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We study the nonlinear parabolic problem with p(x)-growth conditions in the space W'~*LP®) (Q)
and give a local boundedness theorem of weak solutions for the following equation (0u/0ot) +
A(u) = 0, where A(u) = —diva(x, t,u, Vu) + ap(x,t,u, Vu), a(x,t,u, Vu) and ao(x, t,u, Vu) satisfy
p(x)-growth conditions with respect to u and Vu.

1. Introduction

The study of variational problems with nonstandard growth conditions is an interesting
topic in recent years. p(x)-growth problems can be regarded as a kind of nonstandard
growth problems and they appear in nonlinear elastic, electrorheological fluids and other
physics phenomena. Many results have been obtained on this kind of problems, for example
[1-9].

Let Q be Q x (0,T), where T > 0 is given. In [8], the authors studied the following
equation:

u — div(|Du|P<"f“‘2Du) =0, (1.1)

where p; = inf( peqp(x,t) > max{1;2N/(N +2)}, p(x, t) is dependent on the space variable x
and the time variable ¢, u is the local weak solution in the space Wll.f(x’t) (Q)NC(0,T; L? (Q)),

loc
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and the authors proved the local boundedness of the local weak solution in Q. In this paper,
we will study the following more general problem:

%—Ltl +A(u)=0, inQ, (1.2)
u(x,t) =0, onoQx(0,T), (1.3)
u(x,0) =¢(x), inQ, (1.4)

where ¢(x) is a given function in L*(Q) and A : W, LPO(Q) — W *LIM(Q) is an
elliptic operator of the form A(u) = —diva(x,t,u, Vu) + ag(x,t,u, Vu) with the coefficients
a and ay satisfying the classical Leray-Lions conditions. In [10], we have proved the
existence of the solutions of (1.2)—(1.4) and have gotten u € W*LF®)(Q) n L*(0, T; L*(Q));
in this paper we will give the local boundedness theorem of the weak solutions in the
framework space W'*LP®¥)(Q), which can be considered as a special case of the space
WP (Q).

Many authors have already studied the boundedness of weak solutions of parabolic
equation with p-growth conditions, where p is a constant, for example [8, 11-15]. The
boundedness of the weak solutions plays a central role in many aspects. Based on the
boundedness, we can further study the regularity of the solutions. For example, first in [15]
the author studied the equation

w —div a(x,t,u, Vu) = b(x,t,u, Vu) (1.5)

and got L -estimates of the degenerate parabolic equation with p-growth conditions for
p > 1, where p is a constant, then in [16] the authors established the Holder continuity
of the equation for the singular case 1 < p < 2, and in [17] the authors discussed
Harnack estimates for the bounded solutions of the above parabolic equation for p >
2.

The space W'*LP™)(Q) provides a suitable framework to discuss some physical
problems. In [18], the authors studied a functional with variable exponent, 1 < p(x) < 2,
which provided a model for image denoising, enhancement, and restoration. Because in
[18] the direction and speed of diffusion at each location depended on the local behavior,
p(x) only depended on the location x in the image. Consider that the space W*LP&¥) (Q)
was introduced and discussed in [10] and [19], we think that the space WY*LP™)(Q) is
a reasonable framework to discuss the p(x)-growth problem (1.2)-(1.4), where p(x) only
depends on the space variable x similar to [18].

In this paper, leta: Qx Rx RN — RN and ap: Q x Rx RN — Rbe the operators such
that for any s € Rand ¢ € RN, a(x,t,s,¢) and ag(x,t,s,¢&) are both continuous in (t, s,¢) for
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a.e. x € Q and measurable in x for all (¢,s,¢) € (0,T) x R x R". They also satisfy that for a.e.
(x,t) € Q,any s € Rand ¢ #¢* € RV:

laCx,t,5,9) < a(lsP + GO, (L6)
lao(x,t,5,8)| < a(lslP" + gPO), (17)
[a(x,t,5,8) - a(x,t,5,8)](E - ¢ >0, (18)
a(x,t,5,8)¢ +ao(x,t,5,8)s 2 p(1EF + s, (1.9)

where a, f > 0 are constants.
Throughout this paper, unless special statement, we always suppose that p(x) is *-
continuous on €2, thatis, lim, _, ., 5p(y) = p(x) for every x € Q, and satisfy

1<p” =infp(x) <p(x) <supp(x) = p" <oo; (1.10)
Q

q(x) is the conjugate function of p(x).

