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The main objective of this paper is to establish a new retarded nonlinear integral inequality with
two variables, which provide explicit bound on unknown function. This inequality given here can
be used as tool in the study of integral equations.

1. Introduction

Being important tools in the study of differential equations, integral equations and integro-
differential equations, various generalizations of Gronwall inequality and their applications
have attracted great interests of many mathematicians. Some recent works can be found, for
example, in [1-7] and some references therein. Agarwal et al. [1] studied the inequality

bi(t)

u(t) <a(t) + ZJ‘ (t, s)w;(u(s))ds, to<t<t. (1.1)

bi (tg

Agarwal et al. [2] obtained the explicit bound to the unknown function of the following
retarded integral inequality

a; (t)

p(ut) <c+ ZJ- ul(s)[fi(s)p1(u(s)) + gi(s)p2 (log(u(s)))] ds. (1.2)

ai(to)
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Cheung [3] investigated the inequality in two variables

uP (x,y) < a+

bi(x) pei(y)
j j g1(s, Hul(s, t)dtds

b1(x0) 1(% (1 3)
b (x) ’
gz(s, Hul(s, t)g(u(s,t))dt ds.
ba(x0) / c2 (}/0)
Chen et al. [4] discussed the following inequality in two variables
a(x)  p(y)
p(u(x,y)) <c+ f f g(s,Hw(u(s,t))dt ds
p(vo)
' (1.4)

5(y)
f f f(s,Hw(u(s, t)p(u(s, t))dt ds.
y(x0)

Pachpatte [8] obtained an upper bound in the following inequality:

W2(1) < <c§ +2 f f(s)u(s)ds> <c§ +2 f h(s)u(s)ds>. (1.5)
0 0

Pachpatte [9] firstly got the estimation of the unknown function of the following inequality:

u(t) < <c1 + f(: f(s)u(s)ds> <c2 + JZ h(s)u(s)ds>, (1.6)

then, the estimation was used to study the boundedness, asymptotic behavior, slowly growth
of the solutions of the integral equation

t t
u(t) = k(cl(t) - fo fi(t - s)u(s)ds> <cz(t) + fo fo(t - s)u(s)ds>, (1.7)

(1.7) was studied by Gripenberg in [10].

However, the bound given on such inequality in [8] is not directly applicable in the
study of certain retarded differential and integral equations. It is desirable to establish new
inequalities of the above type, which can be used more effectively in the study of certain
classes of retarded differential and integral equations.
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In this paper, we establish a new integral inequality

a(x)  ~pr(y)
ot < (o)« [ fisopusnad)

ay(x0) / pr (yo

a(x)  Pa(y)
(cz (x,y) + f J fa(s, t)pa(u(s, t))dt ds).

ﬂz yo

(1.8)

We will prove importance of (1.8) in achieving a desired goal.

2. Main Result
Throughout this paper, xo,x1,%0,71 € R are given numbers, and xo < x1, Yo < y1. I =
[x0,x1), J:=1[yo,y1),A :=1x ], R, :=[0,00). For functions h(x), g(x,y), h'(x) denotes the

derivative of h(x), and g.(x,y) denotes the partial derivative g(x,y) on x. Consider (1.8),
and suppose that

(Hy) ¢ € C(R4,R,) is a strictly increasing function with ¢(0) = 0 and ¢(f) — oo as

I — oo;
(H3) c1,¢2 : A — (0, 00) are nondecreasing in each variable;
(H3) ¢; € C(R,, R,) are nondecreasing with ¢;(r) > 0forr > 0,i =1,2;

(Hy) a; € CY(I,I) and B; € C'(J,]) are nondecreasing such that a;(x) < x and
ﬂl(y) < y;l = 112/

(H5)fi € C(ARy),i=1,2.

We define functions @, ¥, and ¢ by

r ds
O(r) = ————,
" jo p(p'(s))
_(_ ds (2.1)
Y(r):= J‘o (P(qu(qu(s))), r>0,

¢(r) := max{¢p(r), p2(r) }.

