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Let B, be the unit ball of C" and ¢ = (¢4, ..., $,) a holomorphic self-map of B,. Let 0 < p,s < oo,
-n-1<g<o,q+s>-1,a>0,and let Cy be the composition operator between the space F(p, g, s)
and a-Bloch space B* induced by ¢. This paper gives an estimate of the essential norm of Cy4. As a
consequence, a necessary and sufficient condition for the composition operator Cy to be compact
from F(p,q,s) to B* is obtained.

1. Introduction

Throughout the paper, dv denotes the Lebesegue measure on the unit ball B, of C" normalized
so that v(B,) = 1, do denotes the normalized rotation invariant measure on the boundary 0B,
of B,, and H (B,,) denotes the class of all holomorphic functions on B,,.

For a € By, let g(z,a) = log|p.(z)|™' be Green’s function on B, with logarithmic
singularity at a, where ¢, is the Mobius transformation of B, with ¢,(0) = a, p,(a) = 0
and ¢, = ¢;'.

Let0<p,s <o, -n—1<g <o, and q+s > —1. We say that f is a function of F(p, g, s)
if f € H(B,) and

a€eB, n

1/p
||f||p<p,q,s>=|f<0>|+{sup ) IVf(Z)I”(l—IZIZ)qgs(z,a)dv(Z)} <o, (11

where Vf(z) = (0f/0z1,...,0f/0z,) denotes the complex gradient of f.
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For a > 0, we say that f € H(B,) is an a-Bloch function on B,,, if
4
ANl = Sulf(l - 12P) |V £(2)] < . (12)
z€B,

The class of all a-Bloch functions on B, is called a-Bloch space on B, and denoted by B“. It is
easy to prove that B* is a Banach space with the norm

A 1l5 = 1£ O]+ 11 £l (1.3)

When a = 1, we obtain the classical Bloch functions and Bloch space.
It is proved by Yang and Ouyang [1] that the norm || f||4,1 is equivalent to the norm

10z = sup(1-12F) |RF ) (1.4)

where Rf (z) = Vf(z)z = (Vf(z),z) is the inner product of V f(z) and z. For a = 1, Timoney
[2] proved that the above two norms are equivalent to the third norm:

|Vf(2)u] |

I1Fll.s= sup{ w2 € B,, ueC"\ {0}}, (15)

where V f(z)u = (V f(z),u), and H;(u, u) is the Bergman metric defined by

2 (1 _ |z|2>

On this basis, Zhang and Xu [3] defined another norm || f||,,3 as follows:

for z € B,, u € C"\ {0}. (1.6)

1 -1z (V£ (2),u)]

fllas = sup ,
” ||a,3 ween (o) {Gz(u,u)}l/z (1.7)
z€B,
where
(1-12P) [l + |, 2)F, a>,
2
Gl ) = 4 (1 12P) uPlog>—— + [(w, )P, a= L (1.8)
1-|z| 2
2,
[ (1= 12P) "l + [, 2P, 0<a<y.

They proved that this norm is equivalent to ||f||x1 and ||f|lz2 for any a > 0. We give their
result as Lemma 2.3 in this paper. For more details, we recommend the readers refer to [3].
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Let ¢(z) = ($1(2),...,¢u(2)) be a holomorphic self-map of B,; the composition
operator Cy4 induced by ¢ is defined by

(Cof)(2) = f($(2)). (19)

In recent years, many specialists have devoted themselves to the research of composition
operators which includes boundedness, compactness, and spectra. Concerning these results,
we also recommend the interested readers refer to [2, 4-7].

Another hot topic is the essential norm of composition operators. First, we recall that
the essential norm of a continuous linear operator T is the distance from T to the compact
operators, that is,

IT|l, = inf{||T - K| : K is compact}. (1.10)

Notice that ||T||. = 0 if and only if T is compact, so that estimates on ||T||, lead to conditions
for T to be compact.

In 1987, J. H. Shapiro calculated the essential norm of a composition operator on
Hilbert spaces of analytic functions (Hardy and weighted Bergman spaces) in terms of
natural counting functions associated with ¢. In [8], Gorkin and MacCluer obtained the
estimates for the essential norm of a composition operator acting from the Hardy space H” to
H1,p > gq,in one or several variables. In [9], Montes-Rodriguez gave the exact essential norm
of a composition operator on the Bloch space in the disc. After that, Zhou and Shi generalized
Alfonso’s result to the polydisc in [10, 11]. This paper, with fundamental ideas of the proof
following Zhou and Shi, gives an estimate of composition operator from F(p, g, s) to B* in the
unit ball. In addition, we get a similar estimate of composition operators between different
Bloch type spaces and obtain some necessary and sufficient conditions for the composition
operators Cy to be compact for F(p, g, s) to B%.

