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A new Hilbert-type linear operator with a composite kernel function is built. As the applications,

two new more accurate operator inequalities and their equivalent forms are deduced. The constant
factors in these inequalities are proved to be the best possible.

1. Introduction

In 1908, Weyl [1] published the well-known Hilbert’s inequality as follows:
if a,, b, > 0 are real sequences, 0 < 302, a2 < coand 0 < 3%, b2 < o, then

PIP s <7r<ZaiZbi> , (1.1)

where the constant factor ur is the best possible.
Under the same conditions, there are the classical inequalities [2]

P <Jr<ZaiZbi> , (12
& & In(m/n)ayby, o = a0 1z
Z S < Zaann , (1.3)
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where the constant factors o and 72 are the best possible also. Expression (1.2) is called a
more accurate form of (1.1). Some more accurate inequalities were considered by [3-5]. In 2009,
Zhong [5] gave a more accurate form of (1.3).

Set (p,q), (s,r) as two pairs of conjugate exponents, and p >1,s >1,a >1/2,and a,,
b, >0, such that 0 < 32 (n + a)’™ 774l < 0 and 0 < 32, (n + a)1 97 < oo, then it
has

1/q

A A
n=0 m=0 (m + “) - (Tl + a)

[ee] [ee] [ee] / [ee]
S In((m+a)/(n+ a))amby, - {Z(" + )P -Un1 aﬁ}l P{Z(ﬂ N a)qu/s)lbz}
n=0 n=0
(1.4)

Letting ¢(x) := (x + @)’ " ™77 o(x) = (x + @)1V, 20 = (a0 = {an) 2, llallpg =

(SodmlanP)'? < o), € := {b;b = (bu)ig, and [|bllgy = (T2 @(m)|bal7)!7 < oo}, the
expression (1.4) can be rewritten as

S < In(m+a)/(n+ a)a,by,
b) := k bll, ., .
(Ta,b) nz=0mz=0 e (e <ku(s)llall,g bl (15)

where T : ¢/ — 65, is a linear operator, ky(s) = [|T||. [|al|,,¢ is the norm of the sequence a with
a weight function ¢. (Ta, b) is a formal inner product of the sequences Ta(n)(:= >;_,(In(m +
a)/(n+a)a,)/(m+ cx))‘ - (n+ Lt))L )) and b.

By setting two monotonic increasing functions u(x) and v(x), a new Hilbert-type
inequality, which is with a composite kernel function K(u(x),v(y)), and its equivalent are
built in this paper. As the applications, two new more accurate Hilbert-type inequalities
incorporating the linear operator and the norm are deduced.

Firstly, the improved Euler-Maclaurin’s summation formula [6] is introduced.

Set f € C*[m, o0)(m € Ny). If (1) fD(x) > 0, fD(c0) = 0 (i = 0,1,2,3,4), then it has

S.fn) < [ peodes ypm) -3y f ),
(1.6)

> s> [ fexdss 3 fom)

2. Lemmas

Lemma 2.1. Set (r, s) as a pair of conjugate exponents, s > 1, p > a > e’/12,0 < A < 1, and define

1 In*'"am

= ’ 1, ), N, 2.1

f(y) l}’l)‘am + ln)tﬁy (lnl—)t/sﬂy>y y € [ OO) me ( )
1 ln)L/s n

s(y) = p yel,), neN, (2.2)

Intay + In*pn (In*Vray)y’
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Inp/Inam uA/s—l 1 1
R)L(m, S) = fo mdu - Ef(].) + E'f (1), (23)
~ Ina/Inpn yt/r-1 1 1
R = — —o(1 —o(1 2.4
A7) fo l+u)‘du Zg( )+128( ) 4)
Inp/Inam u)t/s—l 1
,8) = du—-=f(). 2.5
moms)= [ =371 @5)

Then, it has the following.
(1) The functions f(y), g(y) satisfy the conditions of (1.6). It means that