Theorem 2.1. Suppose that (H1)—(Hs) hold and u(x, y) is a nonnegative and continuous function
on A satisfying (1.8). Then one has

u(x,y) <¢ (07 (¥ (E(xY)))), (22)
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forall (x,y) € [x0, X1) % [yo, Y1), where

E(x,y) =¥(G(x,y)) + IZ J‘a,(x) [<

Bi(y)
j fi(s, t)dt
a;(xo) Bi (yo

a3-i(s) P3-i(y)
J‘ f fe-i(o, t)dtdo |ds, (2.3)

a3-i(xo) 3— 1(y0

2 rai(x) Pi(y)
S =0(amat [ [ canensnas
i=1 7 ai(x0) 7 fi(yo

¢, @71, and ¥ denote the inverse function of ¢, ® and ¥, respectively, and (X1,Y1) € A is
arbitrarily given on the boundary of the planar region

R := {(x,y) €A:E(x,y) € Dom(‘I‘_1>,‘I’_1(E(x, y)) € D0m<®‘1> } (2.4)

Proof. From the inequality (1.8), for all (x,y) € [xo, X] x J, we have

ar(x)  pi(y)
p(u(x,y)) < <01 (X,y) + I fi(s, )1 (u(s, t))dt ds>

a1 (x0) ¥ i (vo)
a(x)  pa(y)

(2.5)

X <02(X y) + fz(s, £)pa(u(s, t))dt ds>,

az(xo) ¥ 2 ]/o

where x¢ < X < Xj is chosen arbitrarily, using the assumption H». For convenience, we define
a function 0(x, y) by the right-hand side of (1.8), that is,

ai(x)  ppi(y)
0(x,y) = <c1 (X, y) + j fi(s, t)p1(u(s, t))dt ds>

a1 (x0) ¥ pr (vo) (2.6)
w(x) () '
x| (X y)+ f fa(s, t)pa(u(s, t))dtds ).
@ (x0) ¥ 2 (vo)
O

By the assumptions (H;)-(Hs), 6(x,y) is a positive and nondecreasing function in each
variable, 0(x9,y) = c1(X,y)c2(X,y) > 0. Differentiating both sides of (2.6) and using the
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fact that u(x, y) < ¢ 1(6(x,y)), we obtain

2 Bi(y)
Ox(x,y) = ;<a;(x) J‘ﬂ.(y ) fi(“i(x)lt)‘l’i(”(“i(x)rt))dt>

as-i(x

<C3 i(Xy)+ J ) fa-i(s, t)pa_ 1(u(S,t))dtds>
3-i yo

az-i(xo)

2 Bi(y)
<o <(P_1 (0(x, y)))Zl (a; (x) J‘ﬂ.(y ) filai(x), t)dt>

as-i(x)

(2.7)

P3-i(y) o
x <C3 i(Xy)+ f o f3—i(51t)(/)3—i<(}f (6(5,t))>dtds>,

a3-i(xo)

for all (x,y) € [xp, X] x J. From (2.7), we get

Ox(x,y) Py 2 < ) P tdt>
o 00 ) <&\ ) @0

( e[ fﬂw) Frats, Dps-s (37 O t)))dtd>
X | C3- + —i(s, —i S, S ).
. Y as_i(xo) Y P ,(yo ’ P
2.8)

By taking s = x in (2.8) and then integrating it from x, to x, we get

Piy
0(@x.1)) <00+ 3 [ ey (s naras

2 rai(x) Bi(y)
(s, t)dt
+F21Jai(xo)[<J‘ﬁi(yo)f(s : >

a3 1(3) ﬁS i y)
f J ( )f(3—i)(0', t)<P3—i<lP_1(9(O', t)))dt do] ds
3-i\ Yo

az-, 1(x0) (2 9)
w(X) (Bi(y) '

