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Let {Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random variables
and denote Sn =

∑n
k=1 Xk , Mn = max1≤k≤nXk . In this paper, we investigate the almost sure

central limit theorem in the joint version for the maxima and sums. If for some numerical

sequences (an > 0), (bn) we have (Mn − bn)/an
D→ G for a nondegenerate distribution G, and

f(x, y) is a bounded Lipschitz 1 function, then limn→∞(1/Dn)
∑n

k=1 dkf(Sk/
√
k, (Mk − bk)/ak) =∫∫∞

−∞f(x, y)Φ(dx)G(dy) almost surely, where Φ(x) stands for the standard normal distribution
function, Dn =

∑n
k=1 dk ,and dk = (exp((log k)α))/k, 0 ≤ α < 1/2.

1. Introduction and Main Results

Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random

variables and Sn =
n∑

k=1
Xk, n ≥ 1, Mn = max1≤k≤n Xk for n ≥ 1. If E(X) = 0, E(X2) = 1, the

classical almost sure central limit theorem (ASCLT) has the simplest form as follows:

lim
n→∞

1
logn

n∑

k=1

1
k
I

{
Sk√
k
≤ x

}

= Φ(x) (1.1)

almost surely for all x ∈ R, here and in the sequel, I(A) is the indicator function of the
event A, and Φ(x) stands for the standard normal distribution function. This result was first
proved independently by Brosamler [1] and Schatte [2] under a stronger moment condition,
since then, this type of almost sure version which mainly dealt with logarithmic average
limit theorems has been extended in various directions. Fahrner and Stadtmüller [3] and
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Cheng et al. [4] extended this almost sure convergence for partial sums to the case of maxima
of i.i.d. random variables. Under some natural conditions, they proved that

lim
n→∞

1
logn

n∑

k=1

1
k
I

{
Mk − bk

ak
≤ x

}

= G(x) (1.2)

almost surely for all x ∈ R, where ak > 0 and bk ∈ R satisfy

P

(
Mk − bk

ak
≤ x

)

−→ G(x) (1.3)

for any continuity point x of G.
For Gaussian sequences, Csáki and Gonchigdanzan [5] investigated the validity of

(1.2) maxima of stationary Gaussian sequences under some mild condition. Furthermore,
Chen and Lin [6] extended it to nonstationary Gaussian sequences. As for some other
dependent random variables, Peligrad and Shao [7] and Dudziński [8] derived some
corresponding results about ASCLT. The almost sure central limit theorem in the joint version
for log average in the case of independent and identically distributed random variables is
obtained by Peng et al. [9]; a joint version of almost sure limit theorem for log average of
maxima and partial sums in the case of stationary Gaussian random variables is derived by
Dudziński [10].

All the above results are related to the almost sure logarithmic version; in this paper;
inspired by the results of Berkes and Csáki [11], we further study ASCLT in the joint version
for the maxima and partial sums with another weighted sequence (dn). Now, we state our
main result as follows.

Theorem 1.1. Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.)
random variables with non-degenerate common distribution function F, satisfying E(X) = 0 and
E(X2) = 1. If for some numerical sequences (an > 0), (bn) one has

Mn − bn
an

D−→ G (1.4)

for a non-degenerate distribution G, and f(x, y) is a bounded Lipschitz 1 function, then

lim
n→∞

1
Dn

n∑

k=1

dkf

(
Sk√
k
,
Mk − bk

ak

)

=
∫∫∞

−∞
f
(
x, y
)
Φ(dx)G

(
dy
)

(1.5)

almost surely, where Φ(x) stands for the standard normal distribution function, Dn =
n∑

k=1
dk, and

dk = exp((log k)α)/k, 0 ≤ α < 1/2.

Remark 1.2. Since a set of bounded Lipschitz 1 functions is tight in a set of bounded
continuous functions, Theorem 1.1 is true for all bounded continuous functions f(x, y).