DFO(y) >0 (F=f,g ye L),

| (2.6)
F(w)=0 (F=fg,i=0,1,23,4),
()
Ry(m,s) >0, Ry(nr)>0, (2.7)
3)
L]’ 2.8
0<m(m,s)—0<[lnam] > (p>0,m— o). (2.8)
Proof. (1) Forp>a>e’12,y>1,me N,0<A1<1,ands > 1, set
) = o ) = e, ) = 29
1wy = Intam + Intpy’ 2\ = In'-V/spy’ W=y 29)
It has
f(y) =i amfi(y) f2(y) f>(v) (2.10)
when y > 1. It is easy to find that
(—1)ff].<"> (y) >0, f].<i)(oo) =0 (ye[l,®), j=1,2,3i=0,1,23,4),
(2.11)

-D)'f9(y) >0, fP0)=0 (ye[l, ), i=0,1,234).
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Similarly, it can be shown that (—l)ig(i) (y) >0,8D(0) =0(y >1,i=0,1,2,3,4). These
tell us that (2.6) holds and the functions f(y), g(y) satisfy the conditions of (1.6).
(2) Set t = u*. With the partial integration, it has

Inp/Inam , 1/s-1 1 (In g/ Inam)* $1/s-1 s (In g/ Inam)* Adtl/s
wr o=l R P
0 1+ut A 0 1+t A 0 1+t

B S (lnﬂ/lnam)/\/s . s f(lnﬂ/lnam)l\ tl/s
J\1+(lnﬂ/lnam)A Ao (1+1)?

s In'p Inam\*'" 52 (np/Inam)* 741/s+1
= — —+ —_—
)Lln*am+ln*ﬁ< Inp > A(1+s) fo (1+1)>2

In'p <ln am>)‘/r . s? In?'p <ln am>)‘/r

s
> 2
~ Alntam + Inip

Inp A +5) (Intam + In*g)> \ Inp
(2.12)
By (2.1), it has
X r Int1
f(1) = (m “m> np (2.13)
Inp Intam +In'p
(1) = (hwcm))‘/r O An®? (- A/s)in' g Intp 214)
Inp (In*am + ln)‘ﬁ)z Infam +1Intf  In‘am+Inig | '
In view of (2.12)~(2.14), it has
Inam\*"'" In*-1p 1-A/s 7 s
> —_ _— —
Ri(m, s) -( Inp ) {1nmm+1nkp 2np 12 Ah‘ﬁ]
(2.15)

. In*' B s A
(In*am + ln)tﬂ)z A1+s) 12In26]|°
AsInp>7/12,5>1(r>1),and 0 < A <1, ithas

1-A/s 7 s 7s A 1 A
- MLy 2 > (1-ZY_-_- (1=
g 12T nPz 12)L<1 s) 12Inp (1 s>

- (1_ %)(172_3 B 1zinp> g (1_ %)(% B 12}nﬁ) >0, (2.16)

52 A s s s( 1 )
- SS_o_5 __S(1___Yso
11+s) 12mf 4 12l 4\ 3m2p

It means that Ry (m, s) > 0. Similarly, it can be shown that R 1(n,7) > 0. The expression (2.7)
holds.



Journal of Inequalities and Applications 5

(3) By (2.5), (2.12), (2.13),and 0 < A < 5, f > €7/12, it has

(m,s) > s In'p <lnam)“r 1 In*lg <lnam)“r
1(m, s) >

Antam + In'g\ Inp " 2Intam + In'g\ Inp
Mro Al 1 Ar Int1
:<1nam> n'" f (s nﬂ_1>><lnam> n*"'p <ln[5—1>>0,
Inp Intam+In'g\ A 2 Inp Intam + In'p 2

1 ((np/ Inam)* et 5 h’lﬂ s
q)L(m,s)<XJ‘O u du_1<lnam) .

