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We introduce and study a new system of random nonlinear generalized variational inclusions
involving random fuzzy mappings and set-valued mappings with H(·, ·)-monotonicity in two
Hilbert spaces and develop a new algorithm which produces four random iterative sequences.
We also discuss the existence of the random solutions to this new kind of system of variational
inclusions and the convergence of the random iterative sequences generated by the algorithm.

1. Introduction

The classic variational inequality problem VI(F, K) is to determine a vector x∗ ∈ K ⊂ Rn,
such that

〈
F(x∗)T , x − x∗

〉
≥ 0, ∀x ∈ K, (1.1)

where F is a given continuous function from K to Rn and K is a given closed convex subset
of the n-dimensional Euclidean space Rn. This is equivalent to find an x∗ ∈ K, such that

0 ∈ F(x∗) +N⊥(x∗), (1.2)

where N⊥ is normal cone operator.
Due to its enormous applications in solving problems arising from the fields of eco-

nomics, mechanics, physical equilibrium analysis, optimization and control, transportation
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equilibrium, and linear or nonlinear programming etcetera, variational inequality and its
generalizations have been extensively studied during the past 40 years. For details, we refer
readers to [1–7] and the references therein.

It is not a surprise that many practical situations occur by chance and so variational
inequalities with random variables/mappings have also been widely studied in the past
decade. For instance, some random variational inequalities and random quasivariational
inequalities problems have been introduced and studied by Chang [8], Chang and Huang
[9, 10], Chang and Zhu [11], Huang [12, 13], Husain et al. [14], Tan et al. [15], Tan [16], and
Yuan [7].

It is well known that one of the most important and interesting problems in the theory
of variational inequalities is to develop efficient and implementable algorithms for solving
variational inequalities and its generalizations. The monotonic properties of associated
operators play essential roles in proving the existence of solutions and the convergence of
sequences generated by iterative algorithms. In 2001, Huang and Fang [17] were the first
to introduce the generalized m-accretive mapping and give the definition of the resolvent
operator for generalized m-accretive mappings in Banach spaces. They also showed some
properties of the resolvent operator for generalized m-accretive mappings. Recently, Fang
and Huang, Verma, and Cho and Lan investigated many generalized operators such as H-
monotone, H-accretive, (H,η)-monotone, (H,η)-accretive, and (A, η)-accretive mappings.
For details, we refer to [6, 17–22] and the references therein. In 2008, Zou and Huang
[23] introduced the H(·, ·)-accretive operator in Banach spaces which provides a unified
framework for the existing H-monotone, (H,η)-monotone, and (A, η)-monotone operators
in Hilbert spaces and H-accretive, (H,η)-accretive, and (A, η)-accretive operators in Banach
spaces.

In 1965, Zadeh [24] introduced the concept of fuzzy sets, which became a cornerstone
of modern fuzzy mathematics. To explore connections among VIs, fuzzy mapping
and random mappings, in 1997, Huang [25] introduced the concept of random fuzzy
mappings and studied the random nonlinear quasicomplementarity problem for random
fuzzy mappings. Later, Huang [26] studied the random generalized nonlinear variational
inclusions for random fuzzy mappings. In 2005, Ahmad and Bazán [27] studied a class of
random generalized nonlinear mixed variational inclusions for random fuzzy mappings and
constructed an iterative algorithm for solving such random problems. For related work in
this hot area, we refer to Ahmad and Farajzadeh [28], Ansari and Yao [29], Chang andHuang
[9, 10], Cho and Huang [30], Cho and Lan [31], Huang [25, 26, 32], Huang et al. [33], and the
references therein.

Motivated and inspired by recent research work mentioned above in this field, in this
paper, we try to inject some new energy into this interesting field by studying on a new kind
of random nonlinear variational inclusions in two Hilbert spaces. We will prove the existence
of random solutions to the system of inclusions and propose an algorithm which produces a
convergent iterative sequence. For a suitable choice of some mappings, we can obtain several
known results [10, 11, 21, 23, 31, 34] as special cases of the main results of this paper.

2. Preliminaries

Throughout this paper, let (Ω,A) be ameasurable space, whereΩ is a set andA is a σ-algebra
over Ω. Let X1 be a separable real Hilbert space endowed with a norm ‖ · ‖X1 and an inner
product 〈·, ·〉X1

. Let X2 be a separable real Hilbert space endowed with a norm ‖ · ‖X2 and an
inner product 〈·, ·〉X2

.
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We denote by D(·, ·) the Hausdorff metric between two nonempty closed bounded
subsets, where the Hausdorff metric between A and B is defined by

D(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
. (2.1)

We denote by B(X1), 2X1 , and CB(X1) the class of Borel σ-fields in X1, and the family
of all nonempty subsets of X1, the family of all nonempty closed bounded subsets of X1.

In this paper, to make it self-contained, we start with the following basic definitions
and similar definitions can also be found in [26, 32, 34].

Definition 2.1. A mapping x1 : Ω → X1 is said to be measurable if for any B ∈ B(X1),

{t ∈ Ω : x(t) ∈ B} ∈ A. (2.2)

Definition 2.2. A mapping T1 : Ω × X1 → X1 is called a random mapping if for any x ∈ X1,
z1(t) = T1(t, x) is measurable.

