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This paper investigates the nonlinear boundary value problem for a class of first-order impulsive
functional differential equations. By establishing a comparison result and utilizing the method
of upper and lower solutions, some criteria on the existence of extremal solutions as well as the
unique solution are obtained. Examples are discussed to illustrate the validity of the obtained
results.

1. Introduction

It is now realized that the theory of impulsive differential equations provides a general
framework for mathematical modelling of many real world phenomena. In particular, it
serves as an adequate mathematical tool for studying evolution processes that are subjected
to abrupt changes in their states. Some typical physical systems that exhibit impulsive
behaviour include the action of a pendulum clock, mechanical systems subject to impacts,
the maintenance of a species through periodic stocking or harvesting, the thrust impulse
maneuver of a spacecraft, and the function of the heart. For an introduction to the theory of
impulsive differential equations, refer to [1].

It is also known that the method of upper and lower solutions coupled with the
monotone iterative technique is a powerful tool for obtaining existence results of nonlinear
differential equations [2]. There are numerous papers devoted to the applications of this
method to nonlinear differential equations in the literature, see [3–9] and references therein.
The existence of extremal solutions of impulsive differential equations is considered in papers
[3–11]. However, only a few papers have implemented the technique in nonlinear boundary
value problem of impulsive differential equations [5, 12]. In this paper, we will investigate
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nonlinear boundary value problem of a class of first-order impulsive functional differential
equations. Such equations include the retarded impulsive differential equations as special
cases [5, 12–14].

The rest of this paper is organized as follows. In Section 2, we establish a new
comparison principle and discuss the existence and uniqueness of the solution for first order
impulsive functional differential equations with linear boundary condition. We then obtain
existence results for extremal solutions and unique solution in Section 3 by using the method
of upper and lower solutions coupled with monotone iterative technique. To illustrate the
obtained results, two examples are discussed in Section 4.

2. Preliminaries

Let J = [0, T], T > 0, J ′ = J − {t1, t2, . . . , tp} with 0 < t1 < t2 < · · · < tp < T . We define that
PC(J) = {x : J → R : x is continuous for any t ∈ J ′; x(t+

k
) and x(t−

k
) exist and x(t−

k
) = x(tk)},

PC1(J) = {x : J → R : x is continuously differentiable for any t ∈ J ′; x(t+k), x(t
−
k) exist and

x′(t−
k
) = x′(tk)}. It is clear that PC(J) and PC1(J) are Banach spaces with respective norms

‖x‖PC = sup
t∈J

|x(t)|, ‖x‖PC1 = ‖x‖PC +
∥
∥x′∥∥

PC. (2.1)

Let us consider the following nonlinear boundary value problem (NBVP):

x′(t) = f
(

t, x(t),
[

ϕx
]

(t)
)

, t ∈ J ′ = J − {t1, t2, . . . , tp
}

,

Δx(t) = Ik
(

t, x(t),
[

ϕx
]

(t)
)

, t = tk, k = 1, 2, . . . , p,

g(x(0), x(T)) = 0,

(2.2)

where f : J ×R
2 → R is continuous in the second and the third variables, and for fixed x, y ∈

R, f(·, x, y) ∈ PC(J), g ∈ C(R2,R), Ik ∈ C(R3,R), k = 1, 2, . . . , p and ϕ : PC(J) → PC(J) is
continuous.

A function x ∈ PC1(J) is called a solutions of NBVP (2.2) if it satisfies (2.2).

Remark 2.1. (i) If [ϕx](t) = x(t) and the impulses Ik depend only on x(tk), the equation of
NBVP (2.2) reduces to the simpler case of impulsive differential equations:

x′(t) = f(t, x(t)), t ∈ J ′,

Δx(tk) = Ik(x(tk)), k = 1, 2, . . . , p
(2.3)

which have been studied in many papers. In some situation, the impulse Ik depends also on
some other parameters (e.g., the control of the amount of drug ingested by a patient at certain
moments in the model for drug distribution [1, 3]).