(2.17)

The expression (2.8) holds, and Lemma 2.1 is proved. O

Lemma 2.2. Set (r,s) as a pair of conjugate exponents, s > 1, p > a >1/2,and 0 < A < 1, and
define

fily) = — L (@ p)/m+a) <y+ﬂ

A/s-1
B ’ 0, ), N,
./\(m+a)((y+ﬁ)/(m+a)))t_1 m+a> ye[ ) m &€ Ny

si1(y) =

1 In(y+a)/m+p) fy+a\"!

A(n+p) ((y+a)/(n+p)))‘_1<n+ﬁ> , Yy €[0,0), neN,,
(B/m+a)t 1

Ry(m,s) := % J.O %ul/s—ldu - %ﬁ(O) + %f{ (0), (2.18)

ﬁi(n, r) =

1 (@B Iny
- nu

1 1
1/r-1 _ = i
. u—lu du 2g1(0)+ 12g1(0),

B/ma)'

._ l 1/s-1 _1
m(m,s) = B fo —u du 2f1(0).

Then, it has

(1) The functions f1(y), g1(y) satisfy the conditions of (1.6). It means that

(-1)'FO(y) >0 (F=fi,8, y€[0,0)),

, (2.19)
FP(0) =0 (F=f1,8,i=0,1,2,3,4),

@)

Ri(m,s) >0,  Ry(n,r)>0, (2.20)
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®)

1
m+a

0<m(m,s) = O(

p
> (p>0,m— o0). (2.21)

Proof. (1) Letting h(u) :=Inu/(u-1), u = ((y+p)/(m+ cx)))‘, it can be proved that fi(y) =
(1/A(m + a))h(u)u'/s1/* satisfy (2.19) as in [5]. Similarly, it can be shown that g (y) satisfy
(2.19) also.

(2) Setting ug := (B/(m+ a)), by u' = AM(y+p)/(m+ a1/ (m + a)) = A/ (y+
P ((y+p)/(m+ a)) ' (0) = (A/P)ug, and h"(u) > 0, it has

1 (B mra)t
A2

Weigy = L fuo h(u)u'/*du

= %J. h(u)du'/s = % [h(uo)u(l)/s —J. ul/sh'(u)du]
0 0

(2.22)
> % [h(uo)ug/s 1 (uo) fo ul/Sdu]
_ % [h(uo)ug/s - ﬁh'(uo)ué/ 1]
_ 1 I@/mapt s g N1
fl(o)_)u(m+a) (ﬂ/(m+a))’\—1<m+“> _J\ﬁh(uO)uO !
(2.23)
1 1 1
f1(0) = Eu})/s [h’(uo)uo + (E - X)h(uo)]. (2.24)

With (2.22)~(2.24), it has

s 1 1 1 1 , s 1
R)L(m, S) > h(uo)ué/s ﬁ - m + Tﬂz <g - X):I - h (uo)ué/SH [1 s - Tﬂz] . (225)

By h(up) >0, h'(ug) <0,and p>1/2,5>1,0< A <1, ithas

s 1 1 /1 1\ 6Bs(2fs—1)-A(s-1)
ﬁ‘ﬂ*@z(;‘x)— 2fs1 >0, .
26
s 1 12f%s—-(1+s) (4s—s)+ (8f%s-1) (220)
1+s 122 12P(1+s) 12pX(1 + s) g

So Ry (m, s) > 0 holds. Similarly, it can be shown that R V(1) > 0.
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(3) In view of (2.22), (2.23), by h(u) > 0, h'(u) <0, it has

s| S 1 52 s—A
wlm ) > W = 575 = nowny Zzﬂ

>0, (2.27)

and by lim, - (Inu/(u — 1))u!/? = 0, so there exists a constant L > 0, such that |(Inu/ (1 —
1))u/2| < L (u € (0, (B/(m + a))*)). Then it has