Definition 2.3. A random mapping T1 : Ω ×X1 → X1 is said to be continuous if for any t ∈ Ω,
T1(t, ·) : X1 → X1 is continuous.

Definition 2.4. A set-valued mapping V1 : Ω → 2X1 is said to be measurable if for any B ∈
B(X1),

V −1
1 (B) = {v ∈ Ω : V1(v) ∩ B /= ∅} ∈ A. (2.3)

Definition 2.5. A mapping u : Ω → X1 is called a measurable selection of a set-valued
measurable mapping U : Ω → 2X1 if u is measurable and for any t ∈ Ω, u(t) ∈ U(t).

Definition 2.6. A set-valued mapping W1 : Ω × X1 → 2X1 is called random set-valued if for
any x1 ∈ X1, W1(·, x1) : Ω → 2X1 is a measurable set valued mapping.

Definition 2.7. A random set-valued mapping W1 : Ω × X1 → CB(X1) is said to be ξE(t)-D-
continuous if there exists a measurable function ξE : Ω → (0,+∞), such that

D(W1(t, x1(t)),W1(t, x2(t))) ≤ ξE(t)‖x1(t) − x2(t)‖X1
, (2.4)

for all t ∈ Ω and x1(t), x2(t) ∈ X1.

Definition 2.8. A set-valuedmappingA : X1 → 2X1 is said to be monotone if for all x1, y1 ∈ X1

and u1 ∈ A(x1), v1 ∈ A(y1),

〈
u1 − v1, x1 − y1

〉
X1

≥ 0. (2.5)

Definition 2.9. Let f1, g1 : X1 → X1 and H1 : X1 ×X1 → X1 be three single-valued mappings
and A : X1 → 2X1 be a set-valued mapping. A is said to be H1(·, ·)-monotone with respect to
operators f1 and g1 if A is monotone and (H1(f1, g1) + λA)(X1) = X1, for every λ > 0.
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Definition 2.10. The inverses of A : X1 → 2X1 and B : X2 → 2X2 are defined as follows,
respectively,

A−1(y) =
{
x ∈ X1 : y ∈ A(x)

}
, ∀y ∈ X1,

B−1(y) =
{
x ∈ X2 : y ∈ B(x)

}
, ∀y ∈ X2.

(2.6)

Definition 2.11. p : Ω ×X1 → X1 is said to be

(1) monotone if

〈
p(t, x1(t)) − p(t, x2(t)), x1(t) − x2(t)

〉
X1

≥ 0, ∀t ∈ Ω, ∀x1(t), x2(t) ∈ X1, (2.7)

(2) strictly monotone if p is monotone and

〈
p(t, x1(t)) − p(t, x2(t)), x1(t) − x2(t)

〉
X1

= 0 ⇐⇒ x1(t) = x2(t), ∀t ∈ Ω, ∀x1(t), x2(t) ∈ X1,

(2.8)

(3) δp(t)-strongly monotone if there exists some measurable function δp : Ω →
(0,+∞), such that

〈
p(t, x1(t)) − p(t, x2(t)), x1(t) − x2(t)

〉
X1

≥ δp(t)‖x1(t) − x2(t)‖2x1
, ∀t ∈ Ω, ∀x1(t), x2(t) ∈ X1,

(2.9)

(4) σp(t)-Lipschitz continuous if there exists some measurable function σp : Ω →
(0,+∞), such that

∥∥p(t, x1(t)) − p(t, x2(t))
∥∥
X1

≤ σp(t)‖x1(t) − x2(t)‖X1
, ∀t ∈ Ω, ∀x1(t), x2(t) ∈ X1. (2.10)

Definition 2.12. A single-valued mapping M : X1 ×X1 ×X2 → X1 is said to be

(1) ζA(t)-strongly monotone with respect to the random single-valued mapping sM :
Ω × X1 → X1 in the first argument if there exists some measurable function ζA :
Ω → (0,+∞), such that

〈M(sM(t, u1(t)), ·, ·) −M(sM(t, u2(t)), ·, ·), u1(t) − u2(t)〉X1
≥ ζA(t)‖u1(t) − u2(t)‖2X1

, (2.11)

for all t ∈ Ω and u1(t), u2(t) ∈ X1,

(2) ξM(t)-Lipschitz continuous with respect to the random single-valued mapping sM :
Ω × X1 → X1 in its first argument if there exists some measurable function ξM :
Ω → (0,+∞), such that

‖M(sM(t, u1(t)), ·, ·) −M(sM(t, u2(t)), ·, ·)‖X1
≤ ξM(t)‖u1(t) − u2(t)‖X1

, (2.12)

for all t ∈ Ω and u1(t), u2(t) ∈ X1,
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(3) βM(t)-Lipschitz continuous with respect to its second argument if there exists some
measurable function βM : Ω → (0,+∞), such that