In the following, we will use the symbols ¢, c1, and ¢, to denote a finite positive number
which does not depend on variables z, a, w and may depend on some norms and parameters
p.4q,5,1n,a,x, f, and so forth, not necessarily the same at each occurrence.

Our main result is the following.

Theorem 1.1. Let ¢ = (¢1, P2, ..., Pn) be a holomorphic self-map of B, and let ||Cy||. be the essential
norm of a bounded composition operator Cy : F(p,q,s) — B%; then there are ¢y, co > 0, independent
of w, such that

c1lim sup X(w,w) < ||Cp]|, < c2lim sup X(w,w), (1.11)
6=0 dist(p(w),0B,)<6 =0 dist(p(w),dB,)<6 :

where

(1= )"

——— Gy (Rp(w), Rp(w)) }''?, (1.12)
(1-1g)) """

X(w,w) =
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and when0 < (n+1+q)/p<1/2,

2(n+1+q)/p

Gyptw) (RPp(w), Rp(w)) = (1 - |p(w)|*) |Rp()|” + |(Rp(w), p(w))|;  (1.13)

when0< (n+1+q)/p=1/2,

: S| Rp(w)|* + | (Rp(w), p(w)) |

Gy (R R =(1- Nog? ———
) (RPp(w), Rp(e0)) = ( '¢(“’)'>°g1_|¢<w>|

(1.14)
when (n+1+q)/p>1/2,

Gyt (Rp(w), Rp(w)) = (1= |$(c0) ) [Rp(@)|* + [(Rp (), p(w)) [ (1.15)

2. Some Lemmas
In order to prove the main result, we will give some lemmas first.

Lemma 2.1 (see [12, Lemma 2.2]). Let a > 0. Then there is a constant ¢ > 0, and for all f € B*
and w € B,,, the estimate

|f ()| < cGa(w)]| f

. (2.1)

holds, where the function G, has been defined as follows.
(1) If0<a <1, then Go(w) =1.
(ii) If a = 1, then Gu(w) = In(4/ (1 - |w?)).
(iii) If & > 1, then Gu(w) = 1/(1 - [w[?)* .

Lemma 2.2 (see [12, Lemma 2.1]). If0 < p,s < +oo0, -n—1 < q < +o0,q+s > -1,then F(p,q,s) C
B D/P and there exists ¢ > 0 such that for all f € F(p,q, ), || fllpacam < cll fllF@p,qs-

Lemma 2.3 (see [3, Theorem 2]). Let 0 < a < +oo, f € B*. Then || flla1, || fllaz and || fllaz are
equivalent.

In [12], Zhou and Chen characterize the boundedness of weighted composition
operator W, 4 between F(p,q,s) and B*. Take ¢ = 1 in [12, Theorem 1.2, page 902] and by
similar proof we can get the following lemma.

Lemma 2.4. For0<p,s < +oo, -n—-1< g <+oo,q+s>-1,a >0, let ¢ be a holomorphic self-map
of By. Then Cy : F(p,q,s) — B* is bounded if and only if

sup X(w,w) < oo, (2.2)

weB,

where X (w, w) has been defined at (1.12).
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Lemma 2.5 (see [12, Lemma 2.5]). For 0 <p,s < +oo, -n —1 < q < +00, g + s > —1, there exists
¢ > 0 such that

(1 ~lw 2) 2,4
supf (1-1z|)"g°(z,a)dv(z) < c, (2.3)
B, |1—

llGBn <Z, w> |n+1+q+p

for every w € B,,.

Lemma 2.6 (see [12, Lemma 2.7]). Suppose 0 < p,s < +oo and s + p > n, then one has the
following.

(i) If s > n, then there is a constant ¢ > 0, for all w € B,

P (1 - |Z|2>p_n_1

11-(z,w)P

1

2.4
log 1-(z,w) 24

1 -p
su lo *(z,a)dv(z) < c.
ae];:: Bn< g1_|22|> g( ) ()

(ii) If s < n, then when one chooses x which satisfies max{1,n/p} <x <n/(n-s), (ifn=s,
just let x > max{1,n/p}), then

1
1-(z,w)

2/x (1 - |z|2>p_n_1

(11 = (z,w)])?

