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It is known that in the field of learning theory based on reproducing kernel Hilbert spaces the
upper bounds estimate for a K-functional is needed. In the present paper, the upper bounds for
the K-functional on the unit sphere are estimated with spherical harmonics approximation. The
results show that convergence rate of the K-functional depends upon the smoothness of both the
approximated function and the reproducing kernels.

1. Introduction

It is known that the goal of learning theory is to approximate a function (or some function
features) from data samples.

Let X be a compact subset of n-dimensional Euclidean spaces Rn, Y ⊂ R. Then,
learning theory is to find a function f related the input x ∈ X to the output y ∈ Y (see
[1–3]). The function f(x) is determined by a probability distribution ρ(x, y) = ρ(y | x)ρX(x)
on Z := X × Y, where ρX(x) is the marginal distribution on X and ρ(y | x) is the condition
probability of y for a given x.

Generally, the distribution ρ(x, y) is known only through a set of sample z := {zi}mi=1 =
{(xi, yi)}mi=1 independently drawn according to ρ(x, y). Given a sample z, the regression
problem based on Support Vector Machine (SVM) learning is to find a function fz : X → Y
such that fz(x) is a good estimate of y when a new input x is provided. The binary
classification problem based on SVM learning is to find a function ψz : X → {−1, 1} which
divides X into two parts. Here ψz is often induced by a real-valued function fz with the
form of ψz(x) = sgn(fz(x)) where sgn(fz(x)) = 1 if fz(x) ≥ 0, otherwise, −1. The functions
fz are often generated from the following Tikhonov regularization scheme (see, e.g., [4–
9]) associated with a reproducing kernel Hilbert space (RKHS) HK (defined below) and a
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sample z:

fz := fz,λ,HK = arg min
f∈HK

(
1
m

m∑
i=1

Vp
(
yif(xi)

)
+ λ

∥∥f∥∥2
HK

)
, (1.1)

where λ > 0 is a positive constant called the regularization parameter and Vp(t) = (1 − t)p+ =
max{1 − t, 0}p (p ≥ 1) called p-norm SVM loss.

In addition, the Tikhonov regularization scheme involving offset b (see, e.g., [4, 10, 11])
can be presented below with a similar way to (1.1)

fz := fz, λ,HK = arg min
f=f∗+b, f∗∈HK, b∈R

(
1
m

m∑
i=1

Vp
(
yif(xi)

)
+ λ

∥∥f∗∥∥2
HK

)
. (1.2)

We are in a position to define reproducing kernel Hilbert space. A functionK : X×X →
R is called a Mercer kernel if it is continuous, symmetric, and positive semidefinite, that is,
for any finite set of distinct points {x1, x2, . . . , xl} ⊂ X, the matrix (K(xi, xj))

l
i,j=1 is positive

semidefinite.
The reproducing kernel Hilbert space (RKHS) HK (see [12]) associated with the

Mercer kernel K is defined to be the closure of the linear span of the set of functions
{Kx := K(x, ·) : x ∈ X}with the inner product 〈·, ·〉HK

= 〈·, ·〉K satisfying 〈Kx,Ky〉K = K(x, y)
and the reproducing property

〈Kx, g〉K = g(x), ∀x ∈ X, g ∈ HK. (1.3)

If g(x) =
∑

i ciK(x, xi), then ‖g‖2K =
∑

i,j cicjK(xi, xj). Denote C(X) as the space of
continuous function on X with the norm ‖ · ‖∞. Let κ :=

√
‖K‖∞. Then the reproducing

property tells that

∥∥g∥∥∞ ≤ κ∥∥g∥∥K, ∀g ∈ HK. (1.4)

It is easy to see that HK is a subset of C(X). We say that K(x, y) is a universal kernel if for
any compact subset X HK is dense in C(X) (see [13, Page 2652]).

Let ∧ ⊂ X be a given discrete set of finite points. Then, we may define an RKHS
(H∧

K, ‖ · ‖H∧
K
) by the linear span of the set of functions {Kx := K(x, ·) : x ∈ ∧}. Then, it is

easy to see thatH∧
K ⊂ HK and for any f ∈ H∧

K there holds ‖f‖H∧
K
= ‖f‖K.

Define E(f) :=
∫
ZVp(yf(x))dρ(x, y) and f

Vp
ρ := argminE(f), where the minimum is

taken over all measurable functions. Then, to estimate the explicit learning rate, one needs to
estimate the regularization errors (see, e.g., [4, 7, 9, 14])

D(λ) := inf
f∈HK

{
E(f) − E

(
f
Vp
ρ

)
+ λ

∥∥f∥∥2
HK

}
, (1.5)

D(λ) := inf
f=f∗+b, f∗∈HK, b∈R

{
E(f) − E

(
f
Vp
ρ

)
+ λ

∥∥f∗∥∥2
HK

}
. (1.6)
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The convergence rate of (1.5) is controlled by the K-functional (see, e.g., [9])

K
(
f, λ

)
HK

= inf
g∈HK

(∥∥f − g∥∥p,dρX + λ
∥∥g∥∥2

K

)
, λ > 0, f ∈ Lp(dρX), (1.7)

and (1.6) is controlled by another K-functional (see, e.g., [4])

K
(
f, λ

)
HK

= inf
g∈HK, g=g∗+b, g∗∈HK, b∈R

(∥∥f − g∥∥p,dρX + λ
∥∥g∗∥∥2

K

)
, (1.8)

where λ > 0, f ∈ Lp(dρX) = {f(x) : ‖f‖p,dρX < +∞}with

∥∥f∥∥p, dρX =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∫
X

∣∣f(x)∣∣pdρX(x)
)1/p

, 1 ≤ p < +∞,

ess sup
x∈X

∣∣f(x)∣∣, p = +∞.