(ii) If [ϕx](t) = x(θ(t)), where θ ∈ C(J, J), the equation of NBVP (2.2) can be regarded
as retarded differential equation which has been considered in [5, 12–14].

We will need the following lemma.
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Lemma 2.2 (see [1]). Asumme that

(B0) the sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · < tk < · · · with limk→∞tk = +∞,

(B1) m ∈ PC1(R+) is left continous at tk for k = 1, 2, . . .,

(B2) for k = 1, 2, . . ., t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t), t /= tk

m
(

t+k
) ≤ dkm(tk) + bk,

(2.4)

where p, q ∈ C(R+,R), dk ≥ 0 and bk are real constants.

Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

t0

p(s)ds

)

+
∫ t

t0

∏

s<tk<t

dk exp

(∫ t

s

p(σ)dσ

)

q(s)ds

+
∑

t0<tk<t

∏

tk<tj<t

dj exp

(∫ t

tk

p(s)ds

)

bk.

(2.5)

In order to establish a comparison result and some lemmas, wewill make the following
assumptions on the function ϕ.

(H1) There exists a constant R > 0 such that

[

ϕx
]

(t) ≥ R inf
t∈J

x(t), for any x ∈ PC(J), ∀t ∈ J. (2.6)

(H2) The function ϕ satisfies Lipschitz condition, that is, there exists a L > 0 such that

∥
∥ϕx − ϕy

∥
∥
PC ≤ L

∥
∥x − y

∥
∥
PC, ∀x, y ∈ PC(J). (2.7)

Inspired by the ideas in [5, 6], we shall establish the following comparison result.

Theorem 2.3. Letm ∈ PC1(J) such that

m′(t) ≤ −Mm(t) −N
[

ϕm
]

(t), t ∈ J ′,

Δm(tk) ≤ −Lkm(tk), k = 1, 2, . . . , p,

m(0) ≤ μm(T),

(2.8)

whereM > 0, N ≥ 0, 0 ≤ Lk < 1, k = 1, 2, . . . , p, and 0 < μe−MT ≤ 1.
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Suppose in addition that condition (H1) holds and

NR
(

eMT + μ
)

μ

∫T

0

∏

s<tk<T

(1 − Lk)eMsds ≤
p
∑

k=1

(1 − Lk)2 (2.9)

thenm(t) ≤ 0, for t ∈ J .

Proof. For simplicity, we let ck = 1 − Lk, k = 1, 2, . . . , p. Set v(t) = m(t)eMt, then we have

v′(t) ≤ −NeMt[ϕm
]

(t), t ∈ J ′,

v
(

t+k
) ≤ ckv(tk), k = 1, 2, . . . , p

v(0) ≤ μe−MTv(T).

, (2.10)

Obviously, v(t) ≤ 0 implies m(t) ≤ 0.
To show v(t) ≤ 0, we suppose, on the contrary, that v(t) > 0 for some t ∈ J . It is enough

to consider the following cases.

(i) there exists a t ∈ J , such that v(t) > 0, and v(t) ≥ 0 for all t ∈ J ;

(ii) there exist t∗, t∗ ∈ J , such that v(t∗) < 0, v(t∗) > 0.

Case (i). By (2.10), we have v′(t) ≤ 0 for t /= tk and Δv(tk) ≤ 0, k = 1, 2, . . . , m, hence v(t) is
nonincreasing in J , that is, v(T) ≤ v(0). If μ < eMT , then v(0) < v(T), which is a contradiction.
If μ = eMT , then v(0) ≤ v(T) which implies v(t) ≡ C > 0. But from (2.10), we get v′(t) < 0 for
t ∈ J ′. Hence, v(T) < v(0). It is again a contradiction.

Case (ii). Let inft∈Jv(t) = −λ, then λ > 0. For some i ∈ {1, 2, . . . , p}, there exists t∗ ∈ (ti, ti+1]
such that v(t∗) = −λ or v(t+∗ ) = −λ. We only consider v(t∗) = −λ, as for the case v(t+∗ ) = −λ, the
proof is similar.

