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This paper deals with some inequalities for trigonometric and hyperbolic functions such as the
Jordan inequality and its generalizations. In particular, lower and upper bounds for functions such
as (sinx)/x and x/ sinhx are proved.

1. Introduction

During the past several years there has been a great deal of interest in trigonometric
inequalities [1–7]. The classical Jordan inequality [8, page 31]

2
π
x ≤ sinx ≤ x, 0 < x <

π

2
(1.1)

has been in the focus of these studies and many refinements have been proved for it by Wu
and Srivastava [9, 10], Zhang et al. [11], J.-L. Li and Y.-L. Li [5, 12], Wu and Debnath [13–15],
Özban [16], Qi et al. [17], Zhu [18–29], Sándor [30, 31], Baricz and Wu [32, 33], Neuman and
Sándor [34], Agarwal et al. [35], Niu et al. [36], Pan and Zhu [37], and Qi and Guo [38]. For a
long list of recent papers on this topic see [7] and for an extensive survey see [17]. The proofs
are based on familiar methods of calculus. In particular, a method based on a l’Hospital type
criterion for monotonicity of the quotient of two functions from Anderson et al. [39] is a key
tool in these studies. Some other applications of this criterion are reviewed in [40, 41]. Pinelis
has found several applications of this criterion in [42] and in several other papers.

The inequality

1 + cosx
2

≤ sinx
x

≤ 2 + cosx
3

, (1.2)

where x ∈ (−π/2, π/2) is well-known and it was studied recently by Baricz in [43, page 111].
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The second inequality of (1.2) is given in [8, page 354, 3.9.32] for 0 ≤ x ≤ π . For a refinement
of the first inequality in (1.2) see Remark 1.3(1) and of the second inequality see Theorem 2.4.

This paper is motivated by these studies and it is based on the Master Thesis of Visuri
[44]. Some of our main results are the following theorems.

Theorem 1.1. For x ∈ (0, π/2)

x2

sinh2x
<

sinx
x

<
x

sinhx
. (1.3)

Theorem 1.2. For x ∈ (0, 1)

(
1

coshx

)1/2

<
x

sinhx
<

(
1

coshx

)1/4

. (1.4)

We will consider quotients sinx/x and x/sinhx at origin as limiting values
limx→ 0 sinx/x = 1 and limx→ 0x/ sinhx = 1.

Remark 1.3. (1) Let

g1(x) =
1 + 2 cosx

3
+
x sinx

6
, g2(x) =

1 + cosx
2

. (1.5)

Then g1(x) − g2(x) > 0 on (0, π/2) because

d

dx

(
g1(x) − g2(x)

)
=

x cosx
6

> 0. (1.6)

In [45, (27)] it is proved that for x ∈ (0, π/2)

sinx
x

≥ g1(x). (1.7)

Hence (1 + 2 cosx)/3 + (x sinx)/6 is a better lower bound for (sinx)/x than (1.2) for x ∈
(0, π/2).

(2) Observe that

2 + cosx
3

=
2 + 2cos2(x/2) − 1

3
≤ cos

x

2
, (1.8)

which holds true as equality if and only if cos(x/2) = (3 ± 1)/4. In conclusion, (1.8) holds for
all x ∈ (−2π/3, 2π/3). Together with (1.2) we now have

cos2
x

2
=

1 + cosx
2

> cosx, (1.9)
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and by (1.8)

cos2
x

2
<

sinx
x

< cos
x

2
. (1.10)

2. Jordan’s Inequality

In this section we will find upper and lower bounds for (sinx)/x by using hyperbolic
trigonometric functions.

Theorem 2.1. For x ∈ (0, π/2)

1
coshx

<
sinx
x

<
x

sinhx
. (2.1)