(1.9)

We notice that, on one hand, the K-functionals (1.7) and (1.8) are the modifications
of the K-functional of interpolation theory (see [15]) since the interpolation relation (1.4).
On the other hand, they are different from the usual K-functionals (see e.g., [16–30]) since
the term ‖g‖2K.However, they have some similar point. For example, if K(x, y) is a universal
kernel,HK is dense in Lp(dρX) (see e.g., [31]). Moreover, some classical function spaces such
as the polynomial spaces (see [2, 32]) and even some Sobolev spaces may be regarded as
RKHS (see e.g., [33]).

In learning theory we often require K(f, t)HK
= O(tβ) and K(f, t)HK

= O(tβ) for
some β > 0 (see e.g., [1, 7, 14]). Many results on this topic have been achieved. With the
weighted Durrmeyer operators [8, 9] showed the decay by takingK(x, y) to be the algebraic
polynomials kernels on [0, 1] × [0, 1] or on the simplex in R2.

However, in general case, the convergence of K-functional (1.8) should also be
considered since the offset often has influences on the solution of the learning algorithms (see
e.g., [6, 11]). Hence, the purpose of this paper is twofold. One is to provide the convergence
rates of (1.7) and (1.8) when K(x, y) is a general Mercer kernel on the unit sphere Sq and
1 ≤ p ≤ +∞. The other is how to construct functions of the type of

f(x) = β0 + g∗(x) = β0 +
m∑
i=1

βiK(x, xi), x ∈ X, (1.10)

to obtain the convergence rate of (1.8). The translation networks constructed in [34–37] have
the form of (1.10) and the zonal networks constructed in [38, 39] have the form of (1.10)with
β0 = 0. So the methods used by these references may be used here to estimate the convergence
rates of (1.7) and (1.8) if one can bound the term ‖g∗‖2K.

In the present paper, we shall give the convergence rate of (1.7) and (1.8) for a general
kernel defined on the unit sphere Sn = {x ∈ Rn+1 : ‖x‖Rn+1 = 1} and ρ(x, y) = ρ(y | x)μn(x)
with μn(x) being the usual Lebesgue measure on Sn. If there is a distortion between ρSn(x)
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and μn(x), the convergence rate of (1.7)-(1.8) in the general case may be obtained according
to the way used by [1, 8].

The rest of this paper is organized as follows. In Section 2, we shall restate some
notations on spherical harmonics and present the main results. Some useful lemmas dealing
with the approximation order for the de la Vallée means of the spherical harmonics, the Gauss
integral formula, the Marcinkiewicz-Zygmund with respect to the scattered data obtained by
G. Brown and F. Dai and a result on the zonal networks approximation provided by H. N.
Mhaskar will be given in Section 3. A kind of weighted norm estimate for the Mercer kernel
matrices on the unit sphere will be given in Lemma 3.8. Our main results are proved in the
last section.

Throughout the paper, we shall write A = O(B) if there exists a constant C > 0 such
that A ≤ CB. We write A ∼ B if A = O(B) and B = O(A).

2. Notations and Results

To state the results of this paper, we need some notations and results on spherical harmonics.

2.1. Notations

For integers l ≥ 0, q ≥ 1, the class of all one variable algebraic polynomials of degree ≤ l
defined on [−1, 1] is denoted by Pl, the class of all spherical harmonics of degree l will be
denoted by Hq

l
, and the class of all spherical harmonics of degree l ≤ n will be denoted by∏q

n. The dimension ofHq

l
is given by (see [40, Page 65])

d
q

l
= dimHq

l
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2l + q − 1
l + q − 1

⎛
⎝l + q − 1

q − 1

⎞
⎠, l ≥ 1,

1, l = 0,

(2.1)

and that of Πq
n is

∑n
l=0 d

q

l
. One has the following well-known addition formula (see [41, Page

10, Theorem 2]):

d
q

l∑
k=1

Yl,k(x)Yl,k
(
y
)
=
d
q

l

ωq
p
q+1
l

(
xy

)
, l = 0, 1, . . . , x, y ∈ Sq, (2.2)

where pq+1
l

(x) is the degree-l generalized Legendre polynomial. The Legendre polynomials

are normalized so that pq+1l (1) = 1 and satisfy the orthogonality relations

∫1

−1
p
q+1
l (x)pq+1k (x)Wq(x)dx =

ωq

ωq−1d
q

l

δl,k, Wq(x) =
(
1 − x2

)q/2−1
. (2.3)
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Define Lp(Sq) and L
p

Wα,β
by taking ρX to be the usual volume element of Sq and the

Jacobi weights functions Wα,β(x) = (1 − x)α(1 + x)β, α > −1, β > −1, respectively. For any
φ ∈ L1

Wq
we have the following relation (see [42, Page 312]):

∫
Sq
φ
(
xy

)
dμq(x) = ωq−1

∫1

−1
φ(x)Wq(x)dx. (2.4)

The orthogonal projections Yk(f, x) of a function f ∈ L1(Sq) on Hq

k are defined by (see e.g.,
[43])

Yk
(
f, x

)
=
d
q

k

ωq

∫
Sq
p
q+1
k

(
xy

)
f
(
y
)
dμq

(
y
)
, x ∈ Sq, (2.5)

where xy denotes the inner product of x and y.

