. It is not hard to verify that the inequalities (2.6) are here satisfied. In this
case, our above approach defines us two sequences which depend on the variable t ∈ [0, 1].
For this, such sequences of functions will be denoted by (Φn,t)n and (Ψn,t)n. This example,
which contains the above one, will be detailed in the following.

2.2. Case of Example 2.4

Choosing Φ0(a, b) and Ψ0(a, b) as in Example 2.4, we first state the following result.

Proposition 2.6. With (2.10), one has

Φn(a, b) = xn(a, b),

Ψn(a, b) = yn(a, b),
(2.13)

where xn(a, b) and yn(a, b) are given by (1.10).

Proof. It is a simple verification from formulas (2.9) with (1.10).

Now, we will reproduce to prove that the sequences (Φn(a, b))n and (Ψn(a, b))n both
converge to mf(a, b) by adopting our technical approach. In fact, with (2.10) the sequences
(Φn(a, b))n and (Ψn(a, b))n can be relied by a unique interesting relationship which, as we
will see later, will simplify the corresponding proofs. Precisely, we may state the following
result.

Proposition 2.7. Assume that, for a < b, one has (2.10). Then the following relation holds:

Ψn+1(a, b) =
1
2
Ψn(a, b) +

1
2
Φn(a, b). (2.14)

Proof. It is a simple induction on n and we omit the details for the reader.

Now we are in position to state the following result which gives an answer to the
above question when Φ0(a, b) and Ψ0(a, b) are chosen as in Example 2.4.

Theorem 2.8. With (2.10), the sequences (Φn(a, b))n and (Ψn(a, b))n are adjacent with the limit

lim
n

Φn(a, b) = lim
n

Ψn(a, b) = mf(a, b), (2.15)
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and the following error-estimations hold

0 ≤ mf(a, b) −Φn(a, b) ≤ Ψn(a, b) −mf(a, b) ≤ 1
2n

(
f(a) + f(b)

2
− f

(
a + b

2

))
. (2.16)

Proof. According to Corollary 2.2, the sequences (Φn(a, b))n and (Ψn(a, b))n both converge
and by the relation (2.14) their limits are equal. Now, by virtue of (2.14) again we can write

Ψn+1(a, b) −mf(a, b) =
1
2
(
Ψn(a, b) −mf(a, b)

)
+
1
2
(
Φn(a, b) −mf(a, b)

)
. (2.17)

This, with the inequalities (2.7), yields

0 ≤ Ψn+1(a, b) −mf(a, b) ≤ 1
2
(
Ψn(a, b) −mf(a, b)

)
. (2.18)

By a simple mathematical induction, we simultaneously obtain (2.15) and (2.16). Thus
completes the proof.

Remark 2.9. Starting from a general point of view, we have found again Theorem 1.5 under a
new angle and via a technical approach. Furthermore, such approach stems its importance in
what follows.

(i) As the reader can remark it, the proofs are here more simple as that of [4] for
proving the monotonicity and computing the limit of the considered sequences.
See [4, pages 3–5] for such comparison.

(ii) The sequences having mf(a, b) as limit are here defined by simple and recursive
relationships which play interesting role in the theoretical study as in the
computation context.

(iii) Some estimations improving those already stated in the literature are obtained
here. In particular, inequalities (2.16) appear to be new for telling us that, in the
numerical context, the convergence of (Φn(a, b))n and (Ψn(a, b))n tomf(a, b) is with
geometric-speed.

2.3. Case of Example 2.5

As pointed out before, we can take

Φ0,t(a, b) = Ht(a, b), Ψ0,s(a, b) = Fs(a, b), (2.19)

for fixed t, s ∈ [0, 1]. The function sequences Φn,t(a, b) and Ψn,t(a, b) are defined, for all t ∈
[0, 1], by the recursive relationships

Φn+1,t(a, b) =
1
2
Φn,t

(
a,

a + b

2

)
+
1
2
Φn,t

(
a + b

2
, b

)
,

Ψn+1,t(a, b) =
1
2
Ψn,t

(
a,

a + b

2

)
+
1
2
Ψn,t

(
a + b

2
, b

)
.

(2.20)
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By induction, it is not hard to see that the maps t �→ Φn,t(a, b) and t �→ Ψn,t(a, b), for
fixed n ≥ 0, are convex and increasing.

