
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 751709, 24 pages
doi:10.1155/2010/751709

Research Article
Existence of Solutions for Weighted
p(r)-Laplacian Impulsive Integro-Differential
System Periodic-Like Boundary Value Problems

Guizhen Zhi,1 Liang Zhao,2 Guangxia Chen,3
Shujuan Wang,1 and Qihu Zhang1, 4

1 Department of Mathematics and Information Science, Zhengzhou University of Light Industry,
Zhengzhou, Henan 450002, China

2 Academic Administration, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
3 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo, Henan 454003, China
4 School of Mathematics and Statistics, Huazhong Normal University, Wuhan, Hubei 430079, China

Correspondence should be addressed to Qihu Zhang, zhangqh1999@yahoo.com.cn

Received 14 November 2009; Accepted 28 January 2010

Academic Editor: Marta Garcı́a-Huidobro

Copyright q 2010 Guizhen Zhi et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper investigates the existence of solutions for weighted p(r)-Laplacian impulsive integro-
differential system periodic-like boundary value problems via Leray-Schauder’s degree. The
sufficient conditions for the existence of solutions are given.

1. Introduction

In this paper, we consider the existence of solutions for the weighted p(r)-Laplacian integro-
differential system

−
(
w(r)

∣∣u′∣∣p(r)−2u′
)′

+ f
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
= 0, r ∈ (0, T), r /= ri, (1.1)

where u : [0, 1] → R
N , with the following impulsive boundary value conditions:

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = Ai

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
, i = 1, . . . , k, (1.2)
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lim
r→ r+i

(w(r))1/(p(r)−1)u′(r) − lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

= Bi

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
, i = 1, . . . , k,

(1.3)

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r), (1.4)

where p ∈ C([0, T],R) and p(r) > 1, −(w(r)|u′|p(r)−2u′)′ is called the weighted p(r)-Laplacian;
0 < r1 < r2 < · · · < rk < T ; Ai, Bi ∈ C(RN × R

N,RN); S(u)(t) =
∫T
0φ(s, t)u(s)ds, where

0 ≤ φ(·, ·) ∈ C([0, T] × [0, T],R).
Throughout the paper, o(1) means function which uniformly convergent to 0 (as

n → +∞); for any v ∈ R
N , vj will denote the jth component of v; the inner product in

R
N will be denoted by 〈·, ·〉, | · | will denote the absolute value and the Euclidean norm on

R
N . Denote J = [0, T], J ′ = [0, T] \ {r0, r1, . . . , rk, rk+1}, J0 = [r0, r1], Ji = (ri, ri+1], i = 1, . . . , k,

where r0 = 0, rk+1 = T . Denote Joi the interior of Ji, i = 0, 1, . . . , k. Let PC(J,RN) = {x :
J → R

N | x ∈ C(Ji,RN), i = 0, 1, . . . , k, and x(r+i ) exists for i = 1, . . . , k}; w ∈ PC(J,R)

satisfies 0 < w(r), ∀r ∈ J ′, and (w(r))−1/(p(r)−1) ∈ L1(0, T); PC1(J,RN) = {x ∈ PC(J,RN) |
x′ ∈ C(Joi ,R

N), limr→ r+i
(w(r))1/(p(r)−1)x′(r) and limr→ r−i+1(w(r))1/(p(r)−1)x′(r) exists for i =

0, 1, . . . , k}. The equivalent limr→ 0+(w(r))1/(p(r)−1)u′(r) = limr→ T−(w(r))1/(p(r)−1)u′(r) means
limr→ 0+(w(r))1/(p(r)−1)u′(r) and limr→ T−(w(r))1/(p(r)−1)u′(r) both exist and equal. For any
x = (x1, . . . , xN) ∈ PC(J,RN), denote |xi|0 = sup{|xi(r)| | r ∈ J ′}. Obviously, PC(J,RN)

is a Banach space with the norm ‖x‖0 = (
∑k

i=1 |xi|20)1/2, PC1(J,RN) is a Banach space with

the norm ‖x‖1 = ‖x‖0 + ‖(w(r))1/(p(r)−1)x′‖0. In the following, PC(J,RN) and PC1(J,RN)
will be simply denoted by PC and PC1, respectively. Let L1 = L1(J,RN) with the norm