2.2. Main Results

Let φ ∈ L1
Wq

satisfy al(φ) = ωq−1
∫1
−1φ(x)p

q+1
l

(x)Wq(x)dx > 0 and
∑+∞

l=0 al(φ)d
q

l
< +∞. Define

K
(
φ, x, y

)
= K

(
φ, xy

)
=

+∞∑
l=0

al
(
φ
) dql
ωq

p
q+1
l

(
xy

)
, al

(
φ
)
> 0, x, y ∈ Sq. (2.6)

Then, by [44, Chapter 17]we know thatK(φ, x, y) is positive semidefinite on Sq and the right
of (2.6) is convergence absolutely and uniformly since |pq+1

l
(x)| ≤ 1. Therefore, K(φ, x, y) is

a Mercer kernel on Sq. By [13, Theorem 10] we know that K(φ, x, y) is a universal kernel on
Sq. We suppose that there is a constant Cp > 0 depending only on p such for any y ∈ Sq

∥∥K(φ, ·, y)∥∥p,Sq ≤ Cp

∥∥φ∥∥p,Wq
, 1 ≤ p ≤ +∞, φ ∈ LpWq

. (2.7)

Given a finite set ∧, we denote by �∧ the cardinality of ∧. For r > 0 and a ≥ 1 we say
that a finite subset ∧ ⊂ Sq is an (r, a)-covering of Sq if

Sq ⊂
⋃
ω∈∧

B(ω, r), max
ω∈∧

�(∧ ∩ B(ω, r)) ≤ a, (2.8)

where B(ω, r) = {x ∈ Sq : d(ω, x) ≤ r} with d(ω, x) := arc cos(ω, x) being the geodesic
distance between x and ω.
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Let S ≥ 1 be an integer, a = {an}+∞n=0 a sequence of real numbers. Define forward
difference operators by Δan = Δ1an := an+1 − an, Δr := Δ(Δr−1an), r = 2, 3, . . . ,Δ0an := an,

|a|S := sup
0≤r≤S, v≥0

(v + 1)r |Δrav|,

|a|∗S =
S∑
r=1

+∞∑
v=0

(v + 1)r−1|Δrav|.
(2.9)

We say a finite subset ∧ ⊂ Sq is a subset of interpolatory type if for any real numbers
{yω}ω∈∧ there is a p ∈ Πq

n such that p(ω) = yω,ω ∈ ∧. This kind of subsets may be found from
[45, 46].

Let BS be the set of all sequence a for which |a|S < +∞ and B∗
S the set of all sequence a

for which |a|S + |a|∗S < +∞.
Let β > 0 be a real number, f ∈ Lp(Sq). Then, we say ∂βf ∈ Lp(Sq) if there is a function

ϕ ∈ Lp(Sq) such that

ϕ(x) ∼
+∞∑
k=0

kβYk
(
f, x

)
, x ∈ Sq. (2.10)

We now give the results of this paper.

Theorem 2.1. If there is a constant γ0 > 0 depending only on q such that ∧ is a subset of interpolatory
type and a (δ/6(2m), a)-covering of Sq satisfying 0 < δ < γ0/a with a ≥ 1 and m being a given
positive integer. S > q is an integer. β > 0 is a real number such that there is γ ′ ≥ γ + 2q − 1 and
β − γ ′ > q, φ ∈ L∞

Wq
satisfies {(l + 1)βal(φ)}+∞l=0 ∈ BS and {(l + 1)−βa−1

l
(φ)}+∞l=0 ∈ B∗

S. H∧
K(φ) is the

reproducing kernel space reproduced by ∧ and the kernel (2.6). ∂γf ∈ Lp(Sq). Then there is a constant
Cp,q > 0 depending only on p and q and a function gm,φ(x) = C0 + g∗

m,φ(x) with g
∗
m,φ(x) ∈ H∧

K(φ)
and C0 a constant such that

∥∥f − gm,φ
∥∥
p,Sq

= O
(

1
2mγ

)
, (2.11)

∥∥∥g∗
m,φ

∥∥∥2

H∧
K(φ)

= O
(
22m(2q−1)

)
. (2.12)

The functions φ satisfying the conditions of Theorem 2.1 may be found in [39, Page
357].