1 B/ )t 1 (B/(mra)’ 2sL 1/2s
M(m,s) < 1z f %ul/sfldu < e f w2 dy = % (mi a> . (2.28)
0 - 0

It means that (2.21) holds. The proof for Lemma 2.2 is finished. O

3. Main Results

Setl e R,p>1,r>1,(p,q),and (r,s) as two pairs of conjugate exponents. K(x,y) > 0((x,y) €
(0,00) x (0,0)) is a measurable kernel function. Both u(x) and v(x) are strictly monotonic
increasing differentiable functions in [ng, o0) such that U (1) > 0,U (o) = oo(U = u,v). Give
some notations as follows:

1)
$(x) = [u() P u (2],
P(x) = [0(x) 179 o' ()], (3.1)
p(x) = [p(0)]' 7 = [V (x)  (x € [n0,0)),
(2) set

o 1/p
ég = {a;a = {an )yl lall,y = {Zd)(ﬂ)lanl”} < oo}, (3.2)

n=mnp

and call EZ a real space of sequences, where

o 1/p
lall,s = { ZdJ(n)Ianl’”} (3.3)

n=ny

is called the norm of the sequence with a weight function ¢. Similarly, the real spaces of sequences
6(7,, €Z and the norm ||b|,, can be defined as well,
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(3) define a Hilbert-type linear operator T : ZZ — Zq’j, foralla € ﬁg,

(Ta)(n) :=C, = i K(u(m),v(n))a, (n>nyp), (3.4)

m=ny

(4) forallae &),be &7,, define the formal inner product of Ta and b as

(Ta,b) := D! < > K(u(m),v(n))am>bn = >, D K(u(m),v(n))amby, (3.5)

n=ngy m=ny n=ny m=ny

(5) define two weight coefficients w(m, s) and d(n,r) as

© A7
u(m ,
rlm ) = 3K ulm), o0 I o )
3.6
< GICO) o
Y(n,r) = Z K(u(m),v(n))—l_mu (m), m,n>ny.
=y [u(m)]
Then it has some results in the following theorems.

Theorem 3.1. Suppose that a, > 0, U'(x)/U(x) > 0U = wumv), and 0 <

Z’:no(v’(n)/[v(n)]lﬂ) < Zfzno(u’(n)/[u(n)]l” ) < oo(e > 0). If there exists a positive number
ky, such that

0<wy(m,s)<ky, 0<d(nr)<ky, (mmn2>nyp), (3.7)
kl<1_o<[u(lT)]")) <wy(m,s) (p>0,m— ), (3.8)

then for all a € KZ and ||a||p,¢ > 0, it has the following:
1)

Ta=C={Culi,, €&, (3.9)

n=ngp

It means that T : Kg — &,
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(2) T is a bounded linear operator and

ITall,,
ITll,, = sup

act!(a#6) llall,,g

=k, (3.10)

where C,, T are defined by (3.4), |Tallp,y = ICllp,, is defined as (3.3).

Proof. By using Holder’s inequality [7] and (3.6), (3.7), it has C,, > 0 and

_ { S K(u(m),v(n))[[”(m)](lM)/q[v'(")]l/pa ] [[v(n)]““”/*’ [u'(m)]”q] }”

F [o(m)] 7P [ (m) 1Y || [ |5/ [0 () ]/

& [1(m)] P~ DO/ ’(n)
- {T;‘OK(”W) O o T
o & [0(n)]@D0-V9)y, ,(m)}
{mzznoK(u(m),v(n)) [u(m)]lf)t/r[ '(n)]%" 1
ad (p-1)(A-A/1) 1 p-1
- {m:zn K(u(m),v(n)) [[ (( ))]]1 o )];(7”1) 2 }{m(n,r)q)(n)}

1)(1-A
)Py ()

— 0 (
<kb 1{n;0K(u(m),v(n)) [[ " m}{(PP 1(11)}

3.11)
And by ¢ (n) = ¢! P (n), it follows that
=) 5 w ® [u( )](p 1)(1-A/7) /(Tl)

=K7Y wi(m, s)dmydy, < K Jall , < oo

m=ny

This means that C = {C,}%, € &7, ITallp,e < kallallp,p, and || Tl < ky. T is a bounded linear
operator.