Journal of Inequalities and Applications 3

Remark 1.3. Under the conditions of Theorem 1.1, it can be seen that the result for indicator
functions by routine approximation arguments is similar, for example, to those in Lacey and
Philipp [12], that is,

lim
n→∞

1
Dn

n∑

k=1

dkI

(
Sk√
k
≤ x,

Mk − bk
ak

≤ y

)

= Φ(x)G
(
y
)

(1.6)

almost surely.

Example 1.4. The ASCLT has already received applications in many fields, including
condensed matter physics, statistical mechanics, ergodic theory and dynamical systems, and
control and information and quanitle estimation. As an example, we assume that {X,Xn;n ≥
1} is a sequence of independent and identically distributed (i.i.d.) random variables with
standard normal distribution function Φ(x), and in (1.4), we choose

an = (2 logn)−1/2, (1.7)

bn = (2 logn)1/2 − 1
2
(
2 logn

)−1/2(log log n + log 4π
)

(1.8)

which imply that (see Leadbetter et al. [13, Theorem 4.3.3])

Mn − bn
an

D−→ ∧, (1.9)

where ∧ is one of the extreme value distributions, that is,

∧(y) = exp
{− exp

(−y)}. (1.10)

Then, we can derive a corresponding result in Theorem 1.1.

2. Proof of Our Main Result

In this section, denote Sn =
∑n

k=1 Xk, Sk,n =
∑n

i=k+1 Xi,Mn = max1≤i≤n Xi, and Mk,n =
maxk+1≤i≤nXi, for n ≥ 1, unless it is specially mentioned. Here a 	 b and a ∼ b stand for
a = O(b) and a/b → 1, respectively. Φ(x) is the standard normal distribution function.

Proof of Theorem 1.1. Firstly, by Theorem 1.1. in [14] and our assumptions, we have

lim
n→∞

P

(
Sn√
n
≤ x,

Mn − bn
an

≤ y

)

= Φ(x)G
(
y
)

(2.1)

for x, y ∈ R. Then, in view of the dominated convergence theorem, we have

Ef

(
Sn√
n
,
Mn − bn

an

)

−→
∫∫∞

−∞
f
(
x, y
)
Φ(dx)G

(
dy
)
. (2.2)
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Hence, to complete the proof, it is sufficient to show that

lim
n→∞

1
Dn

n∑

k=1

dk

(

f

(
Sk√
k
,
Mk − bk

ak

)

− Ef

(
Sk√
k
,
Mk − bk

ak

))

= 0 (2.3)

almost surely. Let

ξk = f

(
Sk√
k
,
Mk − bk

ak

)

− Ef

(
Sk√
k
,
Mk − bk

ak

)

. (2.4)

For l > k, it follows that

∣
∣
∣
∣E(ξkξl)

∣
∣
∣
∣ =
∣
∣
∣
∣Cov

(

f

(
Sk√
k
,
Mk − bk

ak

)

, f

(
Sl√
l
,
Ml − bl

al

))∣
∣
∣
∣

≤
∣
∣
∣
∣Cov

(

f

(
Sk√
k
,
Mk − bk

ak

)

, f

(
Sl√
l
,
Ml − bl

al

)

− f

(
Sl√
l
,
Mk,l − bl

al

))∣
∣
∣
∣

+
∣
∣
∣
∣Cov

(

f

(
Sk√
k
,
Mk − bk

ak

)

, f

(
Sl√
l
,
Mk,l − bl

al

)

− f

(
Sk,l√
l
,
Mk,l − bl

al

))∣
∣
∣
∣

+
∣
∣
∣
∣Cov

(

f

(
Sk√
k
,
Mk − bk

ak

)

, f

(
Sk,l√
l
,
Mk,l − bl

al

))∣
∣
∣
∣

:= L1 + L2 + L3.