Proof. The lower bound of sinx/x holds true if the function f(x) = sinx coshx −x is positive
on (0, π/2). Since

f ′′(x) = 2 cosx sinhx, (2.2)

we have f ′′(x) > 0 for x ∈ (0, π/2) and f ′(x) is increasing on (0, π/2). Therefore

f ′(x) = cosx coshx + sinx sinhx − 1 > f ′(0) = 0, (2.3)

and the function f(x) is increasing on (0, π/2). Now f(x) > f(0) = 0 for x ∈ (0, π/2).
The upper bound of sinx/x holds true if the function g(x) = x2−sinx sinhx is positive

on (0, π/2). Let us denote h(x) = tanx − tanhx. Since cosx < 1 < coshx for x ∈ (0, π/2) we
have h′(x) = cosh−2x − cos−2x > 0 and h(x) > h(0) = 0 for x ∈ (0, π/2). Now

g ′′′(x) = 2(cosx coshx)h(x), (2.4)

which is positive on (0, π/2), because cosx coshx > 0 and h(x) > 0 for x ∈ (0, π/2). Therefore

g ′′(x) = 2(1 − cosx coshx) > g(0) = 0,

g ′(x) = 2x − cosx sinhx − sinx coshx > g ′(0) = 0
(2.5)

for x ∈ (0, π/2). Now g(x) > g(0) = 0 for x ∈ (0, π/2).

Proof of Theorem 1.1. The upper bound of sinx/x is clear by Theorem 2.1. The lower bound of
sinx/x holds true if the function f(x) = sinxsinh2x − x3 is positive on (0, π/2).

Let us assume x ∈ (0, π/2). Since sinx > x − x3/6 = (6x − x3)/6 we have f(x) >
((6x − x3)sinh2x)/6 − x3. We will show that

g(x) =
6 − x2

6
sinh2x − x2 (2.6)

is positive which implies the assertion.
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Now g(x) > 0 is equivalent to

sinhx
x

>

√
6√

6 − x2
. (2.7)

Since x−1 sinhx > 1 + x2/6 it is sufficient to show that 1 + x2/6 >
√
6/

√
6 − x2, which is

equivalent to

x2
(
−x4 − 6x2 + 36

)
> 0. (2.8)

Let us denote h(x) = −x4 − 6x2 + 36. Now h′(x) = −4x(x2 + 3) and therefore h′(x)/= 0 and
h(x) > min{h(0), h(π/2)} > 0. Therefore inequality (2.8) holds for x ∈ (0, π/2) and the
assertion follows.

We next show that for x ∈ (0, 1) the upper and lower bounds of (1.2) are better than
the upper and lower bounds in Theorem 2.1.

Theorem 2.2. (i) For x ∈ (−1, 1)

2 + cosx
3

≤ x

sinhx
. (2.9)

(ii) For x ∈ (−π/2, π/2)

1
coshx

≤ 1 + cosx
2

= cos2
x

2
. (2.10)

(iii) For x ∈ (−π/2, π/2)

1

1 + sin2x
≤ 1 + cos2x

2
≤ 1 + cosx

2
. (2.11)

Proof. (i) The claim holds true if the function f(x) = 3x−2 sinhx− sinhx cosx is nonnegative
on [0, 1). By a simple computation we obtain f ′′(x) = 2(coshx sinx − sinhx). Inequality
f ′′(x) ≥ 0 is equivalent to sinx ≥ tanhx. By the series expansions of sinx and tanhx we
obtain

sinx − tanhx =
∑

n≥3, n≡1( mod 2)

(−1)(n−1)/2(n + 1) − 2n+1
(
2n+1 − 1

)
Bn+1

(n + 1)!
xn

=
∑

n≥3, n≡1( mod 2)

cnx
n,

(2.12)
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where Bj is the jth Bernoulli number. By the properties of the Bernoullin numbers c1 = 1/6,
c3 = −1/8, coefficients cn, for n ≡ 1(2), form an alternating sequence, |cnxn| → 0 as n → ∞
and |c2m+1| > |c2m+3| for m ≥ 1. Therefore by Leibniz Criterion

sinx − tanhx ≥ x3

6
− x5

8
=

x3

24

(
4 − 3x2

)
(2.13)

and sinx ≥ tanhx for all x ∈ [0, 1). Now f(x) is a convex function on [0, 1) and f ′(x) is
nondecreasing on [0, 1) with f ′(0) = 0. Therefore f(x) is nondecreasing and f(x) ≥ f(0) = 0.

(ii) The claim holds true if the function g(x) = coshx(1 + cosx) − 2 is nonnegative on
[0, π/2). By the series expansion of cosx we have cosx − 1+x2/2 ≥ 0 and therefore
by the series expansion of coshx

g(x) ≥
(
1 +

x2

2

)
(1 + cosx) − 2

= cosx − 1 +
x2

2
+
x2 cosx

2

≥ cosx − 1 +
x2

2
≥ 0,

(2.14)

and the assertion follows.

