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We first present an inequality for the Frobenius norm of the Hadamard product of two any square
matrices and positive semidefinite matrices. Then, we obtain a trace inequality for products of two
positive semidefinite block matrices by using 2 × 2 block matrices.

1. Introduction and Preliminaries

Let Mm,n denote the space of m × n complex matrices and write Mn ≡ Mn,n. The identity

matrix in Mn is denoted In. As usual, A∗ = (A)
T
denotes the conjugate transpose of matrix

A. A matrix A ∈ Mn is Hermitian if A∗ = A. A Hermitian matrix A is said to be positive
semidefinite or nonnegative definite, written as A ≥ 0, if

x∗Ax ≥ 0, ∀x ∈ C
n. (1.1)

A is further called positive definite, symbolized A > 0, if the strict inequality in (1.1) holds
for all nonzero x ∈ C

n. An equivalent condition forA ∈ Mn to be positive definite is thatA is
Hermitian and all eigenvalues of A are positive real numbers. Given a positive semidefinite
matrix A and p > 0, Ap denotes the unique positive semidefinite pth power of A.

Let A and B be two Hermitian matrices of the same size. If A − B is positive
semidefinite, we write

A ≥ B or B ≤ A. (1.2)

Denote λ1(A), . . . , λn(A) and s1(A), . . . , sn(A) eigenvalues and singular values of matrix A,
respectively. Since A is Hermitian matrix, its eigenvalues are arranged in decreasing order,
that is, λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) and if A is any matrix, its singular values are arranged
in decreasing order, that is, s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) > 0. The trace of a square matrix A
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(the sum of its main diagonal entries, or, equivalently, the sum of its eigenvalues) is denoted
by trA.

Let A be any m × n matrix. The Frobenius (Euclidean) norm of matrix A is

‖A‖F =

⎡
⎣

m∑
i=1

n∑
j=1

∣∣aij

∣∣2
⎤
⎦

1/2

. (1.3)

It is also equal to the square root of the matrix trace of AA∗, that is,

‖A‖F =
√
tr(AA∗). (1.4)

A norm ‖ · ‖ on Mm,n is called unitarily invariant ‖UAV ‖ = ‖A‖ for all A ∈ Mm,n and all
unitary U ∈ Mm,V ∈ Mn.

Given two real vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in decreasing order, we say
that x is weakly log majorized by y, denoted x ≺w logy, if Πk

i=1xi ≤ Πk
i=1yi, k = 1, 2, . . . , n, and

we say that x is weakly majorized by y, denoted x ≺wy, if
∑k

i=1xi ≤
∑k

i=1yi, k = 1, 2, . . . , n. We
say x is majorized by y denoted by x ≺ y, if

x≺wy,
n∑
i=1

xi =
n∑
i=1

yi. (1.5)

As is well known, x≺w logy yields x≺wy (see, e.g., [1, pages 17–19]).
Let A be a square complex matrix partitioned as

A =

(
A11 A12

A21 A22

)
, (1.6)

where A11 is a square submatrix of A. If A11 is nonsingular, we call

Ã11 = A22 −A21A
−1
11A12 (1.7)

the Schur complement of A11 in A (see, e.g., [2, page 175]). If A is a positive definite matrix,
then A11 is nonsingular and

A22 ≥ Ã11 ≥ 0. (1.8)

Recently, Yang [3] proved two matrix trace inequalities for positive semidefinite
matrices A ∈ Mn and B ∈ Mn,

0 ≤ tr (AB)2n ≤ (trA)2
(
trA2

)n−1(
trB2
)n

,

0 ≤ tr (AB)2n+1 ≤ (trA)(trB)
(
trA2

)n(
trB2
)n

,

(1.9)

for n = 1, 2, . . ..
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Also, authors in [4] proved the matrix trace inequality for positive semidefinite
matrices A and B,

tr (AB)m ≤
{
tr (A)2m tr (B)2m

}1/2
, (1.10)

where m is a positive integer.
Furthermore, one of the results given in [5] is

n(detA · detB)m/n ≤ tr(AmBm) (1.11)

for A and B positive definite matrices, where m is any positive integer.

2. Lemmas

Lemma 2.1 (see, e.g., [6]). For any A and B ∈ Mn, σ(A ◦ B)≺wσ(A) ◦ σ(B).

Lemma 2.2 (see, e.g., [7]). Let A,B ∈ Mm,n, then

t∑
i=1

∣∣∣δi
(
(AB)2m

)∣∣∣ ≤
t∑

i=1

λi
(
(A∗ABB∗)m

)

≤
t∑

i=1

λi
(
(A∗A)m(BB∗)m

)
, 1 ≤ t ≤ n, m ∈ N.