Similarly to the above, we obtain the next result.

Theorem 2.10. With (2.19), the following assertions are met.

(1) The function sequences (Φn,t(a, b))n and (Ψn,t(a, b))n, for fixed t ∈ [0, 1], are, respectively,
monotone increasing and decreasing.

(2) For fixed n ≥ 0, the functions t �→ Φn,t(a, b) and t �→ Ψn,t(a, b) are (convex and) monotonic
increasing.

(3) For all n ≥ 0 and t, s ∈ [0, 1], one has

Φn,t(a, b) ≤ mf(a, b) ≤ Ψn,s(a, b). (2.21)

Proof. (1) By construction, as in the proof of Theorem 2.1.
(2) Comes from the recursive relationships defining Φn,t(a, b) and Ψn,t(a, b).
(3) By construction as in the above.

By virtue of the monotonicity of the sequences (Φn,t(a, b))n, (Ψn,t(a, b))n in a part, and
that of the maps t �→ Φn,t(a, b), t �→ Ψn,t(a, b) in another part, the double iterative-functional
inequality (2.21) yields some improvements of refinements recalled in the above section. In
particular, we immediately find the inequalities (1.3) and (1.6), respectively, by writing

xn(a, b) = Φn,0(a, b) ≤ mf(a, b) ≤ Ψn,1(a, b) = yn(a, b), (2.22)

for all n ≥ 0, and

Ht(a, b) = Φ0,t(a, b) ≤ mf(a, b) ≤ Ψ0,s(a, b) = Fs(a, b), (2.23)

for all t, s ∈ [0, 1].

Open Question. As we have seen, for every t ∈ [0, 1], the sequences (Φn,t(a, b))n and
(Ψn,t(a, b))n both converge. What are their limits? To know if such convergence is uniform
on [0, 1] is not obvious and appears also to be interesting.

3. Applications to Scalar Means

As already pointed out, this section will be devoted to display some applications of the above
theoretical results. For this, we need some additional basic notions about special means.

For two nonnegative real numbers a and b, the arithmetic, geometric, harmonic,
logarithmic, exponential (or identric) means of a and b are, respectively, defined by

A(a, b) =
a + b

2
, G(a, b) =

√
ab, H(a, b) =

2ab
a + b

,

L(a, b) =
a − b

lna − ln b
, a /= b, E(a, b) = 1

e

(
bb

aa

)1/b−a
, a /= b,

(3.1)
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with L(a, a) = E(a, a) = a. The following inequalities are well known in the literature

H(a, b) ≤ G(a, b) ≤ L(a, b) ≤ E(a, b) ≤ A(a, b). (3.2)

When a and b are given, the computations of A(a, b),H(a, b) and G(a, b) are simple while
that of L(a, b) and specially that of E(a, b) are not. So, approaching L(a, b) and E(a, b) by
simple and practical algorithms appears to be interesting. That is the fundamental aim of
what follows. In the following applications, we consider the choice (of Example 2.4),

Φ0(a, b) = f

(
a + b

2

)
, Ψ0(a, b) =

f(a) + f(b)
2

. (3.3)

3.1. Application 1: Approximation of the Logarithmic Mean

Consider the convex function f :]0,+∞[→ R defined by f(x) = 1/x. Preserving the same
notations as in the previous section, the associate sequences (Φn(a, b))n and (Ψn(a, b))n
correspond to the initial data

Φ0(a, b) =
2

a + b
:= (A(a, b))−1, Ψ0(a, b) =

1/a + 1/b
2

=
a + b

2ab
= (H(a, b))−1. (3.4)

Applying the above theoretical result to this particular case we immediately obtain the
following result.

Theorem 3.1. The sequences (Φn(a, b))n and (Ψn(a, b))n, corresponding to f(x) = 1/x, both
converge to (L(a, b))−1 with the next estimation

0 ≤ (L(a, b))−1 −Φn(a, b) ≤ Ψn(a, b) − (L(a, b))−1 ≤ 1
2n

(
(a − b)2

2ab(a + b)

)
, (3.5)

for all n ≥ 0, and the following inequalities hold

H(a, b) ≤ · · · ≤ (Ψn(a, b))
−1 ≤ L(a, b) ≤ (Φn(a, b))

−1 ≤ · · · ≤ A(a, b). (3.6)

The above theorem tells us that L(a, b) containing logarithm can be approached by
an iterative algorithm involving only the elementary operations sum, product and inverse.
Further, such algorithm is simple, recursive and practical for the numerical context, with a
geometric-speed.