(iii) Clearly we have

(
1 + cos2x

)(
1 + sin2x

)
= 2 + sin2xcos2x ≥ 2, (2.15)

which implies the first inequality of the claim. The second inequality is trivial since
cosx ∈ (0, 1).

Theorem 2.3. Let x ∈ (0, π/2). Then

(i) the function

f(t) = cost
x

t
(2.16)

is increasing on (1,∞),

(ii) the function

g(t) = sint x

t
(2.17)

is decreasing on (1,∞),

(iii) the functions f(t) = cosht(x/t) and g(t) = sinht(x/t) are decreasing on (0,∞).
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Proof. (i) Let us consider instead of f(x) the function

f1
(
y
)
=

x

y
log cos y (2.18)

for y ∈ (0, x). Note that f(t) = exp(f1(x/t)) and therefore the claim is equivalent to the
function f1(y) being decreasing on (0, x). We have

f ′
1

(
y
)
= − x

y2

(
log cos y + y tany

)
, (2.19)

and f ′
1(y) ≤ 0 is equivalent to f2(y) = log cos y + y tany ≥ 0. Since f ′

2(y) = y/cos2y ≥ 0 we
have f2(y) ≥ f2(0) = 0. Therefore f(t) is increasing on (1,∞).

(ii) We will consider instead of g(x) the function

g1
(
y
)
=

x

y
log sin y (2.20)

for y ∈ (0, x). Note that g(t) = exp(g1(x/t)) and therefore the claim is equivalent to
the function g1(y) being increasing on (0, x). We have

g ′
1

(
y
)
=

x

y2

(
y

tany
− log cos y

)
, (2.21)

and g ′
1(y) ≥ 0 is equivalent to g2(y) = y/ tany − log cos y ≥ 0. Since g ′

2(y) =
((1/ cosy) − (y/ siny))/ siny ≥ 0 we have g2(y) ≥ f2(0) = 1. Therefore g ′

1(y) ≥ 0
and the assertion follows.

(iii) We will show that h1(y) = (x/y) log cosh y is increasing on (0,∞). Now h′
1(y) =

(x(y tanh y − log cosh y))/y2,

d
(
y tanh y − log cosh y

)
dy

=
y

cosh2y
> 0, (2.22)

and y tanh y − log cosh y ≥ 0. Therefore the function h1(y) is increasing on (0,∞)
and f(t) is decreasing on (0,∞).

We will show that h2(y) = (x/y) log sinh y is increasing on (0,∞). Now h′
2(y) =

(x(y cothy − log sinh y))/y2,

d
(
y cothy − log sinhy

)
dy

= − y

sinh2y
< 0, (2.23)

and cothy − (log sinh y)/y ≥ limy→∞ cothy − (log sinh y)/y = 0. Therefore the function
h2(y) is increasing on (0,∞) and g(t) is decreasing on (0,∞).

We next will improve the upper bound of (1.2).
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Theorem 2.4. For x ∈ (−
√
27/5,

√
27/5)

cos2
x

2
≤ sinx

x
≤ cos3

(
x

3

)
≤ 2 + cosx

3
. (2.24)

Proof. The first inequality of (2.24) follows from (1.2).
By the series expansions of sinx and cosx

sinx
x

≤ 1 − x2

6
+

x4

120
≤
(
1 − x2

18

)3

≤ cos3
(
x

3

)
, (2.25)

where the second inequality is equivalent to x4(27−5x2)/29160 ≥ 0 and the second inequality
of (2.24) follows.

By the identity cos3x = (cos 3x + 3 cosx)/4 the upper bound of (2.24) is equivalent to
0 ≤ 8 + cosx − 9 cos(x/3). By the series expansion of cosx

8 + cosx − 9 cos
(
x

3

)
=

∞∑
n=2

(−1)n 32n − 9
32n(2n)!

x2n, (2.26)

and by the Leibniz Criterion the assertion follows.

3. Hyperbolic Jordan’s Inequality

In this section we will find upper and lower bounds for the functions x/sinhx and coshx.