Corollary 2.2. Under the conditions of Theorem 2.1. If ∂γf ∈ Lp(Sq), then

K

(
f,

1
22mγ ′

)
H∧

K(φ)

= O
(

1
2mγ

)
. (2.13)

Corollary 2.2 shows that the convergence rate of theK-functional (1.8) is controlled by
the smoothness of both the reproducing kernels and the approximated function f .
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Theorem 2.3. If there is a constant γ > 0 depending only on q such that ∧ is a subset of interpolatory
type and a (δ/6(2m), a)-covering of Sq satisfying 0 < δ < γ/a with a ≥ 1 and m being a given
positive integer.H∧

K(φ) is the reproducing kernel space reproducing by ∧ and the kernel (2.6) with φ ∈
L∞
Wq

satisfying {(l+1)βal(φ)} ∈ BS and {(1/(l+1)β)a−1l (φ)} ∈ B∗
S. Then, for α ≥ q(1/p−1/2)+ +β

and ∂βf ∈ Lp(Sq) there holds

K

(
f,

1
2αm

)
H∧

K(φ)

= O
(

1
2mβ

)
, (2.14)

where (a)+ = max(a, 0).

3. Some Lemmas

To prove Theorems 2.1 and 2.3, we need some lemmas. The first one is about the Gauss
integral formula and Marcinkiewicz inequalities.

Lemma 3.1 (see [47–50]). There exist constants γ > 0 depending only on q such that for any positive
integer n and any (δ/n, a)-covering ∧ of Sq satisfying 0 < δ < γ/a, there exists a set of real numbers
λω ∼ n−q, (ω ∈ ∧) such that

∫
Sq
f
(
y
)
dμq

(
y
)
=

∑
ω∈∧

λωf(ω) (3.1)

for any f ∈ Πq

3n, and for f ∈ Πq
n

∥∥f∥∥p,Sq ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(∑
ω∈∧

λω
∣∣f(ω)∣∣p

)1/p

, 0 < p < +∞,

max
ω∈∧

∣∣f(ω)∣∣, p = +∞,

(3.2)

where �∧ ∼ nq ∼ dimΠq
n, the constants of equivalence depending only on q, a, δ, and p when p is

small. Here one employs the slight abuse of notation that 00 = 1.

The second lemma we shall use is the Nikolskii inequality for the spherical harmonics.

Lemma 3.2 (see [38, 45, 49, 51, 52]). If 0 < p < r ≤ +∞, p ∈ Πq
n, then one has the following

Nikolskii inequality:

∥∥p∥∥p,Sq ≤ C(q)∥∥p∥∥r,Sq ≤ C(q)nq(1/p−1/r)∥∥p∥∥p,Sq , (3.3)

where the constant C(q) depends only on q.

We now restate the general approximation frame of the Cesàro means and de la Vallée
Poussin means provided by Dai and Ditzian (see [53]).
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Lemma 3.3. Let μ be a positive measure on X. {Hk}+∞k=0 is a sequence of finite-dimensional spaces
satisfying the following:

(I) Hk ⊂ Lp(dμ).
(II) Hk is orthogonal toHl(in Lp(dμ)) when l /= k.

(III) span(
⋃
)∞k=0Hk) is dense in Lp(dμ) for all 1 ≤ p ≤ +∞.

(IV) H0 is the collection of the constants.

The Cesàro means C(δ) of f(x) is given by

σδN
(
f, x

)
=

1

Aδ
N

N∑
k=0

Aδ
N−kPk

(
f, x

)
, Aδ

N =
Γ(k + δ + 1)

Γ(k + 1)Γ(δ + 1)
(3.4)

forN = 1, 2, . . ., where

Pk
(
f, x

)
=
∫
X

f
(
y
){ dk∑

l=1

ϕk,i(x)ϕk,i
(
y
)}

dμ
(
y
)
, x ∈ X, (3.5)

and {ϕk,i(x)}dki=1 is an orthogonal base of Hk in L2(dμ). One sets,for a given α > 0, ∂αf(x) ∼∑∞
k=1 k

αPk(f, x) and ∂αf ∈ Lp(dμ) if there exists ϕ ∈ Lp(dμ) such that Pk(ϕ, x) = kαPk(f, x).
Let η be defined as η(u) ∈ C∞, η(u) = 1 for u ∈ [0, 1/2] and η(u) = 0 for u > 1 and is a

nonegative and nonincrease function. ρN(f, x) are the de la Vallée Poussin means defined as

ρN
(
f, x

)
=

+∞∑
k=0

η

(
k

2N

)
Pk

(
f, x

)
, x ∈ X, f ∈ L1(dμ). (3.6)

Then, ρN(f, x) = f(x), f ∈ ⋃
k≤N Hk. If for some δ > 0, ‖σδN(f)‖p, dμ ≤ C‖f‖p, dμ, 1 ≤ p ≤ +∞,

then, ‖ρN(f)‖p, dμ ≤ C‖f‖p, dμ and

∥∥ρN(f) − f∥∥p, dμ = O

(∥∥∂αf∥∥p, dμ
Nα

)
, ∂αf ∈ Lp(dμ). (3.7)

Lemma 3.3 makes the following Lemma 3.4.

Lemma 3.4. Let η be the function defined as in Lemma 3.3. Define two kinds of operators, respectively,
by

VN
(
f, x

)
=

+∞∑
k=0

η

(
k

2N

)
Yk

(
f, x

)
, x ∈ Sq, f ∈ L1(Sq),

V ∗
N

(
f, x

)
=

+∞∑
k=0

η

(
k

2N

)
al
(
f
) dql
ωq

p
q+1
l (x), x ∈ [−1, 1], f ∈ L1

Wq
.