3.2. Application 2: Approximation of the Identric Mean

Let f :]0,+∞[→ R be the convex map f(x) = − lnx. Writing explicitly the corresponding
iterative process Ψn(a, b)we see that, for reason of simplicity, we may set

∀n ≥ 0, Θn(a, b) := exp(−Ψn(a, b)). (3.7)
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The auxiliary sequence (Θn(a, b))n is so recursively defined by

Θ0(a, b) =
√
ab, (Θn+1(a, b))

2 = Θn

(
a,

a + b

2

)
Θn

(
a + b

2
, b

)
. (3.8)

As for Ψn(a, b), it is easy to establish by a simple induction that

(Θn+1(a, b))
2 = Θn(a, b)Θ∗

n(a, b), (3.9)

where the dual sequence (Θ∗
n(a, b))n is defined by a similar relationship as (Θn(a, b))n with

the initial dataΘ∗
0(a, b) = (a+b)/2. Our above approach allows us to announce the following

interesting result.

Theorem 3.2. The above sequence (Θn(a, b))n converges to E(a, b) with the estimation

(
2
√
ab

a + b

)1/2n

≤ Θn(a, b)
E(a, b) ≤ 1, (3.10)

and the iterative inequalities hold

√
ab = Θ0(a, b) ≤ · · · ≤ Θn(a, b) ≤ E(a, b) ≤ Θ∗

n(a, b) ≤ · · · ≤ Θ∗
0(a, b) =

a + b

2
. (3.11)

Furthermore, one has

Θn(a, b) =

[√
ab

2n−1∏
i=1

((
1 − i

2n

)
a +

i

2n
b

)]1/2n

. (3.12)

Proof. It is immediate from the above general study. The details are left to the reader.

Combining the inequalities of Theorems 3.1 and 3.2, with the fact that lnx < x for
all x > 0, we simultaneously obtain the known inequalities (3.2). Further, the next result of
convergence

[
2n−1∏
i=1

((
1 − i

2n

)
a +

i

2n
b

)]1/2n

−→ E(a, b) := 1
e

(
bb

aa

)1/b−a
, (3.13)

when n goes to +∞, is not obvious to establish directly. This proves again the interest of this
work and the generality of our approach.

Remark 3.3. The identric mean E(a, b) having a transcendent expression is here approached
by an algorithm, of algebraic type, utile for the theoretical study and simple for the numerical
computation. Further as well-known, to define a non monotone operator mean, via Kubo-
Ando theory [5], from the scalar case is not possible. Thus, our approach here could be the
key idea for defining the identric mean involving operator and functional variables.
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4. Extension for Real-Valued Function with Vector Variable

As well known, the Hermite-Hadamard inequality has an extension for real-valued convex
functions with variables in a linear vector space E in the following sense: let C ⊂ E be a
nonempty convex of E and let f : C → R be a convex function, then for all x, y ∈ C there
holds

f

(
x + y

2

)
≤
∫1

0
f
(
(1 − t)x + ty

)
dt ≤ f(x) + f

(
y
)

2
. (4.1)

In particular, in every linear normed space (E, ‖ · ‖), we have

∥∥∥∥x + y

2

∥∥∥∥ ≤
∫1

0

∥∥(1 − t)x + ty
∥∥dt ≤ ‖x‖ + ∥∥y∥∥

2
,

∥∥∥∥x + y

2

∥∥∥∥
2

≤
∫1

0

∥∥(1 − t)x + ty
∥∥2

dt ≤ ‖x‖2 + ∥∥y∥∥2

2
.

(4.2)

In general, the computation of the middle side integrals of the above inequalities is
not always possible. So, approaching such integrals by recursive and practical algorithms
appears to be very interesting. Our aim in this section is to state briefly an analogue of our
above approach, with its related fundamental results, for convex functions f : C → R. We
start with the analogue of Theorem 1.4.