Definition 1.1. A function u € W'*LP®(Q) N L*(0,T; L*(Q)) is called a weak solution of
(1.2)~(1.4) if

0
—f ua—(fdxdt+J u(pdx|g+f [a(x,t,u, Vu)Vo + ag(x,t,u, Vu)p]dx dt = 0 (1.11)
Q Q Q

forall ¢ € C1(0,T; Cy(Q)).

We will prove the following local boundedness theorem.

Theorem 1.2. Let p~ > max{1,2N/(N + 2)}. If u is a nonnegative local weak solution of (1.2)—
(1.4), then u is locally bounded in Q. Moreover, there exists a constant C = C(N, p;;,p;, p) such that

for any Q(p¥?, p) € Q and any o € (0,1),

p,/N(q-6)

+ - 1
sup u<max1 1,C(1 - o) PrN)/Na-0) —+J‘ X uSdx dt ,
Q(op op) |Q<PP‘)/P> | Q' p)

(1.12)

where for all (xo, ) € Q, K, = {x € Q| maxi<i<n|xi —x0,4| < p}, pj = suprp(x),p; = infg,p(x),
Q(p™,p) = K, x (to — p*, tg), and max{p;,2} <6 < g = (N +2)/N)p,.
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2. Preliminaries

We first recall some facts on spaces LP®) (Q), WP (Q), and W™*LP&X)(Q). For the details,
see [19-21].

Although we assume (1.10) holds in this paper, in this section we introduce the general
spaces LP™(Q), WP (Q), and W™XLP&¥) (Q).

Denote

E = {w : w is a measurable function on Q}, (2.1)

where Q ¢ RY is an open subset.
Let p(x) : Q — [1, 0] be an element in E. Denote Q, = {x € Q: p(x) = oo}. Foru € E,
we define

p(u) = I |u(x)|P(x)dx +esssup |u(x)|. (2.2)

Q\Q., xeQ,,
The space LP™)(Q) is
PYQ)={ueE:3A>0, p(Au) < oo} (2.3)
endowed with the norm

4l o ) = inf{/\ >0 p<%> < 1}. (2.4)

We define the conjugate function g(x) of p(x) by

o0, if p(x) =1,
q(x) = 1, if p(x) = oo; (2.5)
I%, if 1 <p(x)<oo.

Lemma 2.1 (see [21]). (1) The dual space of LP®) (Q) is L1 (Q) if 1 < p(x) < co.
(2) The space LP™¥) (Q) is reflexive if and only if (1.10) is satisfied.

Lemma 2.2 (see [21]). If 1 < p(x) < oo, CF(Q) is dense in the space LP®)(Q) and LP®)(Q) is
separable.
Lemma 2.3 (see [21]). Let 1 < p(x) < oo, for every u(x) € LP™(Q) and v(x) € L1¥)(Q), we have

ngu(X)v(X)ldx < Cllu) e @ 10 ) a0 @) (2.6)

where C is only dependent on p(x) and Q, not dependent on u(x), v(x).
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Next let m > 0 be an integer. For each a = (a3, ay, ..., a,), a; are nonnegative integers
and |a| = 2, a;, and denote by D“ the distributional derivative of order a with respect to the
variable x.