If there exists a constant K < k), such that ||T||,, < K, then for ¢ > 0, setting am =
[u(m) Y™/ (m), by = [v(n)]Y*¥/7 0/ (n), it has @ = {G@m)Z., € eg,E = {ba)2,, € €0,
and

I - ~ < u'(m) (= v'(n) ok < u'(m)
(12.8) < Tl g [, <K 30 St | Do S| <KX

el i [o(m)]'** i [u(m)]e
(3.13)

m=ny h=ng
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But on the other side, by (3.8), it has

[u(m)]/\/r e/p-1

<Tﬁ,b> Z ZK(u(m) v(n))W U (m)v' (n)

e (3.14)
w(m) [u@m)]7*7
Z ZK(u(m)’U(”))WU (n).

m= no[ ( ) 1+Eﬂ=7’lo

By the strictly monotonic increase of v(x) and v(ng) > 0, v(c0) = oo, there exists n; > ny
such that v(n) > 1 for all n > n;. So it has

100

=S u !
0< ZK(u(m),U("))W ()

_ e/q] 2 [u(m)]*" ') " [u(m)]""v' (n)
= [u(m)]*1 nzanK(u(m)/U("))W n:ZnOK(”(m),U("))W
< Tutm11] 37 K utm), oy PO S v(n))w}
) ’ [om]' ™ & T o)) e
ny—1 Ar oo
= m 1% oa(m,5) = 3K ), o077
ni-1 A
X [u(m)]™""v'(n)
+n:ZnOI<(u(m),v(n))—[v(n)]1 srelq }
(3.15)
The series is uniformly convergent for € > 0, so it has
) A r+e/q
ghf& _Z K(u(m),v(n)) %v'(m = w)(m,s) (3.16)
and for m > ng, there exists g > 0, when 0 < € < g, it has
2 [um) M7/
nzZnOK(u(m),v(n))W v'(n) > wy(m,s) - W (3.17)
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By (3.14) and (3.8), when 0 < € < gy, it has

(T, b) > 2{)% (“’*(’"’ 5= u(in))
> kkg(]%{ [1 - O( [u(rln)]P)] - klul(m) }

(3.18)

[ee]

-1
L) 1_<°° ' (m) >
& Tt { 2 T

(B o op ) ]

In view of (3.13) and (3.18), letting ¢ — 07, it has k; < K. This means that K = k;; that is,
IT||p,y = ky. Theorem 3.1 is proved. O

Theorem 3.2. Suppose that (p,q) and (r,s) are two pairs of conjugate exponents, r > 1, p > 1,
A ER. Let

f(y) = Ka(u(m), 0(y)) ——os e A/s( ) v'(y),

(3.19)
g(y> - Kf\(”(]/) U(Tl)) ul- )L/T'( ) (]/)
Here, u(y), v(y) satisfy the conditions as in Theorem 3.1. Set
v(ng)/u(m) 1 1
Rm,s) o= | K1, )~ 2 f (o) + 75 f (o), (3.20)
0
~ (no)/v(n) Ve 1 1,
R(Tl, T) = f K/\(,ul]-),u ” d‘u - Eg(no) + Eg (Tlo), (321)
0
o) /u(m) 1
n(m,s) := f Ky(1,w)u s du - Ef(no). (3.22)
0

If (a) Ky (x,y) > 0is a homogeneous measurable kernel function of “\” degree in R?, such that

0<ky(s):= f Ky (1, u)u*'du < oo, (3.23)
0

(b) functions f(y), g(y) satisfy the conditions of (1.6); that is,

-1)'FO(y) >0(y >ny), FP(0)=0 (F=fg,i=0,1,2,3,4), (3.24)
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(c) there exists p > 0, such that
R(m,s) >0, R(nr)>0, 0<n(m,s)= o(ﬁ) (m — ), (3.25)

then it has

(1) ifae €, beel and |y >0, [bllye >0, then

o]