From (2.10) and condition (H1), we get

v′(t) ≤ −NeMt[ϕm
]

(t) = −NeMt
[

ϕ
(

v(t)e−Mt
)]

(t)

≤ −NReMtinf
t∈J

{

v(t)e−Mt
}

≤ −NReMtinf
t∈J

{v(t)}

≤ λNReMt, t ∈ J ′.

(2.11)

Consider the inequalities

v′(t) ≤ λNReMt, t ∈ J ′,

v
(

t+k
) ≤ ckv(tk), k = 1, 2, . . . , p.

(2.12)
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By Lemma 2.2, we have

v(t) ≤ v(t∗)

(
∏

t∗<tk<t
ck

)

+
∫ t

t∗

(
∏

s<tk<t

ck

)

λNReMsds, (2.13)

that is

v(t) ≤ −λ
(
∏

t∗<tk<t
ck

)

+ λNR

∫ t

t∗

(
∏

s<tk<t

ck

)

eMsds. (2.14)

First, we assume that t∗ > t∗. Let t = t∗ in (2.14), then

v(t∗) ≤ −λ
(
∏

t∗<tk<t∗
ck

)

+ λNR

∫ t∗

t∗

(
∏

s<tk<t∗
ck

)

eMsds. (2.15)

Noting that v(t∗) > 0, we have

∏

t∗<tk<t∗
ck < NR

∫ t∗

t∗

(
∏

s<tk<t∗
ck

)

eMsds. (2.16)

Hence

(
p
∏

k=1

ck

)2

≤
p
∏

k=1

ck < NR

∫T

0

(
∏

s<tk<T

ck

)

eMsds (2.17)

which is a contradiction.
Next, we assume that t∗ < t∗. By Lemma 2.2 and (2.10), we have

0 < v(t∗) ≤ v(0)

(
∏

0<tk<t∗
ck

)

+
∫ t∗

0

(
∏

s<tk<t∗
ck

)

λNReMsds

≤ μe−MTv(T)

(
∏

0<tk<t∗
ck

)

+ λNR

∫ t∗

0

(
∏

s<tk<t∗
ck

)

eMsds,

(2.18)

then

0 < μe−MTv(T)

(
p
∏

k=1

ck

)

+ λNR

∫T

0

(
∏

s<tk<T

ck

)

eMsds. (2.19)
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Setting t = T in (2.14), we have

v(T) ≤ v(t∗)

(
∏

t∗<tk<T

ck

)

+
∫T

t∗

(
∏

s<tk<T

ck

)

λNReMsds

= −λ
(
∏

t∗<tk<T

ck

)

+ λNR

∫T

t∗

(
∏

s<tk<T

ck

)

eMsds

≤ −λ
p
∏

k=1

ck + λNR

∫T

0

(
∏

s<tk<T

ck

)

eMsds

(2.20)

with (2.19), we obtain that

0 < μe−MTv(T)

(
p
∏

k=1

ck

)

+ λNR

∫T

0

(
∏

s<tk<T

ck

)

eMsds

≤
[

−λ
(

p
∏

k=1

ck

)

+ λNR

∫T

0

(
∏

s<tk<T

ck

)

eMsds

]

μe−MT

(
p
∏

k=1

ck

)

+ λNR

∫T

0

(
∏

s<tk<T

ck

)

eMsds

= −μλe−MT

(
p
∏

k=1

ck

)2

+ μλNRe−MT

(
p
∏

k=1

ck

)∫T

0

(
∏

s<tk<T

ck

)

eMsds

+ λNR

∫T

0

(
∏

s<tk<T

ck

)

eMsds,

(2.21)

that is,

μe−MT

(
p
∏

k=1

ck

)2

≤
[

μNRe−MT

(
p
∏

k=1

ck

)

+NR

]∫T

0

(
∏

s<tk<T

ck

)

eMsds

< NR
(

μe−MT + 1
)
∫T

0

(
∏

s<tk<T

ck

)

eMsds.