We now introduce the generalized Lebesgue-Sobolev space W™*™(Q) which is
defined as

Wmre)(Q) = { ue [PD(Q): Due LD (Q), |a < m} 2.7)

WmP)(Q) is a Banach space endowed with the norm

lull = 7 ID"ull e - (2.8)

|a|<m

The space Wom P0) (L) is defined as the closure of C{°(Q) in Wmr®(Q). The dual space
Wy 7™ (0))* is denoted by W4 (Q) equipped with the norm

”f”wfm/qw(g) = inf Siajerm || fa || Lo (% (2.9)

where infimum is taken on all possible decompositions

f = Zagem (DD fa,  fu € LIO(Q). (2.10)

Lemma 2.4 (see [21]). (1) W™P™)(Q) and Wg"’p(x)(Q) are separable if 1 < p(x) < co.
(2) WmP® (Q) and W™ (Q) are reflexive if (1.10) holds.

We define the space W™*LP¥)(Q) as the following:

WA LPE)(Q) = { ue [PY9(Q): Due LD (Q), |al < m}. (2.11)

Wm*LPX)(Q) is a Banach space with the norm [lu]| = 3, [D*ullpe ), where p(x) is
independent of .

The space W *LP®™(Q) is defined as the closure of CP(Q) in W™*LP®)(Q), and
W LP&) (Q) — LPX(Q) is continuous embedding. Let M be the number of multiindexes a
which satisfies 0 < |a| < m, then the space W LP®™) (Q) can be considered as a close subspace
of the product space Hf\fl LP™(Q).Soif 1 < p(x) < oo, Hf\fl LP9)(Q) is reflexive and further we
can get that the space Wj"*LP™)(Q) is reflexive. The dual space (W;"*LP®)(Q))" is denoted
by W=*L1™)(Q) equipped with the norm

”f”W-mrXLq(“)(Q) = sup |<f'u>| = inf ZIUIISVrl”fa”Lq(x) Q) (2.12)

”u”WS”r"LP(x) (Q)Sl

where infimum is taken on all possible decompositions

f = Sem(-1)1" D2 fa,  fu € L19(Q). (2.13)
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Next, we will introduce some results in [22].

Lemma 2.5. Let {Y,},n =0,1,2,..., be a sequence of positive numbers, satisfying the inequalities
Y1 < Cb"Y!*, where C,b > 1 and a > 0 are given numbers. If Yy < C™V2b™V% then {Y,)
converges to 0 asn — oo.

Lemma 2.6. There exists a constant C depending only on N,r,m, such that for every v €
L=(0,T; L™()) N L7 (0, T; W, (Q)),

r/N
f |v(x,t)|qudt§Cq<J‘ |Dv(x,t)|rdxdt><sup |v(x,t)|mdx> , (2.14)
Q Q

0<t<TY Q

where g = r((N +m)/N).
Remark 2.7. In [10], we have gotten that for the Galerkin solutions u, € C(0,T; Cr(Q)),

u, — ustrongly in L}(Q), u, — u weakly in WYXLP®(Q), a(x,t, u,, Vu,) — a(x,t,u, Vi)
weakly in L9®(Q) and ag(x, t, un, Vi) — ao(x, t,u, Vu) weakly in LI®) (Q).

3. Proof of the Theorem

Suppose that u is a weak solution of (1.2)—(1.4), then there exists 6 > max{p*,2} such that

f lul®dx dt < co. (3.1)
Q

Indeed, by Young's inequality, we have

vul dxar+ Vupdrde <[l + [ [Vurdxdi<es,  (32)
Q

IQH[P<P(X)] On{p=p(x)}

where |Q| is the Lebesgue measure of Q. Since W, LF®(Q) — W, LV (Q) =

LF (0,T; Wé’p_ (Q)) and u € WYXLP®(Q) N L*=(0,T; L*(Q)), we can get u € L*(0, T; L(Q)) N
LV (0,T; Wé’p_ (2)). Then by Lemma 2.6, we get