‖M(·, x1(t), ·) −M(·, x2(t), ·)‖X1
≤ βM(t)‖x1(t) − x2(t)‖X1

, (2.13)

for all t ∈ Ω and x1(t), x2(t) ∈ X1,

(4) ηM(t)-Lipschitz continuous with respect to its third argument if there exists some
measurable function ηM : Ω → (0,+∞) such that

∥∥M(·, ·, y1(t)) −M
(·, ·, y2(t)

)∥∥
X1

≤ ηM(t)
∥∥y1(t) − y2(t)

∥∥
X2
, (2.14)

for all t ∈ Ω and y1(t), y2(t) ∈ X2;

Definition 2.13. Assume that p : Ω ×X1 → X1 is a random single-valued mapping, f1 : X1 →
X1, g1 : X1 → X1, and H1(f1, g1) : X1 → X1 are three single-valued mappings, H1(f1, g1) is
said to be

(1) μA(t)-strongly monotone with respect to the mapping p if there exists some
measurable function μA : Ω → (0,+∞) such that

〈
H1

(
f1
(
p(t, x1(t))

)
, g1

(
p(t, x1(t))

)) −H1
(
f1
(
p
(
t, y1(t)

))
, g1

(
p
(
t, y1(t)

)))
, x1(t) − y1(t)

〉
X1

≥ μA(t)
∥∥x1(t) − y1(t)

∥∥2
X1
,

(2.15)

for all t ∈ Ω and x1(t), y1(t) ∈ X1,

(2) aA(t)-Lipschitz continuous with respect to the mapping p if there exists some
measurable function aA : Ω → (0,+∞) such that

∥∥H1
(
f1
(
p(t, x1(t))

)
, g1

(
p(t, x1(t))

)) −H1
(
f1
(
p
(
t, y1(t)

))
, g1

(
p
(
t, y1(t)

)))∥∥
X1

≤ aA(t)
∥∥x1(t) − y1(t)

∥∥
X1
,

(2.16)

for all t ∈ Ω and x1(t), y1(t) ∈ X1.

(3) αA-strongly monotone with respect to f1 in the first argument if there exists a
positive constant αA, such that

〈
H1

(
f1(x1), u1

) −H1
(
f1
(
y1
)
, u1

)
, x1 − y1

〉
X1

≥ αA

∥∥x1 − y1
∥∥2
X1
, (2.17)

for all x1, y1, u1 ∈ X1,



6 Journal of Inequalities and Applications

(4) βA-relaxed monotone with respect to g1 in the second argument if there exists a
positive constant βA, such that

〈
H1

(
u1, g1(x1)

) −H1
(
u1, g1

(
y1
))
, x1 − y1

〉
X1

≥ −βA
∥∥x1 − y1

∥∥2
X1
, (2.18)

for all x1, y1, u1 ∈ X1.

Let F(X1) be a collection of all fuzzy sets over X1. A mapping F from Ω into F(X1) is
called a fuzzy mapping. If F is a fuzzy mapping on X1, then for any given t ∈ Ω, F(t)(denote
it by Ft in the sequel) is a fuzzy set on X1 and Ft(y) is the membership function of y in Ft.

Let A ∈ F(X1), α ∈ [0, 1], then the set

(A)α = {x ∈ X1 : A(x) ≥ α} (2.19)

is called an α-cut set of fuzzy set A.

Definition 2.14. A random fuzzy mapping F : Ω → F(X1) is said to be measurable if for any
given α ∈ (0, 1], (F(·))α : Ω → 2X1 is a measurable set-valued mapping.

Definition 2.15. A fuzzy mapping E : Ω × X1 → F(X1) is called a random fuzzy mapping if
for any given x1 ∈ X1, E(·, x1) : Ω → F(X1) is a measurable fuzzy mapping.

Remark 2.16. The above is mainly about some definitions in X1. There are similar definitions
and notations for operators in X2.

Let E : Ω × X1 → F(X1) and F : Ω × X2 → F(X2) be two random fuzzy mappings
satisfying the following condition (∗∗):

(∗∗) there exist two mappings α : X1 → (0, 1] and β : X2 → (0, 1], such that

(Et,x1)α(x1) ∈ CB(X1), ∀(t, x1) ∈ Ω ×X1,

(Ft,x2)β(x2) ∈ CB(X2), ∀(t, x2) ∈ Ω ×X2.
(2.20)

By using the random fuzzy mappings E and F, we can define the two set-valued
mappings E∗ and F∗ as follows, respectively,

E∗ : Ω ×X1 −→ CB(X1), (t, x1) −→ (Et,x1)α(x1), ∀(t, x1) ∈ Ω ×X1,

F∗ : Ω ×X2 −→ CB(X2), (t, x2) −→ (Et,x2)α(x2), ∀(t, x2) ∈ Ω ×X2.
(2.21)

It follows that

E∗(t, x1) = (Et,x1)α(x1) = {z1 ∈ X1 : (Et,x1)(z1) ≥ α(x1)},

F∗(t, x2) = (Ft,x2)β(x2) =
{
z2 ∈ X2 : (Ft,x2)(z2) ≥ β(x2)

}
.