(3.8)
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Then, VN(f, x) = f(x) for any f ∈ Πq

N and V ∗
N(f, x) = f(x) for any f ∈ PN . Moreover,

∥∥VN(f) − f∥∥p,Sq = O
(∥∥∂αf∥∥p,Sq

Nα

)
, ∂αf ∈ Lp(Sq), (3.9)

∥∥V ∗
N(f) − f∥∥p,Wq

= O

⎛
⎝

∥∥∂αf∥∥p,Wq

Nα

⎞
⎠, ∂αf ∈ LpWq

, (3.10)

where for f ∈ LpWq
one defines

∂αf(x) ∼
∞∑
k=1

kαak
(
f
) dql
ωq

p
q+1
l (x) x ∈ [−1, 1]. (3.11)

Proof. By [54, Lemma 2.2]we know ‖VN(f)‖p,Sq ≤ C‖f‖p,Sq for some C > 0. Hence, (3.9) holds
by (3.7). By [19, TheoremA]we know ‖σδN(f)‖p,Wq ≤ C‖f‖p,Wq for δ > q/2−1/2.Hence, (3.10)
holds by (3.7).

Let ∧ ⊂ Sq be a finite set. Then we call ∧ an M-Z quadrature measure of order n if (3.1)
and (3.2) hold for f ∈ Πq

n. By this definition one knows the finite set ∧ in Lemma 3.1 is an
M-Z quadrature measure of order n.

Define an operator as

σy
(∧, η, f, x) =

+∞∑
l=0

η

(
l

y

)
d
q

l

ωq

∑
ω∈∧

λωf(ω)p
q+1
l (ωx), x ∈ Sq. (3.12)

Then, we have the following results.

Lemma 3.5 (see [39]). For a given integer n ≥ 1, let ∧ be anM-Z quadrature measure of order 6(2n),
φ ∈ L1

Wq
, S > q an integer, 1 ≤ p ≤ +∞, β > q/p′, where p′ satisfies 1/p + 1/p′ = 1 which satisfies

p′ = 1 if p = +∞ and p′ = +∞ if p = 1. η(t) defined in Lemma 3.3 is a nonnegative and non-increasing
function. Let φ ∈ L1

Wq
satisfy {(l + 1)−βa−1

l
(φ)}+∞l=0 ∈ B∗

S. Then, for f ∈ Hγ,p, 0 < γ ≤ β, whereHγ,p

consists of f ∈ Lp(Sq) for which the derivative of order γ ; that is, ∂γf , belongs to Lp(Sq). Then, there
is an operator Dφ : Hγ,p → LP (Sq) such that

(i) (see [39, Proposition 3.1, (b)]). ‖Dφf‖p,Sq ≤ c‖∂γf‖p,Sq for f ∈ Hβ,p

f(x) =
∫
Sq
φ
(
xy

)Dφf
(
y
)
dμq

(
y
)
, x ∈ Sq, (3.13)

f̂(l, k) = al
(
φ
)D̂φf(l, k), (3.14)

where f̂(l, k) =
∫
Sqf(x)Yl,k(x)dμq(x).
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(ii) (see [39, Theorem 3.1]). Moreover, if one adds an assumption that {(l + 1)βal(φ)}+∞l=0 ∈ BS,
then, there are constants C > 0 and C1 > 0 such that

∥∥∥∥∥f(·) −
∑
ω∈∧

λωDφσ2n(∧, η, f, ω)φ(·ω)
∥∥∥∥∥
p,Sq

≤ C2−nγ∥∥∂γf∥∥p,Sq (3.15)

and for 0 ≤ γ ≤ β

∥∥∂γf − ∂γσn(∧, η, f)
∥∥
p,Sq

≤ C1n
γ−β∥∥∂βf∥∥p,Sq . (3.16)

Lemma 3.6 (see e.g., [29, Page 230]). Let f ∈ L2(Sq). Then,

∥∥f∥∥2,Sq =

(
+∞∑
k=0

∥∥Ykf∥∥2
2,Sq

)1/2

. (3.17)

Following Lemma 3.7 deals with the orthogonality of the Legendre polynomials
pl(xy).

Lemma 3.7. For the generalized Legendre polynomials pq+1l one has

d
q

l

ωq

∫
Sq
p
q+1
k

(
uy

)
p
q+1
l (xu)dμq(u) = p

q+1
k

(
xy

)
, x, y ∈ Sq. (3.18)

Proof. It may be obtained by (2.2).