(2.1)

Lemma 2.3 (Cauchy-Schwarz inequality). Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers.
Then,

(
n∑
i=1

aibi

)2

≤
(

n∑
i=1

a2
i

)(
n∑
i=1

b2i

)
, ∀ai, bi ∈ R. (2.2)

Lemma 2.4 (see, e.g., [8, page 269]). If A and B are poitive semidefinite matrices, then,

0 ≤ tr(AB) ≤ trA trB. (2.3)

Lemma 2.5 (see, e.g., [9, page 177]). Let A and B are n × n matrices. Then,

k∑
i=1

si(AB) ≤
k∑
i=1

si(A)si(B) (1 ≤ k ≤ n). (2.4)

Lemma 2.6 (see, e.g., [10]). Let F and G are positive semidefinite matrices. Then,

t∑
i=1

λmi (FG) ≤
t∑

i=1

λi(FmGm), 1 ≤ t ≤ n, (2.5)

wherem is a positive integer.
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3. Main Results

Horn and Mathias [11] show that for any unitarily invariant norm ‖ · ‖ on Mn

‖A∗B‖2 ≤ ‖A∗A‖‖B∗B‖ ∀A,B ∈ Mm,n,

‖A ◦ B‖2 ≤ ‖A∗A‖‖B∗B‖ ∀A,B ∈ Mn.
(3.1)

Also, the authors in [12] show that for positive semidefinite matrix A =
(

L X

X∗ M

)
, where X ∈

Mm,n

∥∥|X|p∥∥2 ≤ ‖Lp‖‖Mp‖ (3.2)

for all p > 0 and all unitarily invariant norms ‖ · ‖.
By the following theorem, we present an inequality for Frobenius norm of the power

of Hadamard product of two matrices.

Theorem 3.1. Let A and B be n-square complex matrices. Then

∥∥(A ◦ B)m∥∥2F ≤ ∥∥(A∗A)m
∥∥
F

∥∥(B∗B)m
∥∥
F
, (3.3)

wherem is a positive integer. In particular, if A and B are positive semidefinite matrices, then

∥∥(A ◦ B)m∥∥2F ≤
∥∥∥A2m

∥∥∥
F

∥∥∥B2m
∥∥∥
F
. (3.4)

Proof. From definition of Frobenius norm, we write

∥∥(A ◦ B)m∥∥2F = tr
[
(A ◦ B)m(A ◦ B)m∗]. (3.5)

Also, for any A and B, it follows that (see, e.g., [13])

(
AA∗ ◦ BB∗ A ◦ B
A∗ ◦ B∗ I

)
≥ 0, (3.6)

(A ◦ B)(A ◦ B)∗ ≤ AA∗ ◦ BB∗. (3.7)

Since | trA2m| ≤ tr[Am(A∗)m] ≤ tr[(AA∗)m] for A ∈ Mn and from inequality (3.7), we write

∥∥(A ◦ B)m∥∥2F = tr (A ◦ B)m(A ◦ B)m∗

≤ tr
[(
(A ◦ B)(A ◦ B)∗)m]

≤ tr
[
(AA∗ ◦ BB∗)m

]
.

(3.8)
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From Lemma 2.1 and Cauchy-Schwarz inequality, we write

tr(Am ◦ Bm) =
n∑
i=1

λi[(Am ◦ Bm)] ≤
n∑
i=1

λi(Am)λi(Bm)

≤
{

n∑
i=1

λ2i (A
m)

n∑
i=1

λ2i (B
m)

}1/2

=
{
trA2m trB2m

}1/2
.

(3.9)

By combining inequalities (3.7), (3.8), and (3.9), we arrive at

tr
[
(AA∗ ◦ BB∗)m

] ≤ {tr (AA∗(AA∗))m tr (BB∗(BB∗))m
}1/2

≤ {tr (AA∗AA∗)m tr (BB∗BB∗)m
}1/2

=
{
tr (AA∗)2m

}1/2{
tr (BB∗)2m

}1/2

=
∥∥(A∗A)m

∥∥
F

∥∥(B∗B)m
∥∥
F.

(3.10)

Thus, the proof is completed. Let A and B be positive semidefinite matrices. Then

∥∥(A ◦ B)m∥∥2F ≤
∥∥∥A2m

∥∥∥
F

∥∥∥B2m
∥∥∥
F
, (3.11)

where m > 0.

Theorem 3.2. Let Ai ∈ Mn (i = 1, 2, . . . , k) be positive semidefinite matrices. For positive real
numbers s,m, t

(
k∑
i=1

∥∥∥A((s+t)/2)m
i

∥∥∥
2

F

)2

≤
(

k∑
i=1

∥∥Asm
i

∥∥2
F

)(
k∑
i=1

∥∥Atm
i

∥∥2
F

)
. (3.12)

Proof. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

AS/2
1 0 · · · 0

0 As/2
2 · · · 0

...
...