‖x‖L1 = (
∑N

i=1 |xi|2L1)
1/2, ∀x ∈ L1, where |xi|L1 =

∫T
0 |xi(r)|dr. We denote

w(0)
∣∣u′∣∣p(0)−2u′(0) = lim

r→ 0+
w(r)

∣∣u′∣∣p(r)−2u′(r),

w(T)
∣∣u′∣∣p(T)−2u′(T) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r).
(1.5)

The study of differential equations and variational problems with nonstandard p(r)-
growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory,
electrorheological fluids, image processing, and so forth. [1–3]. Many results have been
obtained on this kind of problems, for example [1–20]. If p(r) ≡ p (a constant), (1.1) is
the well-known p-Laplacian problem. But if p(r) is a general function, the −Δp(r) is more
complicated than −Δp, since it represents a nonhomogeneity and possessesmore nonlinearity,
many methods and results for p-Laplacian problems are invalid for p(x)-Laplacian problems;
for example, if Ω ⊂ R

N is a bounded domain, the Rayleigh quotient

λp(x) = inf
u∈W1,p(x)

0 (Ω)\{0}

∫
Ω

(
1/p(x)

)|∇u|p(x)dx
∫
Ω

(
1/p(x)

)|u|p(x)dx
(1.6)
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is zero in general, and only under some special conditions λp(x) > 0 (see [9]), but the fact that
λp > 0 is very important in the study of p-Laplacian problems.

Impulsive differential equations have been studied extensively in the recent years.
Such equations arise in many applications such as spacecraft control, impact mechanics,
chemical engineering and inspection process in operations research (see [21–23] and
the references therein). On the Laplacian impulsive differential equations boundary
value problems, there are many papers (see [24–27]). The methods includ subsuper-
solution method, fixed point theorem, monotone iterative method, and coincidence degree,
and so forth. Because of the nonlinearity, results on the existence of solutions for p-
Laplacian impulsive differential equation boundary value problems are rare (see [23, 28–
30]).

In [29], Tian and Ge have studied nonlinear IBVP

−(ρ(t)Φp

(
x′(t)

))′ + s(t)Φp(x(t)) = f(t, x(t)), t /= ti, a.e. t ∈ [a, b],

lim
t→ t+i

ρ(t)Φp

(
x′(t)

) − lim
t→ t−i

ρ(t)Φp

(
x′(t)

)
= Ii(x(ti)), i = 1, . . . , l,

αx′(a) − βx(a) = σ1, γx′(b) + σx(b) = σ2,

(1.7)

where Φp(x) = |x|p−2x, p > 1, ρ, s ∈ L∞[a, b] with essinf[a,b]ρ > 0, and essinf[a,b]s >
0, 0 < ρ(a), p(b) < ∞, σ1 ≤ 0, σ2 ≥ 0, α, β, γ, σ > 0, a = t0 < t1 < · · · < tl < tl+1 = b,
Ii ∈ C([0,+∞), [0,∞)), i = 1, . . . , l, f ∈ C([a, b] × 0,+∞), [0,∞)), f(·, 0) is nontrivial. By using
variational methods, the existence of at least two positive solutions was obtained.

On the existence of solutions for p(r)-Laplacian impulsive differential equation
boundary value problems, we refer to [31, 32]. If w(0) = w(T)/= 0 and p(0) = p(T), then
(1.4) is the periodic boundary value condition, so we call condition (1.4) the periodic-like
boundary value condition. In [31], the present author deals with the existence of solutions of
(1.1) with (1.2), (1.4) and the following impulsive boundary value condition:

lim
r→ r+i

w(r)
∣∣u′∣∣p(r)−2u′(r) − lim

r→ r−i
w(r)

∣∣u′∣∣p(r)−2u′(r)

= Di

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
, i = 1, . . . , k,

(1.8)

the method in [31] is the coincidence degree.
In this paper, when p(r) is a general function, we investigate the existence of solutions

for the weighted p(r)-Laplacian impulsive integro-differential system periodic-like boundary
value problems via Leray-Schauder’s degree, problems with the impulsive condition (1.8)
has been discussed also. The homotopy transformation of this paper is different from [31],
our main results partly generalized the results of [23, 28–31].
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LetN ≥ 1, the function f : J × R
N × R