(2.22)

It is easy to see that E∗ and F∗ are two random set-valued mappings. We call E∗ and F∗ the
random set-valued mappings induced by the fuzzy mappings E and F, respectively.
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Problem 1. Let f1, g1 : X1 → X1 be two single-valued mappings and sM, p : Ω × X1 → X1 be
two random single-valued mappings. Let f2, g2 : X2 → X2 be two single-valued mappings
and sN, q : Ω × X2 → X2 be two random single-valued mappings. Let H1 : X1 × X1 → X1,
H2 : X2 × X2 → X2, M : X1 × X1 × X2 → X1 and N : X2 × X1 × X2 → X2 be four single-
valued mappings. Suppose that A : X1 → 2X1 is an H1(·, ·)-monotone mapping with respect
to f1 and g1 and B : X2 → 2X2 is an H2(·, ·)-monotone mapping with respect to f2 and g2.
E : Ω ×X1 → F(X1) and F : Ω ×X2 → F(X2) are two random fuzzy mappings, α, β, E∗, and
F∗ are the same as the above. Assume that p(t, u(t)) ∩ dom(A)/= ∅ and q(t, v(t)) ∩ dom(B)/= ∅
for all t ∈ Ω. We consider the following problem.

Find four measurable mappings u, x : Ω → X1 and v, y : Ω → X2, such that

Et,u(t)(x(t)) ≥ α(u(t)),

Ft,v(t)
(
y(t)

) ≥ β(v(t)),

0 ∈ M
(
sM(t, u(t)), x(t), y(t)

)
+A

(
p(t, u(t))

)
,

0 ∈ N
(
sN(t, v(t)), x(t), y(t)

)
+ B

(
q(t, v(t))

)
,

(2.23)

for all t ∈ Ω.
Problem 1 is called a system of generalized random nonlinear variational inclusions

involving random fuzzy mappings and set-valued mappings with H(·, ·)-monotonicity in
twoHilbert spaces. A set of the four measurable mappings x, y, u, and v is called one solution
of Problem 1.

3. Random Iterative Algorithm

In order to prove the main results, we need the following lemmas.

Lemma 3.1 (see [23]). Let H1, f1, g1, and A be defined as in Problem 1. Let H1(f1, g1) be αA-
strongly monotone with respect to f1, βA-relaxed monotone with respect to g1, where αA > βA.
Suppose that A : X1 → 2X1 is an H1(·, ·)-monotone set-valued mapping with respect to f1 and
g1, then the resolvent operator RH1(·,·)

A,λ = (H(f, g) + λA)−1 is a single-valued mapping.

Lemma 3.2 (see [23]). Let H1, f1, g1, A be defined as in Problem 1. Let H1(f1, g1) be αA-strongly
monotone with respect to f1, βA-relaxed monotone with respect to g1, where αA > βA. Suppose that
A : X1 → 2X1 is an H1(·, ·)-monotone set-valued mapping with respect to f1 and g1. Then, the
resolvent operator RH1(·,·)

A,λ is 1/(αA − βA)-Lipschitz continuous.

Remark 3.3. Some interesting examples concerned with the H1(·, ·)-monotone mapping and
the resolvent operator RH1(·,·)

A,λ
can be found in [23].

Lemma 3.4 (see Chang [8]). Let V : Ω × X1 → CB(X1) be a D-continuous random set-valued
mapping. Then for any given measurable mapping u : Ω → X1, the set-valued mapping V (·, u(·)) :
Ω → CB(X1) is measurable.
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Lemma 3.5 (see Chang [8]). Let V,W : Ω → CB(X1) be two measurable set-valued mappings,
and let ε > 0 be a constant and u : Ω → X1 a measurable selection of V . Then there exists a
measurable selection v : Ω → X1 of W , such that for all t ∈ Ω,

‖u(t) − v(t)‖ ≤ (1 + ε)D(V (t),W(t)). (3.1)

Lemma 3.6. The four measurable mappings x, u : Ω → X1 and y, v : Ω → X2 are solution of
Problem 1 if and only if, for all t ∈ Ω,

x(t) ∈ E∗(t, u(t)),

x(t) ∈ F∗(t, v(t)),

p(t, u(t)) = R
H1(·,·)
A,λ

[
H1

(
f1
(
p(t, u(t))

)
, g1

(
p(t, u(t))

)) − λM
(
sM(t, u(t)), x(t), y(t)

)]
,

q(t, u(t)) = R
H2(·,·)
B,ρ

[
H2

(
f2
(
q(t, v(t))

)
, g2

(
q(t, v(t))

)) − ρN
(
sN(t, v(t)), x(t), y(t)

)]
,

(3.2)

where RH1(·,·)
A,λ

= (H1(f1, g1) + λA)−1 and R
H2(·,·)
B,ρ = (H2(f2, g2) + ρB)−1 are two resolvent operators.