. . .
...

0 0 · · · As/2
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

At/2
1 0 · · · 0

0 At/2
2 · · · 0

...
...

. . .
...

0 0 · · · At/2
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.13)
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We know that A,B ≥ 0, then by using the definition of Frobenius norm, we write

∥∥(A ◦ B)m∥∥2F =
k∑
i=1

∥∥∥A((s+t)/2)m
i

∥∥∥
2

F
,

∥∥∥A2m
∥∥∥
F
=

√√√√ k∑
i=1

∥∥Asm
i

∥∥2
F
,

∥∥∥B2m
∥∥∥
F
=

√√√√ k∑
i=1

∥∥Atm
i

∥∥2
F
.

(3.14)

Thus, by using Theorem 3.1, the desired is obtained.

Now, we give a trace inequality for positive semidefinite block matrices.

Theorem 3.3. Let

A =

(
A11 A12

A21 A22

)
≥ 0, B =

(
B11 B12

B21 B22

)
≥ 0, (3.15)

then,

tr
[(

Ã22

)1/2
B1/2
11

]2m
+ tr
[
A1/2

22

(
B̃11

)1/2]2m ≤ tr (AB)m ≤ tr(AmBm), (3.16)

wherem is an integer.

Proof. Let

M =

(
X 0

Y Z

)
(3.17)

with Z = A1/2
22 , Y = A−1/2

22 A21, X = (A11 −A12A
−1
22A21)

1/2. Then A = M∗M (see, e.g., [14]). Let

K =

(
X 0

Y Z

)
(3.18)

with Z = (B22 − B21B
−1
11B12)

1/2, Y = B21B
−1/2
11 , X = B1/2

11 . Then B = KK∗ (see, e.g., [14]). We
know that

Mk =

(
Xk 0

∗ Zk

)
,

M ·K =

⎡
⎣
((

A11 −A12A
−1
22A21

)1/2)
B1/2
11 0

A−1/2
22 A21B

1/2
11 +A1/2

22 B21B
−1/2
11 A1/2

22

(
B22 − B21B

−1
11B12

)1/2

⎤
⎦,
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(M ·K)2m =

⎡
⎢⎣

[((
A11 −A12A

−1
22A21

)1/2)
B1/2
11

]2m
0

∗
[
A1/2

22

(
B22 − B21B

−1
11B12

)1/2]2m

⎤
⎥⎦.

(3.19)

By using Lemma 2.2, it follows that

∣∣∣tr (MK)2m
∣∣∣ ≤

n∑
i=1

si
(
(MK)2m

)
≤

n∑
i=1

(si(MK))2m

=
n∑
i=1

(
s2i (MK)

)m
=

n∑
i=1

λi
(
(M∗MKK∗)m

)

=
n∑
i=1

λi
(
(AB)m

)
=

n∑
i=1

tr (AB)m ≤
n∑
i=1

λi
(
(M∗M)m(KK∗)m

)

=
n∑
i=1

λi
[
(A)m(B)m

]
=

n∑
i=1

tr(AmBm).

(3.20)

Therefore, we get

∣∣∣tr (MK)2m
∣∣∣ = tr

[((
A11 −A12A

−1
22A21

)1/2)
B1/2
11

]2m
+ tr
[
A1/2

22

(
B22 − B21B

−1
11B12

)1/2]2m

≤ tr (AB)m ≤ tr(AmBm).
(3.21)

As result, we write

tr
[(

Ã22

)1/2
B1/2
11

]2m
+ tr
[
A1/2

22

(
B̃11

)1/2]2m ≤ tr (AB)m ≤ tr(AmBm). (3.22)

Example 3.4. Let

A =

(
4 1

1 1

)
> 0, B =

(
5 2

2 1

)
> 0. (3.23)

Then trAB = 25,detA = 3,detB = 1. From inequality (1.11), form = 1, we get

n(detAdetB)1/n = 2
√
3 ∼= 3.464. (3.24)
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Also, for m = 1, since tr (Ã22
1/2

B1/2
11 )

2
= 15 and tr (A1/2

22 B̃11
1/2

)
2
= 0.2, we get

tr
(
Ã22

1/2
B1/2
11

)2

+ tr
(
A1/2

22 B̃11
1/2
)2

= 15.2. (3.25)

Thus, according to this example from (3.24) and (3.25), we get

n(detAdetB)1/n ≤ tr
(
Ã22

1/2
B1/2
11

)2

+ tr
(
A1/2

22 B̃11
1/2
)2

≤ tr(AB). (3.26)
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