Lemma 3.8. Let φ ∈ L∞
Wq

satisfy (2.7) for p = +∞ and ∂qφ ∈ L∞
Wq

. ∧ ⊂ Sq is a finite set satisfying
the conditions of Theorem 2.1. Then, there is a constant Cφ > 0 depending only on φ such that

( ∑
ω,ω′∈∧

λωλω′
∣∣K(

φ,ω′, ω
)∣∣2)1/2

≤ Cφ < +∞. (3.19)

Proof. Define a matrix by K
(
√
λ)

∧ = (
√
λωK(∧)(ω′, ω)

√
λω′)ω,ω′∈∧, where K(∧)(ω′, ω) =

�∧∑
l=0
λl ×

(dql /ωq)p
q+1
l (ω′ω)with λl ≥ 0 and l2∧ = {a = (aω)ω∈∧ : (

∑
ω∈∧

a2ω)
1/2 < +∞}. Then,

( ∑
ω,ω′∈∧

λωλω′
∣∣K(∧)

(
ω′, ω

)∣∣2)1/2

=
∥∥∥K(

√
λ)

∧
∥∥∥
l2∧
= sup

a/= 0, a∈l2∧

a�K(
√
λ)

∧ a

a�a
. (3.20)
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By the Parseval equality we have

a�K(
√
λ)

∧ a =
∑

ω,ω′∈∧
aω

√
λωK(∧)

(
ω′, ω

)
aω′

√
λω′

=
∑

ω,ω′∈∧
aω

√
λω

⎛
⎝ �∧∑

l=0

λl ×
d
q

l

ωq
p
q+1
l

(
ω′ω

)⎞⎠aω′
√
λω′

=
�∧∑
l=0

λl

d
q

l∑
α=0

∣∣∣∣∣
∑
ω∈∧

aω
√
λωYl,α(ω)

∣∣∣∣∣
2

≤ max
0≤l≤�∧

λl

∫
Sq

∣∣∣∣∣∣
�∧∑
l=0

d
q

l∑
α=0

(∑
ω∈∧

aω
√
λωYl,α(ω)

)
Yl,α(x)

∣∣∣∣∣∣
2

dμq(x)

= max
0≤l≤�∧

λl

∫
Sq

∣∣∣∣∣∣
∑
ω∈∧

aω
√
λω

�∧∑
l=0

d
q

l

ωq
p
q+1
l (xω)

∣∣∣∣∣∣
2

dμq(x).

(3.21)

Let L∧(x) ∈ Πq
n satisfy L∧(ω) = aω/

√
λω, ω ∈ ∧. Then, by (3.1)

a�K(
√
λ)

∧ a =
∑

ω,ω′∈∧
aω

√
λωK(∧)

(
ω′, ω

)
aω′

√
λω′

≤ max
0≤l≤�∧

λl

∫
Sq

∣∣∣∣∣∣
�∧∑
l=0

d
q

l

ωq

∫
Sq
L∧(ω)p

q+1
l (xω)dμq(ω)

∣∣∣∣∣∣
2

dμq(x)

= max
0≤l≤�∧

λl

∫
Sq
|L∧(x)|2dμq(x)

= max
0≤l≤�∧

λl
∑
ω∈∧

λω|L∧(x)|2 = max
0≤l≤�∧

λla
�a.

(3.22)

Hence, a�K(
√
λ)

∧ a ≤ max0≤l≤�∧λla�a. On the other hand, since ‖K(φ, x, ·)‖∞,Sq ≤ C‖φ‖∞,Wq ,
x ∈ Sq, we have for any x ∈ Sq that

∣∣∣K(
φ, x, y

) −K(
V ∗
�∧
(
φ
)
, x, y

)∣∣∣ = ∣∣∣K(
φ − V ∗

�∧
(
φ
)
, x, y

)∣∣∣ ≤ C∥∥∥φ − V ∗
�∧(φ)

∥∥∥
∞,Wq

. (3.23)

It follows for x, y ∈ Sq that

K
(
V ∗
�∧
(
φ
)
, x, y

)
− C

∥∥∥φ − V ∗
�∧(φ)

∥∥∥
∞,Wq

≤ K(
φ, x, y

) ≤ K
(
V ∗
�∧
(
φ
)
, x, y

)
+ C

∥∥∥φ − V ∗
�∧(φ)

∥∥∥
∞,Wq

.

(3.24)
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Define K(
√
λ)

∧ (φ) = (
√
λωK(φ,ω′, ω)

√
λω′)ω,ω′∈∧. Then, (3.24), (3.10), the Cauchy inequality,

and the fact �∧ ∼ nq make

∣∣∣a�K(
√
λ)

∧
(
φ
)
a − a�K(

√
λ)

∧
(
V ∗
�∧
(
φ
))
a
∣∣∣ = O(

� ∧
∥∥∥φ − V ∗

�∧
(
φ
)∥∥∥

∞,Wq

)
× a�a = O(1)a�a. (3.25)

It follows that

a�K(
√
λ)

∧
(
φ
)
a ≤ a�K(

√
λ)

∧
(
V ∗
�∧
(
φ
))
a +

∣∣∣a�K(
√
λ)

∧
(
φ
)
a − a�K(

√
λ)

∧
(
V ∗
�∧
(
φ
))
a
∣∣∣

≤ max
0≤l≤�∧

η

(
l

2�∧
)
a�a +O(1)a�a.

(3.26)

Equation (3.2) thus holds.

4. Proof of the Main Results

We now show Theorems 2.1 and 2.3, respectively.

Proof of Theorem 2.1. Lemma 4.3 in [39] gave the following results.
Let 1 ≤ p ≤ +∞, γ ′ > q/p′, S > q be an integer, and a sequence of real numbers such

aγ
′
:= {(l + 1)γ

′
al} ∈ BS. Then, there exists φ ∈ LpWq

such that al(φ) ∈ al, l = 0, 1, 2, . . . .