Proof. From the definitions of RH1(·,·)
A,λ and R

H2(·,·)
B,ρ , one has

H1
(
f1
(
p(t, u(t))

)
, g1

(
p(t, u(t))

)) − λM
(
sM(t, u(t)), x(t), y(t)

)

∈ H1
(
f1
(
p(t, u(t))

)
, g1

(
p(t, u(t))

))
+ λA

(
p(t, u(t))

)
, ∀t ∈ Ω,

H2
(
f2
(
q(t, v(t))

)
, g2

(
q(t, v(t))

)) − ρN
(
sN(t, v(t)), x(t), y(t)

)

∈ H2
(
f2
(
q(t, v(t))

)
, g2

(
q(t, v(t))

))
+ ρB

(
q(t, v(t))

)
, ∀t ∈ Ω.

(3.3)

Hence,

0 ∈ M
(
sM(t, u(t)), x(t), y(t)

)
+A

(
p(t, u(t))

)
, ∀t ∈ Ω,

0 ∈ N
(
sN(t, v(t)), x(t), y(t)

)
+ B

(
q(t, v(t))

)
, ∀t ∈ Ω.

(3.4)

Thus, (x, y, u, v) is a set of solution of Problem 1. This completes the proof.

Now we use Lemma 3.6 to construct the following algorithm.
Let u0 : Ω → X1 and v0 : Ω → X2 be two measurable mappings, then by Himmelberg

[35], there exist x0 : Ω → X1, a measurable selection of E∗(·, u0(·)) : Ω → CB(X1) and
y0 : Ω → X2, a measurable selection of F∗(·, v0(·)) : Ω → CB(X2). We now propose the
following algorithm.
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Algorithm 3.7. For any given measurable mappings u0 : Ω → X1 and v0 : Ω → X2, iterative
sequences that attempt to solve Problem 1 are defined as follows:

un+1(t) = un(t) − p(t, un(t))

+ R
H1(·,·)
A,λ

[
H1

(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

)) − λM
(
sM(t, un(t)), xn(t), yn(t)

)]
,

vn+1(t) = vn(t) − q(t, vn(t))

+ R
H2(·,·)
B,ρ

[
H2

(
f2
(
q(t, vn(t))

)
, g2

(
q(t, vn(t))

)) − ρN
(
sN(t, vn(t)), xn(t), yn(t)

)]
.

(3.5)

Choose xn+1(t) ∈ E∗(t, un+1(t)) and yn+1(t) ∈ F∗(t, vn+1(t)), such that

‖xn+1(t) − xn(t)‖X1
≤ (1 + εn+1)D(E∗(t, un+1(t)), E∗(t, un(t))),

∥∥yn+1(t) − yn(t)
∥∥
X2

≤ (1 + εn+1)D(F∗(t, vn+1(t)), F∗(t, vn(t))),
(3.6)

for any t ∈ Ω and n = 0, 1, 2, 3, . . . .

Remark 3.8. The existence of xn and yn is guaranteed by Lemmas 3.4 and 3.5.

4. Existence and Convergence

Theorem 4.1. LetX1 andX2 be two separable real Hilbert spaces. Suppose that sM, p : Ω×X1 → X1

and sN, q : Ω × X2 → X2 are four random mappings. Suppose that f1, g1 : X1 → X1, H1 :
X1 × X1 → X1, f2, g2 : X2 → X2, H2 : X2 × X2 → X2 are six single-valued mappings. Assume
that

(1) A : X1 → 2X1 is anH1(·, ·)-monotone with respect to operators f1 and g1,

(2) B : X2 → 2X2 is an H2(·, ·)-monotone with respect to operators f2 and g2,

(3) p(t, u(t)) ∩ dom(A)/= ∅ and q(t, v(t)) ∩ dom(B)/= ∅ for all t ∈ Ω,

(4) M : X1 × X1 × X2 → X1 is ζA(t)-monotone with respect to the mapping sM in the first
argument, ξM(t)-Lipschitz continuous with respect to mapping sM in the first argument,
βM(t)-Lipschitz continuous with respect to the second argument and ηM(t)-Lipschitz
continuous with respect to the third argument,

(5) N : X2 × X1 × X2 → X2 is ζB(t)-monotone with respect to the mapping sN in the first
argument, ξN(t)-Lipschitz continuous with respect to mapping sN in the first argument,
βN(t)-Lipschitz continuous with respect to the second argument and ηN(t)-Lipschitz
continuous with respect to the third argument,

(6) Let E : Ω × X1 → F(X1) and F : Ω × X2 → F(X2) be two random fuzzy mappings
satisfying the condition (∗∗), α, β, E∗ and F∗ are four mappings induced by E and F. E∗

and F∗ are ξE(t)-D-Lipschitz and ξF(t)-D-Lipschitz continuous, respectively;

(7) p is δp(t)-strongly monotone with respect to its second argument, σp(t)-Lipschitz
continuous with respect to its second argument, H1(f1, g1) is μA(t)-strongly monotone
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with respect to the mapping p and aA(t)-Lipschitz continuous with respect to the mapping
p,

(8) H1(f1, g1) is αA-strongly monotone with respect to f1, and βA-relaxed monotone with
respect to g1, where αA > βA,

(9) q is δq(t)-strongly monotone with respect to its second argument and σq(t)-Lipschitz
continuous with respect to its second argument, H2(f2, g2) is μB(t)-strongly monotone
with respect to the mapping q, and aB(t)-Lipschitz continuous with respect to the mapping
q,