-2/x
sup <log 1%|22|> lo $°(z,a)du(z) < c. (2.5)
a€eB, Y B,

Lemma 2.7. If { fi} is a bounded sequence in F(p, q, s), then there exists a subsequence { fx, } of { fx}
which converges uniformly on compact subsets of B, to a holomorphic function f € F(p, q, s).

Proof. Choose a bounded sequence {fi} from F(p,q,s) with || fx|lr@p,qs < ¢. By Lemma 2.1,
{fx} is uniformly bounded on compact subsets of B,,. By Montel’s theorem, we may extract
subsequence { fi,} which converges uniformly on compact subsets of B, to a holomorphic
function f. By Weierstrass’s theorem we have f € H(B,) and 0f;/0z; — 0f/0z for each
I € {1,2,...,n} on every compact subsets of B,. It follows that V fi, — Vf uniformly on
compact subsets of B,.

LetB,={z€eC":|z|<1-1/m}CB, (m=1,2,...); then

f VAP -12P) gz @)do(z) = lim | lim |Vfi | (1= 128" =z, a)do(z)
B, m—+oo Jp j—+oo

(2.6)
= lim lim |kaj|p(1—|z|2)qgs(z,a)dv(z).
By

m—+o0 j— +oo

But || fx;lF(p,q5) < ¢, then

[ |l a- g eade <o, 7)
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and therefore
IB VAP -1z 7g(z a)do(z) < cP. (2.8)

So || flle(p,g,s) < c?, which implies f € F(p,q,s). O

Lemma 2.8 (see [10, 11, Lemma 2.6]). Let Q be a domain in C", f € H(LQ). If a compact set K and
its neighborhood G satisfy K ¢ G cC Qand p = dist(K,0G) > 0, then

of
a_zj (2)

sup S\/?ﬁsug|f(z)| (j=1,...,n). (2.9)

zeK

3. The Proof of Theorem 1.1

To obtain the lower estimate we first prove the following proposition.

Proposition 3.1. If Cy : F(p,q,s) — B* is bounded, then for all w € B, which satisfies |¢p(w)| >
\/2/3, there is a function g, € F(p,q,s) such that

(i) there exists c1, ¢, > 0, independent of w, such that

GRS ”gw”F(p,q,s) <6 (31)

(ii) {gw]} converges to zero uniformly for z on compact subsets of B, when |¢(w)| — 1;

(iii) there is a constant ¢ > 0, for all w € B,

(1= 1w |V (gw © §) (w)| > X (w, w), (3.2)

where X (w, w) is the same as Theorem 1.1.

Proof. For all w € B, with |¢p(w)| > \/ﬂ, we suppose ¢(w) = rpe1, where 1y, = |p(w)], e1 is
the vector (1,0,...,0).

Next we break the proof into two cases.

(1) Assume that

Gyw) (RPp(w), Rp(w)) < 2|(Rp(w), p(w))|*. (*)
Let

(Zl - rw)(l - rzzu)
(1 _ rwzl)(n+1+q)/p+1 :

gw(z) = (33)
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Then
0gw(z) 1-72 <1+n+1+q(zl—rw)rw>
azl - (1 _ rwzl)(n+l+q)/p+l p 1- TwZ1
(3.4)
0
ég;(z) =0, k=2,...,n.
k
Therefore
_ 1-15, n+1+q (21— rw)re
|VgW(Z)| - n- rwzll(n+l+q)/r’+1 p 1-rpz1
) (3.5)
<(1." +1+gqg 1-71Z
- P |1 _ rwzll(n+l+q)/p+1 :

By Lemma 2.5, g, € F(p, g, s), and there exists c; > 0 independent of w such that || gwl|F(p,4,s) <
C.
On the other hand, taking zp = (z(l),O, ...,0) = (14,0,...,0) € B,; then

(n+1+q)/p
(A ~120P) "7V gu(z0)] = (1~ Irl) 1=l =1 36)

So

3
n 2
Igclimon = 80 (@)] +sup(1 - 12P) "7 |9 g, ()] 2 1+ 7~ > <\[§> -

z€B,,

By Lemma 2.2, g, € B™1*9/7 and || gwllFp,e,5) = cllgwllpnan, we have

3
2
IgelFpas > c<\[§> . (3.8)

By the discussion above we get
c < ”gw”F(p,q,s) < 6. (39)

At the same time, for fixed z € B, it is clear that lim,, _,1|gw(z)] — O uniformly for z on
compact subsets of B,. This shows that (i) and (ii) hold.
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By simple calculation it is easy to get that G, (w, w) < 2; so by Lemma 2.3 we have

(1 - [w]")"|V g (¢ (w)) Rp(w) |

— lw®)" o
(1= [wl) |V (8w o §)(w)] > ¢ G (w, w)

(3.10)

> c(1 - [w*)*|V gw ($(w) ) Rp(w)|.