(2.22)

Therefore,

p
∑

k=1

(1 − Lk)2 <
NR

(

eMT + μ
)

μ

∫T

0

∏

s<tk<T

(1 − Lk)eMsds (2.23)

which is a contradiction. The proof of Theorem 2.3 is complete.

The following corollary is an easy consequence of Theorem 2.3.
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Corollary 2.4. Assume that there exist M > 0, N ≥ 0, 0 ≤ Lk < 1, for k = 1, 2, . . . , p such that
m ∈ PC1(J) satisfies (2.8) with 0 < μe−MT ≤ 1 and

RN
(

eMT + μ
)

eMT

μ
≤

∑p

k=1 (1 − Lk)2
∫T

0

∑

s<tk<T
(1 − Lk)ds

(2.24)

thenm(t) ≤ 0, for t ∈ J .

Remark 2.5. Setting μ ≡ 1, Corollary 2.4 reduces to the Theorem 2.3 of Li and Shen [6].
Therefore, Theorem 2.3 and Corollary 2.4 develops and generalizes the result in [6].

Remark 2.6. We show some examples of function ϕ satisfying (H1).

(i) [ϕx](t) = x(θ(t)), where θ ∈ C(J × J), satisfies (H1) with R = 1,

[

ϕx
]

(t) = x(θ(t)) ≥ inf
t∈J

x(t), for t ∈ J. (2.25)

(ii) [ϕx](t) =
∫ t+T
0 x(s)ds, satisfies (H1) with R = T ,

[

ϕx
]

(t) =
∫ t+T

0
x(s)ds ≥ (t + T)inf

t∈J
x(t) ≥ T inf

t∈J
x(t), for t ∈ J. (2.26)

Consider the linear boundary value problem (LBVP)

y′(t) +My(t) +N
[

ϕy
]

(t) = σ(t), t ∈ J ′,

Δy(tk) = −Lky(tk) + Ik
(

tk, η(tk),
[

ϕη
]

(tk)
)

+ Lkη(tk), k = 1, 2, . . . , p,

g
(

η(0), η(T)
)

+M1
(

y(0) − η(0)
) −M2

(

y(T) − η(T)
)

= 0,

(2.27)

where M > 0, N ≥ 0, 0 ≤ Lk < 1, k = 1, 2, . . . , p, and η, σ ∈ PC(J).
By direct computation, we have the following result.

Lemma 2.7. y ∈ PC1(J) is a solution of LBVP (2.27) if and only if y is a solution of the impulsive
integral equation

y(t) = Ce−MtBη +
∫T

0
G(t, s)

{

σ(s) −N
[

ϕy
]

(s)
}

ds

+
∑

0<tk<T

G(t, tk)
{−Lky(tk) + Ik

(

tk, η(tk),
[

ϕη
]

(tk)
)

+ Lkη(tk)
}

, t ∈ J,

(2.28)

where Bη = −g(η(0), η(T)) +M1η(0) −M2η(T), C = (M1 −M2e
−MT )−1,M1 /=M2e

−MT and

G(t, s) =

⎧

⎨

⎩

CM2e
M(s−t−T) + eM(s−t), 0 ≤ s < t ≤ T

CM2e
M(s−t−T), 0 ≤ t ≤ s ≤ T

(2.29)
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Lemma 2.8. Let (H2) hold. Suppose further

(

NLT +
p
∑

k=1

|Lk|
)

r < 1, r = max{|CM1|, |CM2|}, C =
(

M1 −M2e
−MT

)−1
, (2.30)

whereM > 0, N ≥ 0, M1 /=M2e
−MT , then LBVP (2.27) has a unique solution.

By Lemma 2.7 and Banach fixed point theorem, the proof of Lemma 2.8 is apparent, so
we omit the details.

3. Main Results

In this section, we use monotone iterative technique to obtain the existence results of extremal
solutions and the unique solution of NBVP (2.2). We shall need the following definition.