(Ta,b)= > > Ki(u(m), o(n))awbn < ky(s)llall, gllbl,, (3.26)

n=np m=ngy

(2)iface 85) and ||al|p,¢ > O, then

© o pyl/p
ITall,, = { Z [o(n)]PM* 1 (n) [ Z K(u(m),v(n))am] } <ki(s)llall,, 4, (3.27)

n=ngp m=ny

where inequality (3.27) is equivalent to (3.26) and the constant factor kj(s) = E)L(r) =
Io" Ka(u, 1)u ™Y is the best possible.

Proof. By (3.24), (1.6), it has

© © A
J‘ f(y)dy - %f(no) <wy(m,s) = >, Ky(u(m),v(n)) L)) v'(n)

n=ng [U(")]li)h/s
(3.28)

= if (n) < f f(y)dy - %f (no) + 11—2f'(no),
[o(m)]"*

0 < da(m,r) = 3% Ka(ulm), o))< = S )

(3.29)
= >, g(m) < LO g(v)dy - %g(no) + f—zg’(no)-

m=ny
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Letting v = v(y)/u(m) and u = u(y)/v(n) in the integral of (3.28) and (3.29), respectively, by
(3.23), it has

)L o
J. f(}/)d}/ f K)L(u(m) U(y)) ol )L/E( )) (y)dy ) v(ng)/u(m) Kadl, V)V)L/sqdv
* (no)/u(m)
= f Ky (1,v)v*/sldy — f Ky (1, v)v5 7 dv = ky(s) (3.30)
0 0

(n9) /u(m)
—f K)L(l,v)v)‘/s_ldv,
0

fg(y)dy f Ki(u(y) v(m) 12/5()) W)y = f Ka(u, D)t dp

u(no)/o(n)

o u(no) /v(n)
= f Ko (p, )" dp f Ki(u, )it dp = ka(s) (3.31)
0 0

_ o)/ v (n) K 1 )L/rfld
. A D dp,

(where, letting t = 1/u, it has k) (r) = Jo Ka(u, DuM ™ du = (7K1, )57 dt = ky(s)). In
view of (3.28), (3.30), (3.20), (3.22), and with (3.25), it has

0 <wy(m,s) <ky(s)— Ry(m,s) <ky(s),

1 (3.32)
wy(m,s) > ky(s) —ni(m, s) = ky(s) [1 -O1 (W)] (p>0,m— o).
Similarly, with (3.29), (3.31), (3.21), and (3.25), it has

0<®(n,r)<ki(s) (3.33)

also. By Theorem 3.1, it has
ITall,, <kals)llall,y (3.34)

and (3.27) holds. In view of
(Ta,b) < |[Tall,, bl (3.35)

(3.26) holds also.
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If (3.26) holds, from (3.26) and ||a||p¢ > 0, there exists n; > mng, such that
Zm o ¢(m)am > 0 and b,(H) := (p(n)[zm —ny [Ka(u(m), v(n))an]P"! > 0 when H > ny. For
b= (by(H)}L it has

n=ngy’

0< i‘P(ﬂ)bZ(H)

n=mnp

H H p H H
= qu(n)[Z KA(u(m),v(n))am] = > > Ka(u(m),v(n))amb,(H) (3.36)

n=ny m=ny n=np m=ngy

H Vrr v 1/q
<kl<s>[z¢<n>az] [z«p(mbz(m] <o

n=ngp n=ngp

By p > 1and g > 1, it follows that

H o
0< Dlop(mbi(H) <K (s) D ¢p(n)a}, < co. (3.37)

n=mnp n=mnp

Letting H — oo in (3.37), it has 0 < 3,7 (p(n)bz(oo) < oo, and it means that b =
{bn(o0) )iy, € €g, and [|bll4 > 0. Therefore, the inequality (3.36) keeps the form of the strict
inequality when H — oo. In view of 37 ()bl (o) = ||Ta||r, ¢, inequality (3.27) holds
and (3.27) is equivalent to (3.26). By ||T||,, = ki(s), it is obvious that the constant factor
ky(s) = ki (r) is the best possible. This completes the proof of Theorem 3.2. O

4. Applications

Example 4.1. Set (p,q), (r,s) be two pairs of conjugate exponentsand p >1,s > 1, > a >
e’/12 0 < A < 1. Then it has the following.