Notice that Vg, (¢(w)) = (1 - r2)/(1 - r2)"1*9/P)e; Therefore, from our assumption (x),
we get

(1)

Tw<1 _ rg})(ﬂﬂﬂl)/l’

(1-ter)

(1= 1) |V (w0 $) (w)] 2 ¢ |err Rp(w)]

> e (Rp(w), ()]
(1-r2) oy (3.11)
<1 - |w|2>a 1/2
> CW {G¢(w) (R(i)(w)/ R(:b(w)) }
=cX(w,w).
(2) Assume that
Gt (Rp(w), Rp(w)) > 2| (Rp(a0), p(@)) " 0)

Let Rp(w) = &, ..., &) Forj=2,...,nlet0; = argé; and a; = e if §i#0,orlet a; = 0 if

¢ =0.
InCase (n+1+4q)/p>1/2, take

3/2
(arzo+ -+ + anzy)(1-12)

(1= rpzy) /et o

gw(z) =
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where 1, = |¢p(w)]. Then

0gu(z)  ((n+1+q)/p+V)ry(1-12)""

(a2z2 + -+ + Anzn),

0z, - (1 _ rwzl)(n+1+q)/p+2
(3.13)
0gw(z) ar(1- 1’;)3/2
= , =2,...,n
aZk (1 _ rwzl)(n+1+q)/p+l
Therefore

35w (2) | agw(Z) 0gw(2)

|ng(2)| B \/' 822 * ‘ 621

3 3
~ (n+1+q)/p+1)*r2(1=12) |arzy + - + anz,|* . (n-1)(1-712)
\ n- rwzl|2((n+1+q)/p+2) In- rw21|2((n+1+q)/p+1)

3
(n-1)((n+1+g) /p+1)*r2, (1-12) <|ZZ|2+' : -+|an2) (n-1)(1-r2)°
\ 11— 12y P /72) T = oz T D

IN

V=D - 12y | (n+1+q)/p+ 1)2r5,<1 - |Zl|2>

> |1 _ rwzl|(n+1+q)/p+1 |1 _ Twzl|2

+1

1/2
_NEDA-R) |, neleg N
(n+1+q)/p+1 1- Tw + T +1
|1—r zq|VTEEDIP P
ce 1-72
- |1_rwzl|(n+1+q)/p+1'

(3.14)

It follows from Lemma 2.5 that g, € F(p, g, s), and there exists ¢, > 0 independent of w such

that ”gw”F(p,q,s) <o
On the other hand, taking

1
zp = <z§0),. sz”) <rw,ﬁ 1—1%,,0,...,0), (3.15)

then

|zo> = 72 + %(1 - r,i) = %(1 + r;) <1. (3.16)
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Thus zy € B,. Notice that 1 > r,, > v/2/3 and by Lemma 2.2 we have

”gw”F(p,q,s) > cl| gwll gimreare
o\ (n+1+q)/p 2\ 1+1+4)/p| 04w (20)
> c(1-|z0P) |V 8w (z0)] 2 ¢(1-120]) -
Z1
(n+1+q)/p+1)22(1-72)|az? +.

=c(1- )(n+1+t7)/i7

2((n+1+q)/p+2)

\ et

(n+1+9)/p+ 1’31 -12)*(1/v2)/1

_ C(l )(n+1+q)/p

\ 1-r2 )2((n+1+q) /p+2)

1
=C<u

+ 1>rw(1 - ri,)_l/4
p

(3.17)

By the discussion above we get that c1 < [|gw||F(p,q,5) < 2. At the same time, it is also clear that

lim,, 1|gw(z)| — 0;so (i) and (ii) hold.