2/N
f lul®dx dt < C? < I |DulP dx dt) <sup |u|2dx> , (3.3)
Q Q 0<t<TV Q

where 6 = (N +2)/N)p~. Thus the desired result is obtained.
We define u, = max{u,0}. Fix a point (xp,fp) in Q. Let0 < p < 1,0 < 0 < 1, and
Q(6,p) = K, x (to - 6,t9) C Q. Fix o € (0,1) and consider the sequences

1- 1-
Pm =0p+ Z—mGP/ 0 =00+ 2—1"09, m=0,1,2,..., (34)
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and the corresponding cylinders Q,, = Q(0, p)- It follows from the definitions that
Q=Q(0,p), Qu=Q(ch,0p). (3.5)

We consider also the boxes Qm = Q(ém, Pm), where form=0,1,2,...,

~ _ PmT Pm+ ~ _6m+9m+1 3.6
pn=——m—r  Om=— (3.6)

For these boxes, we have the inclusion

Qm+1 C @m C Qm/ m= 0/ 1/ 2/ ceee (37)

We introduce the sequence of increasing levels

k

km:k_z_mr

m=0,1,2,..., k>0 to be chosen. (3.8)

Let {u,} be the Galerkin solutions in [10]. Similarly, we can get u, — u is bounded in
L%(Q). Since u, — u converges to 0 in L' (Q), by interpolation inequality, we have

A 1-1
llun — u”LP*(Q) < lun - u”Ll(Q)”un - u”Lﬁ(Q)/ (3.9)

where 0 < A < 1, 1/p* = A+ 6/(1 - \). Furthermore, u, — u strongly in L' (Q). Since
P (Q) — LPY(Q), u, — u strongly in LP®)(Q). In the same way, we obtain that u, — u
strongly in L*(Q); furthermore, we get |lu,(t) — u(t)|l12@@ — 0 fora.e.t € [0,T].

Let Q!, = K,,, x (to = 6,,, t) and ¢{ be the smooth cutoff function satisfying

0<¢<1, ¢=0 ondK,, x (th—0Oumto) UK, x {t}, ¢=1 in Qm,

m+2 m+2 (3.10)

Vel < 0<&< g 50

~(1-o)p’
Take ¢ = (uy — k1) +§”; as the testing function in the following equation:

0 ouy,
Q. Ot

dx dt + f a(x,t,u,, Vu,)Vedx dt + J ap(x,t,u,, Vuy)pdxdt = 0. (3.11)
Qi Qi
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First, by ||un(t) — u(t)|l12@ — O forae.t € [0,T] and u, — u strongly in L*(Q), we

get
lim (pau" dx dt
1 0 "
- tim 3 o 3t (n ~ ke )egfdxdt

lim <%f (1 = Kms1)2 8P (x, t)dx — %f (tn = Ks1)22P7 (x, tg — Oy dx
K,

nme Pm Kﬂm
N (3.12)
p -
a EPI (un - km+1)i§pp 1|§t|dx dt>
Qn
1 2 oyt 1 2 op*
= —f (u — kys1)36P7 (x, t)dx — —J‘ (u = ky1)36P7 (x, tg — Oy)dx
2 Ko 2 Ko
P

[ - ka2 et
Qi

By Fatou’s lemma, we get

n—oo

lim <’[ a(x, t, uy, Vu,)V(u, — km+1)+§p5dx dt + ’[ ao(x, t, uy, Vun)ung”;dx dt>
Qb

Qiﬂm{ un>km+1 }

> ’[ a(x, t,u, Vu)V(u - km+1)+§"’; dx dt + f ao(x,t,u, Vu)ugp; dx dt.
Qh Qun{u>kipir }

(3.13)

Because (u,), — u, strongly in LF™(Q) and a(x,t,u,, Vu,) — a(x,t,u, Vu) weakly in
LI™(Q), we get

lim | a(x,t, u,, Vi) (uy — kpa1) P71V dx dt = f a(x, t,u, Vi) (u - kps1),CPr 1V dx dt.
Q&

n—oo Qt
m

(3.14)