Definition 3.1. A function α ∈ PC1(J) is said to be a lower solution of NBVP (2.2) if it satisfies

α′(t) ≤ f
(

t, α(t),
[

ϕα
]

(t)
)

, t ∈ J ′,

Δα(tk) ≤ Ik
(

tk, α(tk),
[

ϕα
]

(tk)
)

, k = 1, 2, . . . , p,

g(α(0), α(T)) ≤ 0.

(3.1)

Analogously, β ∈ PC1(J) is an upper solution of NBVP (2.2) if

β′(t) ≥ f
(

t, β(t),
[

ϕβ
]

(t)
)

, t ∈ J ′,

Δβ(tk) ≥ Ik
(

tk, β(tk),
[

ϕβ
]

(tk)
)

, k = 1, 2, . . . , p,

g
(

β(0), β(T)
) ≥ 0.

(3.2)

For convenience, let us list the following conditions.

(H3) There exist constants M > 0, N ≥ 0 such that

f
(

t, x, ϕx
) − f

(

t, x, ϕx
) ≥ −M(x − x) −N

(

ϕx − ϕx
)

(3.3)

wherever α0(t) ≤ x ≤ x ≤ β0(t).

(H4) There exist constants 0 ≤ Lk < 1 for k = 1, 2, . . . , p such that

Ik
(

tk, x, ϕx
) − Ik

(

tk, x, ϕx
) ≥ −Lk(x − x), k = 1, 2, . . . , p (3.4)

wherever α0(tk) ≤ x ≤ x ≤ β0(tk).

(H5) The function ϕ satisfies

ϕx − ϕx ≥ ϕ(x − x), for x, x ∈ PC(J), x ≥ x. (3.5)
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(H6) There exist constants M1, M2 with 0 < M2e
−MT ≤ M1 such that

g
(

x, y
) − g

(

x, y
) ≤ M1(x − x) −M2

(

y − y
)

(3.6)

wherever α0(0) ≤ x ≤ x ≤ β0(0), and α0(T) ≤ y ≤ y ≤ β0(T).

Let [α0, β0] = {x ∈ PC1(J) : α0(t) ≤ x(t) ≤ β0(t), for all t ∈ J}. Now we are in the
position to establish the main results of this paper.

Theorem 3.2. Let (H1)–(H6) and inequalities (2.9) and (2.30) hold. Assume further that there exist
lower and upper solutions α0 and β0 of NBVP (2.2), respectively, such that α0 ≤ β0 on J . Then there
exist monotone sequences {αn}, {βn} ⊂ PC1(J) with α0 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β0, such
that limn→∞αn = x∗(t), limn→∞βn = x∗(t) uniformly on J . Moreover, x∗(t), x∗(t) are minimal and
maximal solutions of NBVP (2.2) in [α0, β0], respectively.

Proof. For any η ∈ [α0, β0], consider LVBP (2.27)with

σ(t) = f
(

t, η(t),
[

ϕη
]

(t)
)

+Mη(t) +N
[

ϕη
]

(t). (3.7)

By Lemma 2.8, we know that LBVP (2.27) has a unique solution y ∈ PC1(J). Define an
operator A : PC(J) → PC(J) by y = Aη, then the operator A has the following properties:

(a) α0 ≤ Aα0, Aβ0 ≤ β0,

(b) Aη1 ≤ Aη2, if α0 ≤ η1 ≤ η2 ≤ β0.