Next we show that (iii) holds. First, by (3.13) and ¢(w) = (7,0, ...,0) it is easy to get

that

1 241/2
vgw<¢(ZU)) - a(;'—(ZZL-W(O' az,.. ~/an)'

w

Notice that Rp(w) = (¢1,. .. ,§n)T and a;¢; = |¢&| (i=2,...,n); so we have

a-r)"”

(1 _ r%))(ﬂ*'l*ﬂ)/l’

|V &w($(w))Rp(w)| = (182l + -+~ +18nl)-

Second, since |p(w)| > \/2/3 and (n+1+¢q)/p > 1/2,itis clear that

(1—1"3])(n+1+q)/P|R¢(’ZU)| > (1_ 1/2

|Rp(w)| > |(p

and it follows that

V3(1- 19G) (1 + 4 1) > el

(3.18)

(3.19)

(3.20)

(3.21)
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Then
L - (ST ) (322)
On the other hand, when (n+1+¢g)/p>1/2,
Gow) (Rp(w), Rp(w)) = (1= |$(w)|*) [Rp()[* + [(Rp(w), p(w)) [, (3.23)

So by our assumption (xx) we get

~ [p@))*[Rp(w)| > \/7 [Gpo) (Rp(w), Rp(w)) }'?, (3.24)

and it follows that

~1p@)P) " | Rp(w) | > \@ {Gpw) (Rp(w), Rp(w)) }'/2. (3.25)

Combining (3.19), (3.22), and (3.25), it follows from G, (w, w) < 2 and Lemma 2.3 that

(1= [wP)|Vgw($p(w))Rp(w)|
Gy (w, w)

> c(1 - [w?)"|Vgw(d(w))Rp(w)|
(1-1wP)’

— e (= 12) (il e+ )

( ) (n+1+q)/p
Tw

(1-lwP)" 1
N 7 /2\/—2
z¢ — 2 )("+1+q)/p (1- ) " + + |énl

(1
<1 - |w|2>“ (1 _a >(n+1+q)/p
w

(1 _ T2 )(n+1+q)/r7
w

— [wP)*|V (gw © §) (w)| >

(3.26)

2 2
81" + -+~ + 1&nl

(1—|w|2>a <1 . >(n+1q/p

(1 _ r%})("”“l)/l’

1- fwf)”
> C% (Gpteo) (Rp(w), Rp(w0)) ).

|R$ ()|

This is (iii).
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InCase (n+1+¢q)/p=1/2and s > n, take

1
Sw(z) = (arzo + -+ + anzn)log_1 T log (3.27)

InCase (n+1+¢q)/p=1/2and s < n, take

-2/px 1 1+2/px
> <log ) , (3.28)

1-ryz1

Sw(z) = (a2zp + -+ + anzy) (log 5
1-ry

where x is the one used in Lemma 2.6.
InCase0< (n+1+gq)/p <1/2,take

_ (1- rw)S/z
Qw(z) = (aza + -+ + anzy) {1 e o) (e 17 ) /p) 1 } (3.29)

According to Lemmas 2.5 and 2.6, and the discussion of the case of (n +1+g)/p > 1/2, we
can see that the functions above are just what we want.

In the general situation, or when ¢(w) # |p(w)|e1, we use the unitary transformation
U, which satisfies the equation ¢(w) = rpeily, where r, = |¢p(w)|. Then f,, = g © u;! is
the desired function.

In fact, by V f,,(2) = V(gw o U7)) (2) = (Vgw) (zUZ) (U and |zU7)}| = |z|, we have

[ 195.@1 (1- 1) s G ado)
B,
[ |wsaeunuR)| a- g e ade) (330)
B,

- fB V()| (1 - 122" ¢° (2, a)do(2),

where in the last equation we use the linear coordinate translation z = zU,;' and the fact that
F(p, q,s) is invariant under mobius translation. So

”fw”F(p,q,s) = ||g‘w”F(p,q,s)' (331)

Then we can prove the same result in the same way, and we omit the details here. [

Now, we are ready to prove Theorem 1.1. We begin by proving the lower estimate.
Let

Sw(z)

Fu(2) = =5,
T lgellrgas

(3.32)
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where g, (z) is defined as Proposition 3.1. It is clear that ||Fy||F(,4,s) = 1 and Fy,(z) converges
to zero uniformly on compact subsets of B, when |¢p(w)| — 1. Suppose that K : F(p,q,s) —
B*is compact, then || KFyl||p= — 0 uniformly for z in compact subsets of B, when |p(w)| — 1

(in the following, it is clear that |¢(w)| — 1 when 6 — 0); so we have

ICy—K||= sup [(Cp-K)f

Ba
Fpa9 =1
> sup (”C¢f Ba_”Kf Bu)
FllE .0 =1
>  sup  (||CsFwllze = IKFuwllz)
dist(¢(w),0B,)<6
>  sup  ||CpFullp—  sup  [[KFullp
dist($(w),dB,)<6 dist($(w),dB,)<6

On the other hand, by (i) in Proposition 3.1, for |p(w)| > v/2/3 we get

sup M 2 l Sup ”gwod)
dist($(c0),08,)<6 || S | F(pgs)  C2dist((w),0B,)<6

B

1 a

> — sup sup(1 - 1z?) |V (gwo ¢)(2)]
C2 dist(¢(w),0B,)<6 z€B,,
1 a

> . sup 1-|w) |V (gwo @) (w)].