<O(a(Xy)a(Xy))+ Z f ci-i (X, v) fi(s, t)dt ds

ai(xo) i y()
2 rai(x)
i=1 7 ai(xo)

J-ﬂf(y) f( t)dt>
i(S,
Bi(vo)

as-i(s)  Ps-i(y) .
f J fa-n(0,09s-i (47 O(0, 1)) )t do | ds,
as-, I(XO) ﬂS :(yo)

for all (x,y) € [xo0,X] x [yo,y1), where using the definition of @ in (2.1). Similarly to the
above statement, we define a function w(x, y) by the right-hand side of (2.9), then w(x, y) is
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a positive and nondecreasing function in each variable, 0(x, y) < ® ' (w(x,y)) and w(xg, y) =
D(c1(X, y)ea(X,y)) + X2, j:’((;?) jﬂ:((yy;) ci-i)(X, y) fi(s, t)dt ds. Differentiating w(x, y) for x, by
the relation among ¢ and ¢, ¢, we have

2 pi(y)
Wy (x, y) = sz:(x) <I ) fi(aci(x), t)dt>
i=1

Bi(vo

ag-i(x)  ~Pe-» () .
x f f fe-i (o Hei- <(lf_ (0(o, t))>dt do
i) (x0) ¥ B (o)

2 Bi(y)
< S a(x) < f fila (x>,t>dt>
i=1

filse) (2.10)

) J_u(si)(x) Ip<3i)(y) Fon (@, (‘F_l (q)—l (w(o, t))))dtdo

i) (x0) ¥ Ba-i (o)

2 Bi(y)
<o (07 (w(x,y)))) Dai(x) < L.(y flait), t)dt>

i=1

ag-i(x)  rBe-i»(Y)
XI J fe-i(o,t) dtdo, Y(x,y) € [x0,X] x [yo,Y1],
a-i(x0) ¥ PB3-i) (yo

where Y is defined by (2.4). From (2.10), we have

wx(xry) < % ' <ﬂi(y) oy tdt>
(@ w(xg))) S 24 fﬁim) flen(x),)

a@-i(x)  Pe-y(Y)
. f f foui (0, t)dt do,

ag-iy(x0) ¥ Pa-i) (o)

(2.11)

for all (x,y) € [x0,X] x [yo, Y1]. By taking s = x in (2.11) and then integrating it from x to x,
using the definition of ¥ in (2.1), we get

Bi(y)

2 rai(x)
W(w(x,y)) <¥(w(xo,y)) +§ |:<J‘

ai(xo) Bi(yo)

aa-i(s)  ~Pe-i ()
xf f foun (0, 0dt do | ds

a@-i)(x0) ¥ Ba-i (o)

fi(s, t)dt>

i(X) Pi(y)

2 a;
= 1P<(I)(c1 X y)e(Xy))+ Z f | ci-iy (X, y) fi(s, t)dt ds>

(x0) i(yo)

EZ:J%'(X) |:<J'ﬁi(y) > ag-i(s) P (y) s stdoa
+ fi(S,t)dt XJ f (3_,')(G,t) tdo|ds.
i=1 7 ai(xo) Bi(vo) a-i (x0) J Ba-i (o)
(2.12)
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Using the fact u(x, y) < ¢ 1(0(x, y)) and 0(x,y) < @} (w(x,y)), from (2.12) we obtain

u(x,y) <¢7 (0(x,y)) <7 (07 (w(xy)))

<! <CD‘1 <‘P‘1 <‘P <CD(C1 X y)e(Xy))

ai(X) ~Pi(y)
I I ci-i (X, y) fi(s, t)dt ds

(xo) 1(y0

2 cai(x) Bi(y) ag-i(s)  Pi-n(y)
+Z f <I fi(s, t)dt) X f f fe-y(o, t)dtdo ds> > >
i=1 7 ai(xo) Bi(wo) @iy (x0) ¥ B-i (o)