Theorem 3.1. For x ∈ (−π/2, π/2)

1 − x2

6
≤ sinx

x
≤ 1 − 2x2

3π2
. (3.1)

Proof. We obtain from the series expansion of sinx

sinx
x

≥ 1 − x2

6
, (3.2)

which proves the lower bound.
By using the identity 1 − cosx = 2sin2(x/2) the chain of inequalities (1.2) gives

sinx
x

≤ 1 − 2sin2(x/2)
3

(3.3)

and the assertion follows from inequality sin2(x/2) ≥ (x/π)2.
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Remark 3.2. J.-L. Li and Y.-L. Li have proved [12, (4.9)] that

sinx
x

< p(x)

(
1 − x2

π2

)
< 1 − x2

π2
, 0 < x < π, (3.4)

where p(x) = 1/
√
1 + 3(x/π)4 < 1 . This result improves Theorem 3.1.

Lemma 3.3. For x ∈ (0, 1)

(i) sinhx < x + x3/5,

(ii) coshx < 1 + 5x2/9,

(iii) 1/ coshx < 1 − x2/3.

Proof. (i) For x ∈ (0, 1) we have x2(1 − x2) > 0 which is equivalent to

1
1 − x2/6

< 1 +
x2

5
. (3.5)

By Theorems 2.1, 3.1, and (3.5)

sinhx ≤ x2

sinx
≤ x

1 − x2/6
< x +

x3

5
. (3.6)

(ii) Since (2n)! > 6n for n ≥ 3 we have

1 +
5x2

9
− coshx =

x2

18
−

∞∑
n=2

x2n

(2n)!

≥ x2

18
−

∞∑
n=2

x2

(2n)!

= x2

(
1
72

−
∞∑
n=3

1
(2n)!

)

≥ x2

(
1
72

−
∞∑
n=3

1
6n

)

> 0.

(3.7)

(iii) By the series expansion of coshx we have

coshx

(
1 − x2

3

)
≥
(
1 +

x2

2

)(
1 − x2

3

)
= 1 +

x2

6
− x4

6
> 1. (3.8)
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Proof of Theorem 1.2. The lower bound of x/ sinhx follows from Lemma 3.3 and Theorem 3.1
since

1
coshx

< 1 − x2

3
<

(
1 − x2

6

)2

≤
(

x

sinhx

)2

. (3.9)

The upper bound of x/ sinhx holds true if the function g(x) = sinh4x − x4 coshx is
positive on (0, 1). By the series expansion it is clear that

sinhx > x +
x3

6
. (3.10)

By Lemma 3.3 and (3.10)

g(x) >

(
x +

x3

6

)4

− x4

(
1 +

2x2

3

)
=

x6

1296

(
x6 + 24x4 + 216x2 + 144

)
> 0, (3.11)

and the assertion follows.

Theorem 3.4. For x ∈ (0, π/4)

coshx <
cosx√

(cosx)2 − (sinx)2
. (3.12)

Proof. The upper bound of coshx holds true if the function f(x) = cos2x − cosh2x(cos2x −
sin2x) is positive on (0, π/4). Since

f ′′(x) = 4 sin(2x) sinh(2x) > 0, (3.13)

we have

f ′(x) = sin(2x) sinh(2x) − cos(2x) cosh(2x) > f ′(0) = 0. (3.14)

Therefore f(x) > f(0) = 0 and the assertion follows.

Theorem 3.5. For x ∈ (0, π/4)

1

(cosx)2/3
< coshx <

1
cosx

. (3.15)

Proof. The upper bound of coshx holds true if the function f(x) = 1 − cosx coshx is positive
on (0, π/4). Since f ′′(x) = 2 sinx sinhx > 0 the function f ′(x) = coshx sinx − cosx sinhx is
increasing. Therefore f ′(x) > f ′(0) = 0 and f(x) > f(0) = 0.
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The lower bound of coshx holds true if the function g(x) = cos2xcosh3x − 1 is positive
on (0, π/4). By the series expansions we have

g(x) >

(
1 − x2

2

)2(
1 +

x2

2

)3

− 1 =
x2

32

(
x8 + 2x6 − 8x4 − 16x2 + 16

)
. (3.16)

By a straightforward computation we see that the polynomial h(x) = x8+2x6−8x4−16x2+16
is strictly decreasing on (0, π/4). Therefore

h(x) > h(π/4)

= 16 − π2 − π4

32
+

π6

2048
+

π8

65536

> 16 − 16
5

2

− 32−1
16
5

4

+
36

2048
+

38

65536

=
120392497
40960000

> 0,

(3.17)

and the assertion follows.