2 dist((w),dB, ) <6
By (iii) in Proposition 3.1, when |¢(w)| > 1/2/3 we have
<1 - |w|2> |V (gwo ¢)(w)| > c- X(w,w).

Therefore

c
ICo-K[|>— sup X@w,w)-  sup  [[KFollp

€2 dist((0),0B, ) <6 dist($(w),0B,) <6
Let6 — 0, we get

c
Cy - K| > —lim su X(w, w).
” ’ ” €26—0 dist(¢(w)%Bn)<6

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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It follows from the definition of |[|Cyp||. that

|Cyl|, = inf{||Cs - K|| : K is compact}

c
> —lim sup  X(w,w)

€260 Gist(p(w),0B,) <6 (3.38)
=c1lim sup X(w,w).

00 dist(¢(w),dB,)<5
This is the lower estimate.
To obtain the upper estimate in Theorem 1.1 we first prove the following proposition.

Proposition 3.2. Let ¢ be a holomorphic self-map of B,,. For m = 2,3, ... one defines the operators as
follows:

K f (w) = f(mT_lw> feH(B,), weB,. (3.39)

Then the operators K, have the following properties.
(i) Forall f € H(B,),Kmf € F(p,q,5).
(ii) For fixed m, K,, is compact on F(p,q,s).

(iii) If Cg : F(p,q,s) — B* is bounded, then CyK,,f € B* and CyK,, : F(p,q,5) — B%is
compact.

(iv) I = Kl < 2.
(v) (I = K,y) f tends to zero uniformly on compact subsets of B,,, when m — oo.

Proof. (i) Since f € H(B,,), there exists a M > 0 (only depending on f) such that

ﬁ(’"—_lw)‘gm k=1,...,n, (3.40)
0zZk m

where z = (z1,...,2z,) = ((m=1)/m)(wy, ..., w,); therefore

m

5 _ _
_f<_m 1w>‘§m LY (3.41)
0zZk m m

_]_ n
|V (Konf) ()| < 2 >

By Lemma 2.5 we have

I (1 - w?)?¢*(w, a)dv(w) < oo. (3.42)
By
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So
[ 19Nl 0 - kP o, o)

B,

(3.43)

— P
< (’"m 1nM> - )’ ¢ (w, a)do(w) < oo.

This shows that K,,,f € F(p, g, 5).

(ii) Choose a bounded sequence {f;} from F(p,q,s). By Lemma 2.7, we know that
there exists a subsequence of {f;} (we still denote it by {f;} here) which converges to a
function f € F(p, g, s) uniformly on compact subsets of B, and {0f;/0w;} (i =1,...,n) also
converges uniformly on compact subsets of B, to holomorphic function 0 f/0w;. So when j is
large enough, forany ¢ >0,z € Ey = {((m—-1)/m)z:z€ B,},and [ =1,...,n, we have

‘a(f] f) <e. (3.44)
0z

So when j — oo, we get

sup |V (Ko fy = Knf) )] = sup |9 (f = ) (")

wEB, wEB,
m-1&|0(fj - f)
<su z (3.45)
_zeg m ; 0z; (z)
< — ne.
m

Therefore

1K f =K fl g0 = 1 i@ =F @] +5up | |V (K fi=Kunf) (@) " (1= [w0])g” (w, @) dv ()

a€B, / By,

n€>psup 1- |w|2)qgs(w, a)do(w)

a€eB, Y B

-1 P
e) — 0.