(10) H2(f2, g2) is αB-strongly monotone with respect to f2 and βB-relaxed monotone with
respect to g2, where αB > βB,

If

A(t) =
λ

αA − βA
βM(t)ξE(t) +

2
√
1 − 2δp(t) +

[
σp(t)

]2

+
1

αA − βA

2
√
1 − 2μA(t) + [aA(t)]2

+
1

αA − βA

2
√
1 − 2λζA(t) + λ2[ξM(t)]2,

B(t) =
λ

αA − βA
ηM(t)ξF(t),

C(t) =
ρ

αB − βB
βN(t)ξE(t),

D(t) =
ρ

αB − βB
ηN(t)ξF(t) +

2
√
1 − 2δq(t) + [σq(t))]

2

+
1

αB − βB

2
√
1 − 2μB(t) + [aB(t)]2

+
1

αB − βB

2
√
1 − 2ρζB(t) + ρ2[ξN(t)]2,

0 < A(t) + C(t) < 1, ∀t ∈ Ω,

0 < B(t) +D(t) < 1, ∀t ∈ Ω,

(4.1)

then there exist four measurable mappings x, u : Ω → X1 and y, v : Ω → X2, such
that (x, y, u, v) is a set of solution of Problem 1. Moreover,

lim
n→∞

xn(t) = x(t), lim
n→∞

yn(t) = y(t), lim
n→∞

un(t) = u(t), lim
n→∞

vn(t) = v(t),

(4.2)

where xn(t), yn(t), un(t), and vn(t) are defined as in Algorithm 3.7.
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Proof. To simplify calculations, for any n ∈ N, we let

sn(t) = H1
(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

)) − λM
(
sM(t, un(t)), xn(t), yn(t)

)
,

tn(t) = H2
(
f2
(
q(t, vn(t))

)
, g2

(
q(t, vn(t))

)) − ρN
(
sN(t, vn(t)), xn(t), yn(t)

)
,

(4.3)

Sn(t) = −p(t, un(t)) + R
H1(·,·)
A,λ (sn(t)), Tn(t) = −q(t, vn(t)) + R

H2(·,·)
B,ρ (tn(t)). (4.4)

We use ‖ · ‖1 to replace ‖ · ‖X1 and ‖ · ‖2 to replace ‖ · ‖X2 .
Thus,

un+1(t) = un(t) + Sn(t), (4.5)

vn+1(t) = vn(t) + Tn(t). (4.6)

By the definition of Sn(t), Tn(t), sn, and tn, we have the following

‖Sn(t)‖1 = ‖Sn−1(t) + Sn(t) − Sn−1(t)‖1
= ‖[un(t) − un−1(t)] + Sn(t) − Sn−1(t)‖1
≤ ∥∥[un(t) − un−1(t)] − [p(t,un(t)) − p(t, un−1(t))]

∥∥
1

+
∥∥∥RH1(·,·)

A,λ (sn(t)) − R
H1(·,·)
A,λ (sn−1(t))

∥∥∥
1
,

(4.7)

‖Tn(t)‖2 = ‖Tn−1(t) + Tn(t) − Tn−1(t)‖2
= ‖[vn(t) − vn−1(t)] + Tn(t) − Tn−1(t)‖2
≤ ∥∥[vn(t) − vn−1(t)] −

[
q(t, vn(t)) − q(t, vn−1(t))

]∥∥
2

+
∥∥∥RH2(·,·)

B,ρ (tn(t)) − R
H2(·,·)
B,ρ (tn−1(t))

∥∥∥
2
.

(4.8)

We first prove that for the two sequences un(t) and vn(t), there exist two sequences
{An(t)} and {Bn(t)} in [0, 1], such that

‖un+1(t) − un(t)‖1≤ An(t)‖un(t) − un−1(t)‖1 + Bn(t)‖vn(t) − vn−1(t)‖2. (4.9)

In fact, for the first term in (4.7), from the δp(t)-strongly monotonicity and σp(t)-Lipschitz
continuity of the function p, we have the following:

∥∥[un(t) − un−1(t)] − [p(t, un(t)) − p(t, un−1(t))]
∥∥2
1

= ‖un(t) − un−1(t)‖21 − 2
〈
p(t, un(t)) − p(t, un−1(t)), un(t) − un−1(t)

〉
1

+
∥∥p(t, un(t)) − p(t, un−1(t))

∥∥2
1

≤
{
1 − 2δp(t) +

[
σp(t)

]2}‖un(t) − un−1(t)‖21.