(1) If 0 < 32, ([Inan]?I71 el /up1) < 0, and 0 < 32, ([In pr] 197 i /na-1) <
oo, then

_ _ 1/
$s (st o)
= = ln"am + ln*ﬁn <1 sin(or/s) np-1 na-1 ’

n=1
(4.1)

() If0 < 32 ([Inan]P77 gl /np1) < oo, then

i [lnﬁn] p)L/S*l i an 14 < aT )pi [h’l an]P(l /\/7‘) -1 }:l (4 2)
n = Intam +In'pn Asin(ar/s) np-1 ! '

n=1

where the constant factors ky(s) = ky(r) := or/Asin(or/s) and (or/Asin(or/s))P are both the
best possible. Inequality (4.2) is equivalent to (4.1).
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Proof. Setting Ky (x,y) = 1/(x* + y*), ((x,y) € R2), it is a homogeneous measurable kernel
function of “\” degree. Letting t = u*, it has

0 < ky(s) == f Ky(1,w)u s 'du
0
/s 1 (/s 1./11
= _— = — —_— t:_
fo 1+u)udu Afo 1+td A <s'r> kar) < oo

Setting u(x) = Inax, v(x) = In fx, then both u(x) and v(x) are strictly monotonic increasing
differentiable functions in [1, c0) and satisfy

(4.3)

U(l)>0, U(w)=0ow U=u0),

AW) & & u'(n) ® (4.4)
é [U(Tl) 1+5 1;11[11’1 1+e é [u(n) 1+g nzn[lnan 1+e <@

fore>0.Asf>a>e’/12,0< 1 <1,5>1,and ng = 1, letting

1 1 )L/T'
f(y) K, (u(m) U(y)) - j\/s (]/) ( ) Intam + lnf\ﬂy (h‘lll‘1 Msﬂ]/)]/
( ) 1 h‘l)‘/sﬂn (4.5)

g(y) - Kf\(”(]/) U(”)) ul- j\/r( ) (]/) = lnf\ay+ln’\ﬂn (lnl—/\/ray>y’

y€[l,), n,meN,

with (2.1)~(2.8), it has

v(1)/u(m) 1 1
Ry(m,s) = f Ki(1,wu s tdu -~ f(1) + —= f'(1) > 0,
o 2 12
’ 4.6
O<m(m,s)—O<[u(m) > (p>0,m— o0), (4.6)
- u(1)/v(n) 1 1
Ry(n,r) = f Ky(u, D)p ' dp - Eg(l) + Eg’(l) > 0.
0

When 0 < 3%, ([Inan]?77160 /up1) < o and 0 < 3%, [In fn] 197 1pT /nd-1 < oo; that
is, a € €p b e €q and |lall¢ > O, [|bllge > 0, by Theorem 3.2, inequality (4.1) holds, so does
(4.2). And (4.2) is equivalent to (4.1), and the constant factors kj(s) = ky(r) := o/ Asin(r/s)
and (or/Asin(or/s))F are both the best possible. O