Since (u,), — u. strongly in LPD(Q) and ag(x,t,u,, Vu,) — ao(x,t,u, Vi) weakly in
L1%)(Q), we have

lim <j ao(x, t, Uy, Vi) (U, — km+1)+§”’; dx dt — j aop(x, t, Uy, Vun)ung’”; dx dt>
n—o an

Q‘tmm{un>km+l }

= J ao(x, t,u, Vu)(u - km+1)+§p5 dx dt - f ap(x,t,u, Vu)ugp; dx dt.
Qn Qnn{u>kii )

(3.15)
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Then for the remaining parts of (3.11), we get

I = lim a(x,t,uy, Vu,) Vo + ag(x, t,u,, Vu,)p dx dt

n— oo Qt
m

n— oo

= lim <f a(x, t, ty, Vitg)V (ty — ki1 ), P dx dt
Qb
+ p;f a(x, t, ty, Vity) (1t — kys1),CPe 71V dx dt
Qb
+ f ao (X, t, ty, Vidy) (ty — Kype1) , CP7 dx dt
Qb
+ f ao(x, t, U, Vidy ) unCPe dx dt
Qinm[un>km+l}
- f ao(x,t,uy, Vun)uné’”;dx dt
Qinm[un>km+1}
> f a(x, t,u, Vi)V (u - kyi1), &P dx dt
Qb
+ f aog(x, t,u, Vu)uPr dx dt
Q{'nn{u>km+1]
+ p;j a(x,t,u, Vi) (1 = kps1) ,&Pr 71V dox dt
Qb

+ J‘ ao(x,t,u, Vu)(u— km+1)+§’”5dx dt
Qb

- f ao(x, t,u, Vu)ucPe dx dt.
gnn{u>km+1]

By (1.6), (1.7), and (1.9),

Qun{u>ki }

I> ﬁ<f |V (1 = k) [P P dx dt + J [ulP ™ ¢Pi dx dt>
Qh
- p;af jul" g7V dx dit
Qu{uzkm }

—pp f |V (= ) P07 (1 = Kar) P77V | dxe dlt
Qn

- zxf |ulP® ¢Pe dox dt — af IV (1 = kar), [P 7 1| 2P dox dit.
QN >k ) Qhn

(3.16)

(3.17)
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As (p; = 1)(p(x))/(p(x) - 1) > p;, by Young's inequality and Holder’s inequality, we
have

f |V (1 = K1) P (1 = Kesn) 8P VG dx dt
o

< gf IV (4 = ks ), [P 27 dx dt + C(g)f (1 = ks )P |V PD) dix dit
Q, Q,

< Ef o, |V 04 o) PO el + C<E>IQ, (1= ) [V dx i o
+ C(s)JQt X[(u = kps1), > 0]dxdt.
In the same way, by p; (p(x)/ (p(x) — 1)) > p, and Young’s inequality, we have
J IV (1 = Kpar), [P | &P dox dit < gf IV (1t = k1), [P 2P dox dt
Qi Qh (3.19)

+ C(e)f [ulP®dx dt.
Q;nm{u>km+1]

For a set A, meas A is the Lebesgue measure of A. Let |A,,.1| = meas{(x,t) € Q, |
u(x,t) > kppa } and ea = /4. By (3.11)—(3.19), we get

sup (= ne1) 8PP dx + f |V (1 = ksa) [P 80 dx dlt

to—0,,<t<ty Kpm Qm

< f (= kne1) 87 il dx dt + C f (U = k)7 |VEPrdx dt + ClApaa]  (320)
Qm

m

+ cf [uP® P~ Ve dx di + cf [ulP™ dx dt.
Qmﬂ{u>km+1}

an{u>km+1]