(4.10)
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For the second term in (4.7), it follows from Lemma 3.2 that

∥∥∥RH1(·,·)
A,λ (sn(t)) − R

H1(·,·)
A,λ (sn−1(t))

∥∥∥
1

≤ 1
αA − βA

‖sn(t) − sn−1(t)‖1

≤ 1
αA − βA

∥∥H1
(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

)) − λM
(
sM(t, un(t)), xn(t), yn(t)

)

−[H1
(
f1
(
p(t, un−1(t))

)
, g1

(
p(t, un−1(t))

))−λM(
sM(t, un−1(t)), xn−1(t), yn−1(t)

)]∥∥
1

≤ 1
αA − βA

× {∥∥un(t) − un−1(t) −
[
H1

(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

))

−H1
(
f1
(
p(t, un−1(t))

)
, g1

(
p(t, un−1(t))

))]∥∥
1

+
∥∥−un(t)−un−1(t)−λ

[
M

(
sM(t, un(t)), xn(t), yn(t)

)−M(
sM(t, un−1(t)), xn(t), yn(t)

)]∥∥
1

+ λ
∥∥M(sM(t, un−1(t)), xn(t), yn(t)) −M

(
sM(t, un−1(t)), xn−1(t), yn(t)

)∥∥
1

+λ
∥∥M(

sM(t, un−1(t)), xn−1(t), yn(t)
) −M

(
sM(t, un−1(t)), xn−1(t), yn−1(t)

)∥∥
1

}
.

(4.11)

There are four terms in (4.11). Since H1(f1, g1) is μA(t)-strongly monotone and aA(t)-
Lipschitz continuous with respect to the mapping p, then for the first term in (4.11), we can
obtain the following

∥∥un(t)−un−1(t)−H1
(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

))
+H1

(
f1
(
p(t, un−1(t))

)
, g1

(
p(t, un−1(t))

))∥∥2
1

= ‖un(t) − un−1(t)‖21 − 2
〈
H1

(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

))

−H1
(
f1
(
p(t, un−1(t))

)
, g1

(
p(t, un−1(t))

))
, un(t) − un−1(t)

〉
1

+
∥∥H1

(
f1
(
p(t, un(t))

)
, g1

(
p(t, un(t))

)) −H1
(
f1
(
p(t, un−1(t))

)
, g1

(
p(t, un−1(t))

))∥∥2
1

≤
{
1 − 2μA(t) + [aA(t)]2

}
‖un(t) − un−1(t)‖21.

(4.12)

For the second term, Since M is ζA(t)-monotone with respect to the mapping sM in the first
argument and ξM(t)-Lipschitz continuous with respect to mapping sM in the first argument,
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so

∥∥un(t) − un−1(t) − λ
[
M

(
sM(t, un(t)), xn(t), yn(t)

) −M
(
sM(t, un−1(t)), xn(t), yn(t)

)]∥∥2
1

= ‖un(t) − un−1(t)‖21 − 2λ
〈
M

(
sM(t, un(t)), xn(t), yn(t)

)

−M(
sM(t, un−1(t)), xn(t), yn(t)

)
, un(t) − un−1(t)

〉
1

+ λ2
∥∥M(

sM(t, un(t)), xn(t), yn(t)
) −M

(
sM(t, un−1(t)), xn(t), yn(t)

)∥∥2
1

≤ ‖un(t) − un−1(t)‖21 − 2λζA(t)‖un(t) − un−1(t)‖21 + λ2[ξM(t)]2‖un(t) − un−1(t)‖21

≤
{
1 − 2λζA(t) + λ2[ξM(t)]2

}
‖un(t) − un−1(t)‖21.

(4.13)

For the third term,M is βM(t)-Lipschitz continuous with respect to the second argument and
E∗ is ξE(t)-D-Lipschitz continuous, therefore, we must have the following:

∥∥M(sM(t, un−1(t)), xn(t), yn(t)) −M(sM(t, un−1(t)), xn−1(t), yn(t))
∥∥
1

≤ βM(t)‖xn(t) − xn−1(t)‖1
≤ βM(t)(1 + εn)D(E∗(t, un(t)), E∗(t, un−1(t)))

≤ βM(t)(1 + εn)ξE(t)‖un(t) − un−1(t))‖1.

(4.14)

Similarly, because ηM(t)-Lipschitz continuous with respect to the third argument and F∗ is
ξF(t)-D-Lipschitz continuous, so we can derive

∥∥M(
sM(t, un−1(t)), xn−1(t), yn(t)

) −M
(
sM(t, un−1(t)), xn−1(t), yn−1(t)

)∥∥
1

≤ ηM(t)
∥∥yn(t) − yn−1(t)

∥∥
2

≤ ηM(t)(1 + εn)D(F∗(t, vn(t)), F∗(t, vn−1(t)))

≤ ηM(t)(1 + εn)ξF(t)‖vn(t) − vn−1(t))‖2.