To prove (a), let α1 = Aα0 and m(t) = α0(t) − α1(t).

m′(t) = α′
0(t) − α′

1(t)

= f
(

t, α0(t),
[

ϕα0
]

(t)
)

− {−Mα1(t) −N
[

ϕα1
]

(t) + f
(

t, α0(t),
[

ϕα0
]

(t)
)

+Mα0(t) +N
[

ϕα0
]

(t)
}

≤ −Mm(t) −N
[

ϕm
]

(t),

Δm(tk) = Δα0(tk) −Δα1(tk)

≤ Ik
(

tk, α0(tk),
[

ϕα0
]

(tk)
) − {−Lkα1(tk) + Ik

(

tk, α0(tk),
[

ϕα0
]

(tk)
)

+ Lkα0(tk)
}

≤ −Lkm(tk),

m(0) = α0(0) − α1(0)

= α0(0) −
{

− 1
M1

g(α0(0), α0(T)) + α0(0) +
M2

M1
(α1(T) − α0(T))

}

≤ M2

M1
m(T).

(3.8)

By Theorem 2.3, we get m(t) ≤ 0 for t ∈ J , that is, α0 ≤ Aα0. Similarly, we can show that
Aβ0 ≤ β0.
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To prove (b), set m(t) = x1(t) − x2(t), where x1 = Aη1 and x2 = Aη2. Using (H3), (H4)
and (H6), we get

m′(t) = x′
1(t) − x′

2(t)

= M
(

η1(t) − x1(t)
)

+N
([

ϕη1
]

(t) − [ϕx1
]

(t)
)

+ f
(

t, η1(t),
[

ϕη1
]

(t)
)

−M
(

η2(t) − x2(t)
) −N

([

ϕη2
]

(t) − [ϕx2
]

(t)
) − f

(

t, η2(t),
[

ϕη2
]

(t)
)

≤ −Mm(t) −N
[

ϕm
]

(t),

Δm(tk) = Δx1(tk) −Δx2(tk)

≤ Lk

(

η1(tk) − x1(tk)
)

+ Ik
(

tk, η1(tk),
[

ϕη1
]

(tk)
)

− Lk

(

η2(tk) − x2(tk)
) − Ik

(

tk, η2(tk),
[

ϕη2
]

(tk)
)

≤ −Lkm(tk),

m(0) = x1(0) − x2(0)

= − 1
M1

g
(

η1(0), η1(T)
)

+ η1(0) +
M2

M1

(

x1(T) − η1(T)
)

+
1

M1
g
(

η2(0), η2(T)
) − η2(0) − M2

M1

(

x2(T) − η2(T)
)

≤ M2

M1
m(T).

(3.9)

By Theorem 2.3, we get m(t) ≤ 0 for t ∈ J , that is, Aη1 ≤ Aη2, then (b) is proved.
Let αn = Aαn−1 and βn = Aβn−1 for n = 1, 2, 3, . . . . By the properties (a) and (b), we

have

α0 ≤ α1 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β1 ≤ β0. (3.10)

By the definition of operatorA, we have that {α′
n} and {β′n} are uniformly bounded in [α0, β0].

Thus {αn} and {βn} are uniformly bounded and equicontinuous in [α0, β0]. By Arzela-Ascoli
Theorem and (3.10), we know that there exist x∗, x∗ in [α0, β0] such that

lim
n→∞

αn(t) = x∗(t), lim
n→∞

βn(t) = x∗(t) uniformly on J (3.11)

Moreover, x∗(t), x∗(t) are solutions of NBVP (2.2) in [α0, β0].
To prove that x∗, x∗ are extremal solutions of NBVP (2.2), let u(t) ∈ [α0, β0] be any

solution of NBVP (2.2), that is,

u′(t) = f
(

t, u(t),
[

ϕu
]

(t)
)

, t ∈ J ′,

Δu(tk) = Ik
(

tk, u(tk),
[

ϕu
]

(tk)
)

, k = 1, 2, . . . , p,

g(u(0), u(T)) = 0.

(3.12)
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By Theorem 2.3 and Induction, we get αn(t) ≤ u(t) ≤ βn(t) with t ∈ J and n = 1, 2, 3, . . . which
implies that x∗(t) ≤ u(t) ≤ x∗(t), that is, x∗ and x∗ are minimal and maximal solution of NBVP
(2.2) in [α0, β0], respectively. The proof is complete.

Theorem 3.3. Let the assumptions of Theorem 3.2 hold and assume the following.