Moreover, we observe that for s > 0 to be determined later,

f (u—kp)Sdx dt > ’[ (u = k)5 x[u > kpsr]dx dt
Qm

m

2 (km+1 - km)s|Am+1| (321)
ks
= W|Am+l|/
thus we get
2(m+1)s

|Am+1| <

- f (1 — k) dx dt. (3.22)
ke Ja,
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Then for s =2 and s = pj in (3.22), by Holder inequality, we obtain respectively

2/6
IQ (1 = k1) 2dx dt < (JQ (1 = kpps)dx dt> |Apin |22

(3.23)
(6-2)m
< cszfQ ( — k) O dox dt,
. p,/0
[ -k Faxar< <j (1~ o) dt> [
Qm Qm
(3.24)
(6-p,)m
<c2” f (14 = k) dx dt.
Qm

K5Ps

For the integral involving [u|P®), first we write k,, = ki1 (2™ = 2)/(2™+1 = 1)), then
we obtain

f (u—kp)odxdt > J (u = k)P y[u > ki1 dx dt
Qm

5 om+l _ o 6
> I |u| <1 - W> X[u > km+]]dx dt (325)

2 o5 , |u® (1 > Kyt |dax dt.

By Young’s inequality and (3.25), we get

| POV + e
QumN{u>kuyi1}

m

< c—f [ulP™ dx dt
(1-o0)p Qun{u>kyi1 )

(3.26)

2m
<C f [ul®dx dt + | A
(1=0)p \J guniuskoi)

2 md )
<C—_ - + .
C(l ) <2 J m(u km)+dxdt |Am+1|>
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Let1 < k < (1/pP )07 then 1/p < 1/pPrk5F. By (3.20)-(3.24) and (3.26), we
obtain

sup [ (k)i [ V00— o) PO drd
to—Om<t<to’ Ky, Qm
2(6—2)m om+2 2(6—p;)m om+2 2(m+1)5 om om 2(m+1)6
<C + - + + 2md 4
ko2 (1-0)0 k57 (1-o0)p k¢ (1-o0)p (1-0)p kb

x f (1 — k) odx dt
Qm

m(1+6)
<C 2 i < 15-2 b 157 i >f (u — k) Sdx dt.
(1-o)P Ok ppﬂk Pp O

(3.27)
By Young’s inequality,
j~ |V (1 = k1), |Prdx dt < J' IV (1 = ket PP dx dt + |Am+1 N Qm|
Qm Qm
(3.28)
<[ 19 kepa) POt + Al
Qm
Moreover, by (3.27), we can get
sup (U = kps1)>dx + I |V (u = k1) [Prdx dt
to—Om<t<to’ Kp,, Qm
(3.29)
2m(1+6) 1 1 6
<C . +—— f (u— k) dxdt.
(1-0)P» \OKO 2 prikS¥ /),
Next we define the smooth cutoff function Em in Qm
0<u<1, &u=0 ondKy, x (=0 t),
(3.30)

2m+2

En=1 in Quu, |va|sm.
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For the function (u — km+1)+gm, by Lemma 2.6 and (3.29), we get
[ = ko) Ghtwa
Qm

§C<f~ |V(u—km+1)+|”5dxdt+J‘N (1 = Kys), 77 | Vim
Qm Qm

P”dxdt)

(3.31)

p,/N
X sup (u—- km+1)3dx
to—0,,<t<to Kﬁm

2m(1+o) 1 1 /N p l+p, /N
<C < (1- G)PE <9k5—2 + pp;ké—p; >> IQm (u— k) dxdt )

Finally, we define Y;,, = (1/|Qm|)me(u - km)fdx dt, m = 0,1,2,.... Let 0 = p"’;; by
Holder inequality, we obtain

1
Y1 = —f (1 — ka1 dx dt
|Qm+1 | Qm+1

<C <|5—m' f k) B dt)

1 - 6/4 |A | 1-6/q
<o = w-kptEhaxar ) () (3.32)
'Qm' Om |Qm|
1 B 6/q o 1-6/q
<C N_IN (u - km+1)Z§Z1dx dt <ﬁym>
|Qm' Qm
< cp™ Y1+6p;/Nq