<Ifo -0+ ("

<150 - sl +o( ™
(3.46)

This shows that {K, f;} converges to g = K,,,f € F(p,q,s). So (ii) holds.
(iii) By (i) and the fact that Cy is bounded, the former is obvious. By (ii) and noting
that Cy is bounded, we get that Cy K, is compact.
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(iv) First, for all f € B™1+0/P we have (I - K,,) f(0) = 0; therefore

n+1 /
soars = sup(1 = [PV [(1 - K,p) f] ()]

wEeB,

” (I - Km)fl

< sup(1 - [w0) " P (|V f ()| + |V (Kunf) (w)])

wEeB,
2> (n+1+q)/p

< I/l

m-—1 1 m-1
+ ——su - |—w
1+q)/,
Bn+l+q)/p m p m

weB,

(%)

<2|/f]

Bn+l+q)/pr

which implies that ||I — K| < 2.
(v) For any compact subset E C B,, there exists r (0 < r < 1) such that E C ¥B,, C B,,.
On the other hand, for all z € E, write r, = (m— 1) /m:

| = Kn) f(2)] = | f(2) = fn(2)]
= |f(z) - f(rm2)|

1
d
| G

(3.48)

1 n
= f Zaa—u{k(tz)'zkdt

Tm k=1

of

n 1
SZI
k=1 Tm

When t € [ry,, 1], |tz| = t|z| < |z| < r for all z € E. But (0f/0wy)(w) is bounded uniformly on
7B,; therefore for all z € E, |(3f/dwy)(tz)| < M. So when m — oo, we have

|(T - Ku) f(2)| < nM(1 = 1,y) — 0. (3.49)

Thus (I -K,,) f tends to zero uniformly on compact subsets of B,,. The proof is completed. [

Let us now return to the proof of the upper estimate.
First, for some 6 > 0 we denote that
G := {w € B, : dist(¢(w), 0B,,) < 6} ,
Gy := {w € B, : dist(¢(w), 0B,,) > 6}, (3.50)
G, = {z € B, : dist(z,0B,) > 6}.
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Then G; U G; = B, and G; is a compact set of B, and z = ¢(w) € G if and only if w € G,.

For any f € F(p,q,s), write ||fl[r = || fllF(p,q5), then by Lemma 2.2 and (iv) of Proposition 3.2
we have

I€all < 11Cs = CoKanl|

= 1€ - K|
= sup [|Co(I = Kin) | 5.
Iflle=1

- sup sup (- 9[- s ol )+ [~ K 160D

Ifllp=1 \ weBx
P (n+1+q)/p
(1-1p) ) V[~ Kn) f o ¢] ()]
= sup { supX(w,w)
Ifllg=1 | weB, \/G¢(w) (R¢(w),R¢(w))

[ = Km) f1($(0))
(3.51)
n+l+q)/p

supX(w,w)<1—|¢(w)|2>(

weB,

< o sup { |V [(T-Kon) f] ()]

lIfllp=1

H[T-Kn ] <¢<o>>|}

< ||l = Kip|[sup X(w, w)

weGy

v sup supX(w,w) (1= [p)P) " 19 [(1 - K £ ()]

I fllp=1 weG,

+ Czllihllel [(I - Km)f] (¢(0))|

<o supX(w,w) +1+11
weGy

By (v) of Proposition 3.2 we know that [(I - K,,) f](z) converges to zero uniformly on G,
and so [({ — K,) f](¢(w)) also converges to zero uniformly on G, for every fixed f. Next we
prove that for any w € Gy and ||f||r =1, I,II — Owhenm — ccand 6 — 0.

Since

10~ K1 @O = |7 90) - £ (2 90)) (352)
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let F(f) = £(t¢(0) + (1 £)((m — 1)/m)¢(0)). Thus

1
F’(t)dt

fokl

nl Vf<t<l>(0) £A-0"=290) )| -l

|[(I - Kin) f]($(0)) | =

Lo+ a-0""290) (00

n
S_
m

: Vf(tqb(O) +(1- t)m7_1¢(0)> 'dt.

O

(3.53)

Since f € F(p,q,s) C B®0/P, (1 - [z) ™ PPV £(2)] < ||fllporan < ¢, we get [Vf(2)] <

c(1 = |z[2)~ " *0/P_On the other hand, when 0 < t < 1, we have

(1 - )tcp(O) +

(n+1+9)/p (n1sa)/
—(n+1+
> < (1= ()] ",

So

o\ —(n+l+q)/p
> at

<er (=[N " — 0 (m— oo).