(4.15)

If we let

An(t) =
λ

αA − βA
βM(t)(1 + εn)ξE(t) +

2
√
1 − 2δp(t) +

[
σp(t)

]2

+
1

αA − βA

2
√
1 − 2μA(t) + [aA(t)]2

+
1

αA − βA

2
√
1 − 2λζA(t) + λ2[ξM(t)]2

(4.16)

and

Bn(t) =
λ

αA − βA
ηM(t)(1 + εn)ξF(t), (4.17)
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then, from (4.5) to (4.17), we can have

‖un+1(t) − un(t)‖1 ≤ An(t)‖un(t) − un−1(t)‖1 + Bn(t)‖vn(t) − vn−1(t)‖2. (4.18)

Under the assumptions of this theorem, in a similar way, we can also show that, for
the other two sequences {vn(t)} and {un(t)}, there exist two sequences {Cn(t)} and {Dn(t)}
in [0, 1], such that

‖vn+1(t) − vn(t)‖2 ≤ Cn(t)‖un(t) − un−1(t)‖1 +Dn(t)‖vn(t) − vn−1(t)‖2. (4.19)

We now can claim easily that un(t), xn(t) are two Cauchy sequences in X1 and vn(t),
yn(t) are two Cauchy sequences in X2. In fact, from (4.18) and (4.19), we can obtain the
following inequalities:

‖un+1(t) − un(t)‖1 + ‖vn+1(t) − vn(t)‖2
≤ (An(t) + Cn(t))‖un(t) − un−1(t)‖1 + (Bn(t) +Dn(t))‖vn(t) − vn−1(t)‖2
≤ max(An(t) + Cn(t), Bn(t) +Dn(t))(‖un(t) − un−1(t)‖1 + ‖vn(t) − vn−1(t)‖2).

(4.20)

If we let

θn(t) = max(An(t) + Cn(t), Bn(t) +Dn(t)),

θ(t) = max(A(t) + C(t), B(t) +D(t)),
(4.21)

then we have the following:

lim
n→∞

An(t) = A(t), lim
n→∞

Bn(t) = B(t), lim
n→∞

Cn(t) = C(t),

lim
n→∞

Dn(t) = D(t), lim
n→∞

θn(t) = θ(t).
(4.22)

It follows from the assumptions of Theorem 4.1 that 0 < θ(t) < 1, for all t ∈ Ω, and so
{un(t)} and {vn(t)} are both Cauchy sequences. For sequences {xn} and {yn}, since

‖xn+1(t) − xn(t)‖1 ≤ (1 + εn+1)D(E∗(t, un+1(t)), E∗(t, un(t))) ≤ 2ξE(t)‖un+1(t) − un(t)‖1,
∥∥yn+1(t) − yn(t)

∥∥
2 ≤ (1 + εn+1)D(F∗(t, vn+1(t)), F∗(t, vn(t))) ≤ 2ξF(t)‖vn+1(t) − vn(t)‖2,

(4.23)

thus, {xn(t)} and {yn(t)} are also Cauchy sequences in Hilbert spacesX1 andX2, respectively.
We now show that there exist four measurable mappings x, u : Ω → X1 and y, v :

Ω → X2 such that (x, y, u, v) is a set of solution of Problem 1 and

lim
n→∞

xn(t) = x(t), lim
n→∞

yn(t) = y(t), lim
n→∞

un(t) = u(t), lim
n→∞

vn(t) = v(t), (4.24)
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where {xn(t)}, {yn(t)}, {un(t)}, and {vn(t)} are four iterative sequences generated by
Algorithm 3.7.

Because X1,X2 are two Hilbert spaces and {xn(t)},{yn(t)},{un(t)}, and {vn(t)} are four
Cauchy sequences, thus, there exist four elements {x(t)}, {y(t)}, {u(t)}, and {v(t)} such that

lim
n→∞

xn(t) = x(t), lim
n→∞

yn(t) = y(t), lim
n→∞

un(t) = u(t), lim
n→∞

vn(t) = v(t). (4.25)

Furthermore,

d(x(t), E∗(t, u(t))) = inf{‖x(t) − a‖ : a ∈ E∗(t, u(t))}
≤ ‖x(t) − xn(t)‖1 + d(xn(t), E∗(t, u(t)))

≤ ‖x(t) − xn(t)‖1 +D(E∗(t, un(t)), E∗(t, u(t)))

≤ ‖x(t) − xn(t)‖1 + ξE(t)‖un(t) − u(t)‖1.

(4.26)

Since limn→∞xn(t) = x(t), limn→∞un(t) = u(t), and E∗(t, u(t)) ∈ CB(X1), we have the
following:

x(t) ∈ E∗(t, u(t)). (4.27)

Similar argument leads to the fact that

y(t) ∈ F∗(t, v(t)). (4.28)

By the continuity of p, q, H1, f1, g1, H2, f2, g2, E∗, F∗, RH1(·,·)
A,λ , and R

H2(·,·)
B,ρ , we have the

following:

p(t, u(t)) = R
H1(·,·)
A,λ

[
H1

(
f1
(
p(t, u(t))

)
, g1

(
p(t, u(t))

)) − λM
(
sM(t, u(t)), x(t), y(t)

)]
,

q(t, u(t)) = R
H2(·,·)
B,ρ

[
H2

(
f2
(
q(t, v(t))

)
, g2

(
q(t, v(t))

)) − ρN
(
sN(t, v(t)), x(t), y(t)

)]
.

(4.29)

So, by Lemma 3.6, (x, y, u, v) is a set of solution to Problem 1.
This completes the proof.

Remark 4.2. By some suitable choices of mappings in Theorem 4.1, the main results in this
paper extend many existing ones, for instance, the main results in [10, 11, 21, 23, 26, 31, 34].
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