(H7) There exist constants M̃ > 0, Ñ ≥ 0 such that

f
(

t, x, ϕx
) − f

(

t, x, ϕx
) ≤ −M̃(x − x) − Ñ

(

ϕx − ϕx
)

, (3.13)

where α0(t) ≤ x ≤ x ≤ β0(t).

(H8) There exist constants 0 ≤ L̃k < 1, k = 1, 2, . . . , p such that

Ik
(

tk, x, ϕx
) − Ik

(

tk, x, ϕx
) ≤ −L̃k(x − x), k = 1, 2, . . . , p, (3.14)

where α0(tk) ≤ x ≤ x ≤ β0(tk).

(H9) There exist constants M̃1, M̃2 with 0 < M̃2e
−M̃T < M̃1 such that

g
(

x, y
) − g

(

x, y
) ≥ M̃1(x − x) − M̃2

(

y − y
)

(3.15)

whenever α0(0) ≤ x ≤ x ≤ β0(0), and α0(T) ≤ y ≤ y ≤ β0(T).

Then NBVP (2.2) has a unique solution in [α0, β0].

Proof. By Theorem 3.2, we know that there exist x∗, x∗ ∈ [α0, β0], which are minimal and
maximal solutions of NBVP (2.2)with x∗(t) ≤ x∗(t), t ∈ J .

Let m(t) = x∗(t) − x∗(t). Using (H7), (H8), and (H9), we get

m′(t) = (x∗(t))′ − (x∗(t))′ = f
(

t, x∗(t),
[

ϕx∗](t)
) − f

(

t, x∗(t),
[

ϕx∗
]

(t)
)

≤ −M̃m(t) − Ñ
[

ϕm
]

(t),

Δm(tk) = Δx∗(tk) −Δx∗(tk) = Ik
(

tk, x
∗(tk),

[

ϕx∗](tk)
) − Ik

(

tk, x∗(tk),
[

ϕx∗
]

(tk)
)

≤ L̃km(tk),

m(0) = x∗(0) − x∗(0) ≤ M̃2

M̃1

(x∗(T) − x∗(T)) =
M̃2

M̃1

m(T).

(3.16)

By Theorem 2.3, we have that m(t) < 0, t ∈ J , that is, x∗(t) ≤ x∗(t). Hence x∗(t) = x∗(t), this
completes the proof.
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4. Examples

To illustrate our main results, we shall discuss in this section some examples.

Example 4.1. Consider the problem

x′(t) = − 1
10

(−|sin t| + x − 2)5 − e−2π

3

(∫ t+1

t

x(s)ds − sin
t

4

)2

+
4
3
e−2π, t ∈ [0, T], t /= tk,

Δx(tk) = −1
2
e−π/2(x(tk) − 3) +

(∫ tk+1

tk

x(s)ds − sin
tk
4

)1/7

+
4
17

eπ/2 cos tk, k = 1,

x(0) − 1
2
x(T) − 1

6π

∫T

0
x(s)ds = 0,

(4.1)

where T = 2π , k = 1, t1 = π .
Let

[

ϕx
]

(t) =
∫ t+1

t

x(s)ds − sin
t

4
,

f
(

t, x, y
)

= − 1
10

(−|sin t| + x − 2)5 − e−2π

3
y2 +

4
3
e−2π,

I1
(

t, x, y
)

= −1
2
e−π/2(x − 3) + y1/7 +

4
17

eπ/2 cos t.

(4.2)

Setting α0(t) ≡ 2 and β0(t) ≡ 3, it is easy to verify that α0(t) is a lower solution, and β0(t) is an
upper solution with α0(t) ≤ β0(t).

For t ∈ J , and 2 ≤ x(t) ≤ x(t) ≤ 3, we have

ϕx ≥ 1 ≥ 1
3
inf
t∈J

x(t),

ϕx − ϕx ≥ ϕ(x − x),

∥
∥ϕx − ϕx

∥
∥ =

∥
∥
∥
∥
∥

∫ t+1

t

[x(s) − x(s)]ds

∥
∥
∥
∥
∥
≤ ‖x − x‖.