Since (1 + l)β = (1 + l)γ
′
(1 + l)β−γ

′
and β − γ ′ > q, we have a φ∗ ∈ L∞

Wq
such that al(φ∗) =

(1 + l)γ
′
al(φ).Hence, ∂γ ′φ ∈ L∞

Wq
and

K
(
V ∗
2m+1

(
φ
)
, x, y

)
=

+∞∑
l=0

al
(
V ∗
2m+1

(
φ
)) dql
ωq

p
q+1
l

(
xy

)
, x, y ∈ Sq, (4.1)

and for 0 ≤ k ≤ 2m+1 there holds for x, y ∈ Sq that

d
q

k

ωq

∫
Sq
K
(
V ∗
2m+1

(
φ
)
, x, u

)
p
q+1
l

(
uy

)
dμq(u) = ak

(
V ∗
2m+1

(
φ
)) dqk
ωq

p
q+1
k

(
xy

)
= ak

(
φ
) dqk
ωq

p
q+1
k

(
xy

)
.

(4.2)

It follows for x, y ∈ Sq that

p
q+1
k

(
xy

)
=

∫
SqK

(
V ∗
2m+1

(
φ
)
, x, u

)
p
q+1
l

(
uy

)
dμq(u)

ak
(
φ
) (4.3)

On the other hand, since

V2m
(
f, x

)
= Y0

(
V2m

(
f
)
, x

)
+

2m+1∑
k=1

Yk
(
V2m

(
f
)
, x

)
, x ∈ Sq, (4.4)
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where for 1 ≤ k ≤ 2m+1, we have by (4.3)

Yk
(
V2m

(
f
)
, x

)
=

d
q

k

ωqak
(
φ
)∫

Sq

(
K
(
V ∗
2m+1

(
φ
)
, x, u

)
p
q+1
l

(
uy

)
dμq(u)

)
× V2m

(
f, y

)
dμq

(
y
)
. (4.5)

Hence, above equation and (3.1)-(3.2)makes

V2m
(
f, x

)
= Y0

(
V2m

(
f
)
, x

)

+
2m+1∑
k=1

d
q

k

ωqak
(
φ
)∫

Sq

(∫
Sq
K
(
V ∗
2m+1

(
φ
)
, x, u

)
p
q+1
k

(
uy

)
dμq(u)

)

× V2m
(
f, y

)
dμq

(
y
)

= C0 +
∑
ω∈∧

λωCω,φK
(
V ∗
2m+1

(
φ
)
, x, ω

)
,

(4.6)

where C0 = Y0(V2m(f), x), Cω,φ =
2m+1∑
k=1

(dq
k
/ωq)(Yk(V2m(f), ω)/ak(φ)). Define

gm,φ(x) = C0 + g∗
m,φ(x) = C0 +

∑
ω∈∧

λωCω,φK
(
φ, x,ω

)
, x ∈ Sq. (4.7)

Then, we know g∗
m,φ

(x) ∈ R +H∧
K(φ) and by (3.9)

∥∥gm,φ − f∥∥p,Sq ≤ ∥∥gm,φ − V2m(f)
∥∥
p,Sq

+
∥∥V2m(f) − f

∥∥
p,Sq

= O
(

1
2mγ

)
+
∥∥gm,φ(f) − V2m(f)

∥∥
p,Sq

,
(4.8)

where

∣∣gm,φ(x) − V2m
(
f, x

)∣∣ ≤ ∑
ω∈∧

∣∣λωCω,φ

∣∣∣∣K(
V ∗
2m+1

(
φ
) − φ, x,ω)∣∣. (4.9)

It follows by (3.9) that

∥∥gm,φ − V2m(f)
∥∥
p,Sq

≤
∑
ω∈∧

∣∣λωCω,φ

∣∣∥∥K(V ∗
2m+1(φ) − φ, ·, ω)

∥∥
p,Sq

= O
(

1
2mγ ′

)∑
ω∈∧

∣∣λωCω,φ

∣∣. (4.10)

On the other hand, by the definition of V2m(f) and (3.14)we have for 1 ≤ k ≤ 2m+1 that

Yk
(
V2m

(
f
)
, ω

)
= η

(
k

2m+1

)
ak

(
φ
)
Yk

(Dφf,ω
)
, ω ∈ Sq, (4.11)
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where Dφ denotes the operator Dφ of Lemma 3.5 for φ(xy) = K(φ, xy). Hence,

Cω,φ =
2m+1∑
k=1

d
q

k

ωq
η

(
k

2m+1

)
Yk

(Dφf,ω
)
, ω ∈ Sq. (4.12)

Equation (3.2) and the definition of η(t)make

∑
ω∈∧

∣∣λωCω,φ

∣∣ ≤ ∑
ω∈∧

λω

∣∣∣∣∣
2m+1∑
k=1

d
q

k

ωq
η

(
k

2m+1

)
Yk

(Dφf,ω
)∣∣∣∣∣

≤ Cq

2m+1∑
k=1

d
q

k

∫
Sq

∣∣Yk(Dφf,ω
)∣∣dμq(ω).