Theorem 4.1. Let f : C → R be a convex function. Then, for all x, y ∈ C, there holds

Φ1
(
x, y

) ≤
∫1

0
f
(
(1 − t)x + ty

)
dt ≤ Ψ1

(
x, y

)
, (4.3)

where Φ1(x, y) and Ψ1(x, y) are given by

Φ1
(
x, y

)
=

1
2

(
f

(
3x + y

4

)
+ f

(
x + 3y

4

))
,

Ψ1
(
x, y

)
=

1
2

(
f

(
x + y

2

)
+
f(x) + f

(
y
)

2

)
.

(4.4)

Proof. On making the change of variable u = 2t,we have

∫1/2

0
f
(
(1 − t)x + ty

)
dt =

1
2

∫1

0
f

(
(1 − u)x + u

x + y

2

)
du (4.5)

while for the change of variable u = 2t − 1 we have

∫1

1/2
f
(
(1 − t)x + ty

)
dt =

1
2

∫1

0
f

(
(1 − u)

x + y

2
+ uy

)
du. (4.6)



12 Journal of Inequalities and Applications

Now, applying the inequality (4.1), we have

f

(
3x + y

4

)
≤
∫1

0
f

(
(1 − u)x + u

x + y

2

)
du ≤ 1

2

[
f(x) + f

(
x + y

2

)]
,

f

(
x + 3y

4

)
≤
∫1

0
f

(
(1 − u)

x + y

2
+ uy

)
du ≤ 1

2

[
f

(
x + y

2

)
+ f

(
y
)]
.

(4.7)

If we divide both inequalities with 2 and add the obtained results we deduce the desired
double inequality (4.3).

Similarly, we set

mf

(
x, y

)
=
∫1

0
f
(
(1 − t)x + ty

)
dt. (4.8)

Now, the extension of our above study is itemized in the following statement.

Theorem 4.2. Let C be a nonempty convex subset of a linear space E and f : C → R a convex
function. For all x, y ∈ C, the sequences (Φn(x, y))n and (Ψn(x, y))n defined by

Φn+1
(
x, y

)
=

1
2
Φn

(
x,

x + y

2

)
+
1
2
Φn

(
x + y

2
, y

)
, Φ0

(
x, y

)
= f

(
x + y

2

)
,

Ψn+1
(
x, y

)
=

1
2
Ψn

(
x,

x + y

2

)
+
1
2
Ψn

(
x + y

2
, y

)
, Ψ0

(
x, y

)
=

f(x) + f
(
y
)

2
,

(4.9)

are, respectively, monotonic increasing and decreasing and both converge to mf(x, y) with the
following estimation

0 ≤ mf

(
x, y

) −Φn

(
x, y

) ≤ Ψn

(
x, y

) −mf

(
x, y

) ≤ 1
2n

(
f(x) + f

(
y
)

2
− f

(
x + y

2

))
. (4.10)

Proof. Similar to that of real variables. We omit the details here.

Of course, the sequences (Φn(x, y))n and (Ψn(x, y))n are relied by similar relation as
(2.14) and explicitly given by analogue expressions of (2.9). In particular, we may state the
following.

Example 4.3. Let p ≥ 1 be a real number and let f : E → R be the convex function defined by
f(x) = ‖x‖p. In this case, Φn(x, y) and Ψn(x, y) are given by

Φn

(
x, y

)
=

1
2n(p+1)+p

2n∑
i=1

∥∥∥(2n+1 − 2i + 1
)
x + (2i − 1)y

∥∥∥p
,

Ψn

(
x, y

)
=

1
2n(p+1)+1

2n∑
i=1

(∥∥(2n − i + 1)x + (i − 1)y
∥∥p +

∥∥(2n − i)x + iy
∥∥p)

.

(4.11)
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with the following inequalities:

0 ≤
∫1

0

∥∥(1 − t)x + ty
∥∥p

dt −Φn

(
x, y

) ≤ Ψn

(
x, y

) −
∫1

0

∥∥(1 − t)x + ty
∥∥p

dt

≤ 1
2n

(
‖x‖p + ∥∥y∥∥p

2
−
∥∥∥∥x + y

2

∥∥∥∥
p
)
.

(4.12)

Remark 4.4. The Hermite-Hadamard inequality, together with some associate refinements,
can be extended for nonreal-valued maps that are convex with respect to a given (partial)
ordering. In this direction, we indicate the recent paper [6].
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