(4.3)
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Setting M = 1/2, N = e−2π/6, L = 1, R = 1/3, L1 = (1/2)e−π/2 and M1 = 1, M2 = 1/2, then
conditions (H1)–(H6) are all satisfied:

∫2π

0

∏

s<tk<2π
(1 − Lk)eMsds =

∫π

0
(1 − L1)eMsds +

∫2π

π

eMsds ≈ 43.4893,

p
∏

k=1

(1 − Lk)2 = (1 − L1)2 =
(

1 − 1
2
e−π/2

)2

≈ 0.8029,

NR
(

eMT + (M2/M1)
)

M2/M1
=

2eπ + 1
18e2π

≈ 0.0049,

NR
(

eMT + (M2/M1)
)

M2/M1

∫2π

0

∏

s<tk<2π
(1 − Lk)eMsds ≈ 0.2131 < 0.8029,

(

NLT +
p
∑

k=1

|Lk|
)

r = (NLT + L1)CM1 ≈ 0.1082 < 1,

(4.4)

then inequalities (2.9) and (2.30) are satisfied. By Theorem 3.2, problem (4.1) has extremal
solutions x∗, x∗ ∈ [α0, β0].

Example 4.2. Consider the problem

x′(t) = −1
2
x(t) − e−3π

eπ + 1

(

e2x − 1
)

+
3
2
, t ∈ [0, T], t /= tk,

Δx(tk) = −2e−π(x(tk) − 2) +
(

e2x(tk) − 1
)1/50

+ cos tk, k = 1,

x(0) =
1
2
x(T),

(4.5)

where T = 2π , k = 1, t1 = π .
Let

ϕx = e2x − 1,

f
(

t, x, y
)

= − 1
10

(−|sin t| + x − 2)5 − e−3π

16(eπ + 1)
y2 +

(

e4 − 1
)2

16e3π(eπ + 1)
,

I1
(

t, x, y
)

= −2e−π(x − 2) + y1/50 + cos t.

(4.6)

Setting α0(t) ≡ 2 and β0(t) ≡ 3, then α0(t) is a lower solution, and β0(t) is an upper solution
with α0(t) ≤ β0(t).

For t ∈ J , and 2 ≤ x(t) ≤ x(t) ≤ 3, we have ϕx = e2x − 1 ≥ x, ϕx − ϕx ≥ ϕ(x − x), and
|ϕx − ϕx| = |e2x − e2x| = |ex + ex| · |ex − ex| ≤ 2e6|ex−x − 1| ≤ 14e6|x − x|. Setting M = 1/2,
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N = e−3π/(eπ + 1), L = 14e6, R = 1, L1 = 2e−π and M1 = 1, M2 = 1/2, then conditions
(H1)–(H6) are all satisfied:

∏p

k=1(1 − Lk)2
∫2π
0

∏

s<tk<2π(1 − Lk)ds
=

(eπ − 2)2

2πeπ(eπ − 1)
≈ 0.1388,

NR
(

eMT + (M2/M1)
)

eMT

M2/M1
=

2eπ + 1
e2π(eπ + 1)

≈ 0.0037 < 0.1388,

(

NLT +
p
∑

k=1

|Lk|
)

r = (NLT + L1)CM1 ≈ 0.2095 < 1,

(4.7)

then inequalities (2.24) and (2.30) are satisfied. By Corollary 2.4 and Theorem 3.2, problem
(4.5) has extremal solutions x∗, x∗ ∈ [α0, β0].

Moreover, let M̃ = 1/2, Ñ = e−3π/(eπ + 1), L̃1 = 2e−π and M̃1 = 1, M̃2 = 1/2. It is easy
to see that conditions (H7)–(H9) are satisfied. By Corollary 2.4 and Theorem 3.3, problem
(4.5) has an unique solution in [α0, β0].
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