(2.5)

For L3, by the independence of {Xn;n ≥ 1}, we have

L3 = 0. (2.6)

Now, we are in a position to estimate L1. We use the fact that f is bounded and Lipschitzian,
then it follows that

L1 	 E

∣
∣
∣
∣f

(
Sl√
l
,
Ml − bl

al

)

− f

(
Sl√
l
,
Mk,l − bl

al

)∣
∣
∣
∣

	 E

(

min
(
Ml −Mk,l

al
, 2
))

= E

(

min
(
Ml −Mk,l

al
, 2
))

I

(

Ml /=Mk,l

)

	 P(Ml /=Mk,l)

= P(Mk > Mk,l)

= k

∫∞

−∞
(F(x))l+k−1dF(x)

≤ k

l
.

(2.7)
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Via Cauchy-Schwarz inequality, we have

L2 	 E

∣
∣
∣
∣f

(
Sl√
l
,
Mk,l − bl

al

)

− f

(
Sk,l√
l
,
Mk,l − bl

al

)∣
∣
∣
∣

	 E

∣
∣
∣
∣
Sk√
l

∣
∣
∣
∣

≤ 1√
l
(ES2

k)
1/2

≤
(
k

l

)1/2

.

(2.8)

Thus, using (2.6), (2.7), and (2.8), it follows that

|E(ξkξl)| 	
(
k

l

)1/2
(2.9)

for l > k. Then, we have

E

(
n∑

k=1

dkξk

)2

≤
n∑

k=1

n∑

l=1

dkdl|E(ξkξl)|

	
n∑

k=1

n∑

l=1

dkdl

(
k

l

)1/2

=
∑

1≤k≤l≤n;
l/k≤(logn)4α

dkdl

(
k

l

)1/2

+
∑

1≤k≤l≤n;
l/k>(logn)4α

dkdl

(
k

l

)1/2

:= T1 + T2.

(2.10)

It is obvious that

T2 ≤
∑

1≤k≤l≤n
dkdl(logn)

−2α ≤ D2
n(logn)

−2α. (2.11)

In view of the definition of numerical sequence (dl) and by L’Hospital rule and fixed 0 < α <
1/2, we have

Dn ∼ 1
α

(
logn

)1−α exp
((
logn

)α)
. (2.12)
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Then

T1 ≤
∑

1≤k≤n
dk

∑

1≤k≤l≤min(n,k(logn)4α)

exp
((
log l

)α)

l

≤ exp
((
logn

)α) ∑

1≤k≤n
dk

∑

1≤k≤l≤min(n,k(logn)4α)

1
l

	 Dn exp
((
logn

)α) log log n

	 D2
n

(
log log n

)
(logn)α−1

	 D2
n(logn)

−(1+ε)α

(2.13)

for ε > 0 such that ε < min(1, (1/α) − 2). From (2.11), (2.13), and the Markov inequality, we
derive

P

(∣
∣
∣
∣
∣

n∑

k=1

dkξk

∣
∣
∣
∣
∣
> εDn

)

	 (logn)−(1+ε)α (2.14)

for the above ε and 0 < α < 1/2. We can choose subsequence nk = exp(k(1−β)/α), where β > 0
such that (1 + ε)(1 − β) > 1. Then, by Borel-Cantelli lemma, we derive

lim
k→∞

1
Dnk

nk∑

j=1

djξj = 0 (2.15)

almost surely. For nk ≤ n < nk+1 we have

∣
∣
∣
∣
∣
∣

1
Dn

n∑

k=1

dkξk

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣

1
Dnk

nk∑

j=1

djξj

∣
∣
∣
∣
∣
∣
+ 2

⎛

⎝Dnk+1

Dnk

− 1

⎞

⎠ (2.16)

almost surely. Since Dnk+1/Dnk → 1, the convergence of the subsequence implies that the
whole sequence converges almost surely. Hence the proof of (1.5) is completed for 0 < α <
1/2. Via the same arguments, we can obtain (1.5) for α = 0.
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