[ - K f ()] < e j <1_ |

Letm — oo, we getII — 0.
Letw € Gy and ¢(w) =z = (z3,..., z,); then

I =c; sup supX(w,w) <1 - |z|2>(n+1+q)/p|v[(1 - Ku) f](2)]

[IfIlp=1 weG,
(n+1+q)/p m-1
= ¢y sup supX(w,w)<1—|z|2> Vf(z )— f< >'
II£llp=1 weG,
n 1
< sup supX(w, w)(1- |z "7 |v £ (z) - f(m :)
[IfIlp=1 weG,
n+1+q)/p

+ 2 sup supX(w,w)(1-|z B
" fllp=1 weGs

(%)

(3.54)

(3.55)
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Vf(z)- Vf<mn; 12)
2>(n+1+q)/P vf<mn; 1Z>

%U—a;( - z>‘

+ —sup sup X(w, w)|| f]|
" fl1=1 weG,

< c2 sup supX(w,w)(1 |z

I fllp=1weG2

-1
+2 sup sup X(w, w)< |m z
M |flp=1 weG m

Ifllp=1 weG

Bn+l+q)/p

= Il + Iz.
(3.56)

By Lemma 2.4 we get sup, ., X (w, w) < oo, and noticing that || f||e-1:0/» < ¢, s0 it is easy to
get that [, — O whenm — oo.
For I, first we have

05 ((-m)7)]

a; azl(<1__)m,z2,...,zn> N —
22 (-3 -2(0-3)

aZl(( DY (1 D m)

(1= & (1= 2 Y

oL ez ) - g’i(( - Verza )

B azf 1 1
1-—)zy,...,(1-—)zi.1,8, 241, .-, 20 )d
J’(1 1/m)z; azlaZ] << 1’1’1) 1 ( m) j-1 g j+1 > g‘

J‘Zl o nam =622, ,Zn)dg'

1-1/m)z 8zlaz

+ (3.57)

n

-3

j=2

+
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Denote G3 := {z € B, : dist(z,0B,) > 6/2}, then G, C G3 CC B,.. Since dist(G;, 0G3) = 6/2, by

Lemma 2.8, when z € G, (i.e, w € G;) we get

L2 (1)) <2

0z 0z m 26G;

of
a_zl (2)

On the other hand, it follows from || f|| 3w/ < ¢ that

1+q)/
sup(1 - [zP) " P P|V £ (2)| < | fllpemran <c.
z€G3

By (3.59) and the definition of G3, we get

5 2 —(n+1+q)/p
sup|Vf(z)|Sc<1—<E> > :
z€Gs3

Therefore

9 (2

sup o2,

z€Gs3

5\2 —(n+1+q)/p
Ssup|Vf(z)|Sc<1—<§> > :
z€Gj3

Combining (3.58) and (3.61), we have

N| O
~——

o\ —(nt+l+q)/p n
2
I < cac sup sup X(w, w) - (1 - < > . nvn
1=1

Ifllp=1weG, mo
—(n+1+q)/p
6\° 2n?
= cyc sup supX(w,w) - <1 - <—> > i \/ﬁ_
Ifllp=1weGs 2 mé

By Lemma 2.4, supweGZX(w,w) < oo, and so lim,,, _, ,I; = 0.
Now, let m — oo and 6 — 0; we get the upper estimate:

ICs]l, < c2lim sup  X(w,w).
6=0 dist(¢(w),0B,)<6

So, the proof of Theorem 1.1 is finished.

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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4, Two Corollaries

Lemma 2.2 tells us that F(p,q,s) C B9/, as in the similar discussion of Theorem 1.1; so
we can get an estimate of the essential norm of a composition operator between Bloch-type
spaces. That is the following corollary.

Corollary 4.1. Let a, p > 0, let ¢ = (¢p1, 2, ..., Pn) be a holomorphic self-map of By, and let ||Cyp||.
be the essential norm of a bounded composition operator Cy : BP — B Then there are c1,c, > 0,
independent of w, such that

¢ lim sup  X(w,w) < [|Cyl|, < c2lim sup  X(w,w). 4.1)
6 =0 dist(p(w),dB,)<6 0 =0 dist(¢p(w),dB,)<5 )

Remark 4.2. In Corollary 4.1, the quantity X (w, w) is similar to Theorem 1.1, but we need to
substitute (n + 1+ g)/p with p.

It is well known that ||T||, = 0 if and only if T is compact; so the estimate on [|Cy||.
leads to conditions for Cy4 to be compact. From Theorem 1.1 we get the following corollary.

Corollary 4.3. Let ¢ = (¢p1, $2, ..., $n) be a holomorphic self-map of B,,. Then a bounded composition
operator Cy : F(p,q,s) — B is compact if and only if

lim sup X(w,w) =0,
00 dist(p(w),0B,)<6 (4.2)

where X (w, w) is the same as Theorem 1.1.
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