Example 4.2. Set (p, q), (r, s) be two pairs of conjugate exponentsandp >1,s >1,>a >1/2,
0 < X < 1. Then it has the following.
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D IU0< 32, (n+ )Pl < oand 0 < T2, (n+ )19 < oo, then

i iln((m +a)/(n+p))amb,

=m0 (m+a) - (n +[5))L

; - Vp / Va (4.7)
_A/r)— 1-1/s)-1
< [)Lsin(yr/s)] {nzz()(n+a)r’(1 A/7) 1aIZ} {nzzo(n +ﬁ)q( ) bZ} )
(2)If0< 32, (n+a)’ ™ 71ah < o, then
& st [ SIn((m+a)/(n+p)am T rE pa-A/n-1gp.
nZ=0(n+ﬁ) <mz=0 (m+Lt))L—(n+ﬁ))L > ) [)‘Sin(ﬂ'/s)] Z(n+a)
(4.8)

where inequality (4.8) is equivalent to (4.7) and the constant factors ky(s) = ky(r) :=
[/ Asin(or/s)]? and [/ A sin(or/s)]? are both the best possible.

Proof. Setting Ky (x,y) = In(x/y)/(x* = y})((x,y) € R?), it is a homogeneous measurable
kernel function of “1” degree. Letting t = u*, it has [2]

0 <ky(s):= f Ky(1,u)ut s 'du = %f ln” S5y,
0 (4.9)

-5 ), ot (5 >] [Asmws)] =halr) <.

Setting u(x) = x + a, v(x) = x + , then both u(x) and v(x) are strictly monotonic increasing
differentiable functions in [0, o) and satisfy

U@©) >0, U(w)=o00 (U=u0),

0 [oe]

v'(n) & 1 < u'(n) _ 1
< Z [U(Tl)]“g - Z < Z Z e <

n=0 n=0 (1 + ﬂ) e n=0 [u(n)]HE n=0 (n + a)

(4.10)
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fore>0.Asp>a>1/2,0<A<1,5>1,and ny =0, letting

In((m+a)/(y+p)) (m+a)"’”
m+a) -~ (y+p)* (y+p'"
1 In((y+p)/(m+a)’ ( y+p >““

m)

£1(y) = Ka(u(m), o(y)) H/E(y) v (y) =

T Xmra) (y+p/miay -1 \mta
v In((y +a)/(n+p)) (n+p)*° i
K , vts(n) :n y+a n+ n+
81 (y) /\(u(y) 'U(Tl)) ul,)t/r(y) u (y) (y + a))L _ (1’[ +ﬂ))L (y i a)l—)L/r
1 In((y+a)/(n+p) /y+a\!
= 7 0/ 7 7 N/
)L(n+[5)((y+a)/(n+ﬂ)))‘—l<”+ﬁ> y €10,00), mm e
with (2.18)~(2.21), it has
v(0)/u(m) Vse 1 1,
Ry(m,s) = fo Ky(L,uw)u’*" du — Efl 0) + Efl (0)
1 (e g /e
= — 5 du——f1(0)+ f1(0)>0
- u(0)/v(n) V1 1 1,
Ry(n,7) := fo Ky(p, 1)p'" dy—§g1(0)+ﬁgl(0)>0,

O<m(m,s):0<[ p> (p>0, m— o0).

u(m)

When 0 < 3% (n + a)P/"™ 7 1ah < o and 0 < 32, (n + BTV 9p) < oo; that is,
ae eg, b e ¢} and |lallpy >0, ||bllg, > 0, by Theorem 3.2, inequality (4.7) holds, so does (4.8).
And (4.8) is equivalent to (4.7), and the constant factors k) (s) = ky(r) := [or/Asin(or/ s)]* and
[/ Asin(or/s)]? are both the best possible. O

Remark 4.3. Tt can be proved similarly that, if the conditions “f > a > €’/1>” in Lemma 2.1 and

“B>a>1/2"in Lemma 2.2 are changed into “a > > €’/12” and “a > § > 1/2”, respectively,
Lemmas 2.1 and 2.2 are also valid. So the conditions “f > a > ¢’/!2” in Example 4.1 and
“B > a > 1/2” in Example 4.2 can be replaced by “f > €’/12, a > €’/12” and “p > 1/2,
a >1/2", respectively.
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