(4.13)

TheHölder inequality, the (i) of Lemma 3.5, and the fact that |pq+1
l

(x)| ≤ 1make |Yk(Dφf,ω)| ≤
Cqd

q

k
‖Dφf)‖p,Sq ≤ Cqd

q

k
‖∂γf‖p,Sq . Therefore,

∑
ω∈∧

∣∣λωCω,φ

∣∣ ≤ Cq

2m+1∑
k=1

(
d
q

k

)2∥∥∂γf∥∥p,Sq . (4.14)

Take g∗
m,φ

(x) =
∑
ω∈∧

λωCω,φK(φ, x,ω), then

∥∥∥g∗
m,φ

∥∥∥2

H∧
K(φ)

=
∑

ω,ω′∈∧
λωλω′Cω,φCω′,φK

(
φ,ω′, ω

)

≤
(∑

ω∈∧
λω

∣∣Cω,φ

∣∣2)( ∑
ω,ω′∈∧

λωλω′
∣∣K(

φ,ω′, ω
)∣∣2)1/2

.

(4.15)

Equations (3.2), (3.17), (3.16), and the Cauchy inequality make

∑
ω∈∧

λω
∣∣Cω,φ

∣∣2 ≤ C
∥∥∥∥∥
2m+1∑
k=1

d
q

k

ωq

Yk
(
Vm

(
f
)
, ω

)
ak

(
φ
)

∥∥∥∥∥
2

2,Sq

≤ C
(

2m+1∑
k=1

(
d
q

k

)2∥∥∂γf∥∥p,Sq
)2

.

(4.16)

Let Γ(x) be the Gamma function. Then, it is well known that Γ(x)/Γ(x+a) ∼ x−a, x →
+∞. Therefore,

d
q

l =
2l + q − 1
l + q − 1

(
l + q − 1

q − 1

)
=

(
2l + q − 1

)
Γ
(
l + q − 1

)
Γ
(
q
)
Γ(l + 1)

∼ 2l + q − 1
Γ
(
q
) lq−2 ∼ lq−1. (4.17)
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Hence,

2m+1∑
k=1

(
d
q

k

)2
= O

(
2m+1∑
l=1

l2(q−1)
)

= O
(
2(m+1)(2q−1)

)
, m −→ +∞. (4.18)

Equations (4.14) and (4.4) make

∥∥gm,φ − V2m(f)
∥∥
p,Sq

= O
(

1
2m(γ ′−2q+1)

)
, (4.19)

and hence

∥∥f − gm,φ
∥∥
p,Sq

= O
(

1
2mγ

+
1

2m(γ ′−2q+1)

)
. (4.20)

Since γ ′ ≥ 2q − 1 + γ , we have (2.11) by (4.20). Equation (2.12) follows by (4.3), (4.4), and
(3.19).

Proof of Corollary 2.2. By (2.11)-(2.12) one has

K

(
f,

1
22mγ ′

)
HK(φ)

≤ ∥∥f − gm,φ
∥∥
p,Sq

+
1

22mγ ′
∥∥∥g∗

m,φ

∥∥∥2

HK(φ)

= O
(

1
2mγ

)
+

1
22mγ ′

×O
(
22m(2q−1)

)
= O

(
1

2mγ

)
.

(4.21)

Proof of Theorem 2.3. Take the place of φ(xω) in Lemma 3.5 with K(φ, xω), denote still by Dφ

the operator Dφ in Lemma 3.5 with φ(xy) = K(φ, xy) and

gm,φ(x) =
∑
ω∈∧

λωDφσ2m
(∧, η, f, ω)

K
(
φ, xω

)
, x ∈ Sq, (4.22)

then, gm,φ ∈ H∧
K(φ) and by (3.15) ‖f − gm,φ‖p,Sq = O(1/2mβ). In this case,

∥∥gm,φ∥∥2
H∧

K(φ)
=

∑
ω,ω′∈∧

λωλω′Dφσ2m
(∧, η, f, ω)Dφσ2m

(∧, η, f, ω′)K(
φ,ωω′)

≤
(∑

ω∈∧
λω

∣∣Dφσ2m
(∧, η, f, ω)∣∣2)( ∑

ω,ω′∈∧
λωλω′

∣∣K(
φ,ωω′)∣∣2)1/2

.

(4.23)
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Since σ2m(∧, η, x) is a spherical harmonics of order ≤ 2m, we know by (i) of Lemma 3.5 that
Dφσ2m(∧, η, f, x) are also spherical harmonics of order ≤ 2m. Then, (3.2), (i) of Lemma 3.5,
(3.3), and (3.16) make

∑
ω∈∧

λω
∣∣Dφσ2m(∧, η, f, ω)

∣∣2 ≤ C∫
Sq

∣∣Dφσ2m(∧, η, f, ω)
∣∣2dμq(ω)

≤ C∥∥∂βσ2m(∧, η, f)∥∥2
2,Sq

≤ C22mq(1/p−1/2)+∥∥∂βσ2m(∧, η, f)∥∥2
p,Sq

≤ C22mq(1/p−1/2)+
(∥∥∂βf − ∂βσ2m

(∧, η, f)∥∥2
p,Sq

+ C
∥∥∂βf∥∥2

p,Sq

)
.

(4.24)

Hence, (3.19) and above equation make ‖gm,φ‖2H∧
K(φ)

≤ C2mq(1/p−1/2)+‖∂βf‖2p,Sq . Equation (2.14)

follows by (3.15).
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