7

(p(l _ O.))P;((NW;)/N)6/qk5/q(q_5) m

where b = 200+0p,/aN+(1/q)(1+7;/N)) Then by Lemma 2.5, we have Y;,, — 0as m — oo,
provided k = max{k,1} is chosen to satisfy

(@-6)N/p;

Yo = ubdx dt = Ck (1 - o) NP PP}

1
|Q<p”5 , p) | f Q7 p) (3.33)

By Y,, — 0, we can get IQO(u - km)fomdxdt — 0asm — oo. Since (u - km)(zXQm < (Jul +
k)6 and (u — km)fXQm - (u- k)fXQ(ae,ap) a.e. in Q, by Lebesuge’s theorem we get fQO(u -
k) yo, dx dt — -[Qo (u-— k)fo(gg,ap)dx dt = 0. So we obtain u < k a.e. in Q(09, op).
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Thus we get
p,/N(q-6)
+ - 1
sup u<max1 1,C(1— o) PrN)/Na-0) —+J‘ X ubdx dt
Q(op’? ,0p) |Q<p’”ﬂ,p> | Q)
(3.34)

Remark 3.1. In this paper, we study the boundedness of weak solution in the case p~ >
max{1,2N/(N + 2)}. For the singular case 1 < p~ < max{1,2N/(N + 2)}, the conditions
in the paper are not enough. In [22], there is a counterexample in §13 of Chapter XII. The
author studied the solutions of the homogeneous equation

u; — div |Du|’”_2Du =0, inQ,

(3.35)
1€ Cloe(0, T;LE(Q)) N LL (0, ;W2 (Q)), p>1,
where
1 =71 l+¢ 2N
uel, (Q), ueL (Q) Vee(0,1), p= NIl (3.36)
and proved that the solution u is unbounded in Q.
Remark 3.2. In general, we consider the equation
%—”t‘ +A(u) = f(x,t) >0, inQ, (3.37)
where
£, )2/ e LN/ o), (3.38)

hy € (0,1] and A : W, LPW(Q) — W*LIW(Q) is an elliptic operator of the form A(u) =
—diva(x,t,u, Vu) + ap(x,t,u, Vu). a(x,t,s,¢) and ap(x,t,s,¢) satisfy that for a.e. (x,t) € Q,
any s € Rand ¢ #¢&* € RV:

la(x,t,s,8)| < a(C(x, £) + |sPO T+ |§|p(x)—1>,

lao(x,t,s,8) < a(C(x, £) + s+ |§|P(X)—1>l
(3.39)

[a(x,t,5,8) - a(x,t,5,8)]E€ - &) >0,

a(x,t,s,&)& + ap(x,t,s,&)s > ﬁ(|§|v<x> + |S|p<x)>,

where C(x,t) > 0, C(x, )P/ P~ ¢ [ (N+p)/0-ho)p™ (), and a, f > 0 are constants.
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Similarly, we can get the following theorem.

Theorem 3.3. Let p~ > max{1,2N/(N +2)}. If u is a nonnegative local weak solution of (3.37),
(1.3), and (1.4), then u is locally bounded in Q. Moreover, there exists a constant C = C(N, p;,p;, P)

such that for any Q(ppft,p) €Qandany o € (0,1),

h/(q-6)

+ - ].
sup u<max] 1,C(1- o) PeNP)/NG0) —+I ~uldxdt ,
Qep'? 0p) |Q(p.p) | i o

(3.40)

where for all (xo, to) € Q, K, = {x € Q| maxi<isn|xi —xo,4| < p}, p; = suprp(x), p, = infx,p(x),

Q(p™,p) = K, x (to = p7,ty), and max{p},2}) < 6 < q = (N +2)/N)p,, h = hy(p,/N) €
(0,p,/N].
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