(2.13)
Let x = X, from (2.13)we observe that
w(X,y) <y <q,-1 <lv-1 <1P (@(a (X)X, y))
2 cai(X) Bi(y)
+Z J- C(3_i) (X, y) fi(s, t)dt ds
i=1 7 ai(xo) i yo
2 rai(X) Bi(y) a@-(s)  rPa-in(y)
+Zf (I f,-(s,t)dt> x f J fe-n(o, tydtdo ds>>>.
i=1 ¥ ai(xo) Bi (o) i) (x0) ¥ B (o)
(2.14)

Since X € [xp, X1) is arbitrary, from (2.14), we get the required estimation (2.2).

3. Applications

In this section, we present an application of our result to obtain bound of the solution of a
integral equation:

ar(x) rhi(y)
#(2()) = k<a1 - [ [ e st ats 0 ds>

ai(x0) Y 1 (vo)

P2 (y
X <a2(x,y) + I ) D(x-s, t)(pz(z(s,t))dtds> V(x,y) €4,
2\ Yo

a(xo)

(3.1)

where ¢ : R — R is a strictly increasing function with ¢(0) = 0,|¢(r)| = ¢(|r|) > 0, and
¢(t) — ooast — oo, kisa given positive constant, |ai|, |az| : A — R, are bounded functions
and nondecreasing in each variable, functions a; and f; satisfy hypothesis Hy, i=1,2, i,z €
C%A,R) and ¢; € C°(R,R) is nondecreasing on R, such that |¢;(u)| = ¢;(|ul), ¢;(u) > 0 for
u>0,i=1,2.
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The integral equation (3.1) is obviously more general than (1.7) considered in [10].
When keeping vy fixed, let ¢(z(x, y)) = z(x, y), pi(z(x,y)) = z(x, y), ai(x) =x,i=1,2,x = 0,
then integral equation (3.1) reduces to integral equation (1.7) in [10].

Corollary 3.1. Consider integral equation (3.1) and suppose that |g;(x — s,t)| < fi(s,t),i = 1,2,
where f; € C°(A,R,). Then all solutions z(x,y) of (3.1) have the estimate

2Goy)| <¢7 (@7 (¥ (H(xY)))), (3:2)

forall (x,y) € [x0, X2) % [yo,Y2), where

Pi(y) a3-i(s)  (Ps-i(y)
f fi(s, t)dt I fe-iy(o, t)dtdo|ds,
3 i(yo)

ﬂz yO as-i(xo)

He =+ 5[ (

ai(xo)
a;(x)

Boy) = 0 (x ) llax)) + 3

ai(x0)

Bi(y)
f |a(37i)(5/t)|fi(5, t)dt ds.
(o)

(3.3)

Functions ®,® 1, ¥, ¥ gre defined as in Theorem 2.1, and (X5,Y>) € A is arbitrarily given on the
boundary of the planar region

R := {(x, y)€A:H(x,y) € Dom(‘P’1>,‘P’1 (H(x,y)) € Dom<(I)’1> } (3.4)

Proof. From the integral equation (3.1), we have

a(x)  pi(y)
(=) < (Jnls [ 17 sl oparas )

@1 (x0) ¥ 1 (yo)

ar(x) a2 (y)
<|a2(x )|+ f |g2(x—s,t)|(p2(|z(s,t)|)dtds>

ay(x0) ¥ f2(vo)
a1 (x)  phi(y)

oo+ | f fi(s, D (12(s, O)dt ds
a XO

az(x)

p2(y)
<|a2(x,y)| J‘ ) fz(s,t)<p2(|z(s,t)|)dtds>, V(x,y) € A.

(3.5)

a(x)

Clearly, inequality (3.5) is in the form of (1.8). Thus, the estimate (3.2) of the solution z(x, y)
in this corollary is obtained immediately by our Theorem 2.1. O
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