Remark 3.6. Baricz and Wu have shown in [33, page 276-277] that the right hand side
of Theorem 2.1 is true for x ∈ (0, π) and the right hand side of Theorem 3.5 is true for
x ∈ (0, π/2). Their proof is based on the infinite product representations.

Note that for x ∈ (0, π/4)

1
cosx

≤ cosx√
(cosx)2 − (sinx)2

. (3.18)

Hence, the upper bound in Theorem 3.5 is better that in Theorem 3.4.

4. Trigonometric Inequalities

Theorem 4.1. For x ∈ (0, 1) the following inequalities hold

(i) x/ arcsinx ≤ sinx/x,

(ii) x/arcsinh x ≤ sinhx/x,

(iii) x/ arctanx ≤ tanx/x,

(iv) x/arctanh x ≤ tanhx/x.

Proof. (i) By setting x = sin t the assertion is equivalent to

sinc t ≤ sinc (sin t), (4.1)

which is true because sinc t = (sin t)/t is decreasing on (0, π/2) and sin t ≤ t.
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(ii) By the series expansions of sinhx and arcsinh x we have by Leibniz Criterion

(sinhx)arcsinh x − x2 ≥
(
x +

x3

6

)(
x − x3

6
+
3x5

40
− 5x7

112

)
− x2

=
x6

10080

(
−75x4 − 324x2 + 476

)
,

(4.2)

and since −75x4 − 324x2 + 476 > 77 on (0, 1) the assertion follows.

(iii) By the series expansions of tanx and arctanx we have by Leibniz Criterion

(tanx) arctanx − x2 ≥
(
x +

x3

3
+
2x5

15
+
17x7

315

)(
x − x3

3

)
− x2

=
x6

945

(
21 + 9x2 − 17x4

)
,

(4.3)

and since 21 + 9x2 − 17x4 > 4 on (0, 1) the assertion follows.

(iv) By the series expansions of tanhx and arctanhx we have by Leibniz Criterion

(tanhx)arctanh x − x2 ≥
(
x − x3

3

)(
x +

x3

3
+
x5

5

)
− x2

=
x6

45

(
4 − 3x2

)
,

(4.4)

and since 4 − 3x2 > 1 on (0, 1) the assertion follows.

Remark 4.2. Similar inequalities to Theorem 4.1 have been considered byNeuman in [46, page
34-35].

Theorem 4.3. Let k ∈ (0, 1). Then

(i) for x ∈ (0, π)

sinx
x

≤ sin(kx)
kx

, (4.5)

(ii) for x > 0

sinhx
x

≥ sinh(kx)
kx

, (4.6)

(iii) for x ∈ (0, 1)

tanhx
x

≤ tanh(kx)
kx

. (4.7)
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Proof. (i) The claim follows from the fact that sinc is decreasing on (0, π).

(ii) The claim is equivalent to saying that the function f(x) = (sinhx)/x is increasing
for x > 0. Since f ′(x) = (coshx)/x − (sinhx)/x2 ≥ 0 and f ′(x) ≥ 0 is equivalent to
tanhx ≤ x the assertion follows.

(iii) The claim is equivalent to tanh(kx)−k tanh x ≥ 0. By the series expansion of tanh x
we have

tanh(kx) − k tanh x = k
∞∑
n=1

4n+1
(
4n+1 − 1

)
B2(n+1)x

2n+1

(2n + 2)!

(
k2n − 1

)
, (4.8)

where Bj is the jth Bernoulli number (B0 = 1, B1 = −1/2, B2 = 1/6, . . .). The assertion
follows from the Leibniz Criterion, if

k − k3

3
x3 − 2

(
k − k5)
15

x5 > 0 (4.9)

for all x ∈ (0, 1). Since (4.9) is equivalent to

x2 <
5

2(1 + k2)
, (4.10)

the assertion follows from the assumptions k ∈ (0, 1) and x ∈ (0, 1).
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Elektrotehničkog Fakulteta Univerzitet u Beogradu. Serija Matematika, vol. 18, pp. 32–37, 2007.