N × R
N → R

N is assumed to be Caratheodory,
by this we mean:

(i) for almost every t ∈ J the function f(t, ·, ·, ·) is continuous;
(ii) for each (x, y, z) ∈ R

N × R
N × R

N the function f(·, x, y, z) is measurable on J ;

(iii) for each R > 0 there is a αR ∈ L1(J,R) such that, for almost every t ∈ J and every
(x, y, z) ∈ R

N × R
N × R

N with |x| ≤ R, |y| ≤ R, |z| ≤ R, one has
∣∣f(t, x, y, z)∣∣ ≤ αR(t). (1.9)

We say a function u : J → R
N is a solution of (1.1) if u ∈ PC1 with w(r)|u′|p(r)−2u′(r)

absolutely continuous on Joi , i = 0, 1, . . . , k, which satisfies (1.1) a.e. on J .
This paper is divided into four sections; in the second section, we present some

preliminary. In the third section, we give the existence of solutions for system (1.1), (1.2),
(1.3) (or (1.8)) and (1.4). Finally, in the fourth section, we give several examples.

2. Preliminary

For any (r, y) ∈ (J×R
N), denote ϕ(r, y) = |y|p(r)−2y. Obviously, ϕ has the following properties.

Lemma 2.1. ϕ is a continuous function and satisfies the following.

(i) For any r ∈ [0, T], ϕ(r, ·) is strictly monotone, that is,

〈
ϕ
(
r, y1

) − ϕ(r, y2
)
, y1 − y2

〉
> 0, for any y1, y2 ∈ R

N, y1 /=y2, (2.1)

(ii) There exists a function α : [0,+∞) → [0,+∞), α(s) → +∞ as s → +∞, such that

〈
ϕ
(
r, y

)
, y
〉 ≥ α(∣∣y∣∣)∣∣y∣∣, ∀y ∈ R

N. (2.2)

It is well known that ϕ(r, ·) is a homeomorphism from R
N to R

N for any fixed r ∈ J .
Denote

ϕ−1(r, y) = ∣∣y∣∣(2−p(r))/(p(r)−1)y, for y ∈ R
N \ {0}, ϕ−1(r, 0) = 0. (2.3)

It is clear that ϕ−1(r, ·) is continuous and send bounded sets into bounded sets. Let us
now consider the following simple impulsive problem:

(
w(r)ϕ

(
r, u′(r)

))′ = f(r), r ∈ (0, T), r /= ri,

lim
r→ r+i

u(r) − lim
r→ r−i

u(ri) = ai, i = 1, . . . , k,

lim
r→ r+i

w(r)
∣∣u′∣∣p(r)−2u′(r) − lim

r→ r−i
w(r)

∣∣u′∣∣p(r)−2u′(r) = bi, i = 1, . . . , k,

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),

(2.4)
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where ai, bi ∈ R
N ; f ∈ L1 and satisfies

∫T
0
f(r)dr+

k∑
i=1

bi = 0. (2.5)

If u is a solution of (2.4), by integrating (2.4) from 0 to r, we find that

w(r)ϕ
(
r, u′(r)

)
= w(0)ϕ

(
0, u′(0)

)
+
∑
ri<r

bi +
∫ r
0
f(t)dt. (2.6)

Denote ρ = w(0)ϕ(0, u′(0)). Define the operator F : L1 → PC as

F
(
f
)
(r) =

∫ r
0
f(t)dt, ∀r ∈ J, ∀f ∈ L1. (2.7)

By solving for u′ in (2.6) and integrating, we find

u(r) = u(0) +
∑
ri<r

ai + F

{
ϕ−1

[
r, (w(r))−1

(
ρ
(
f
)
+
∑
ri<r

bi + F
(
f
)
(r)

)]}
(r), ∀r ∈ J. (2.8)

The boundary value conditions imply that

k∑
i=1

ai +
∫T
0
ϕ−1

{
r, (w(r))−1

[
ρ +

∑
ri<r

bi + F
(
f
)
(r)

]}
dr = 0. (2.9)

Denote a = (a1, . . . , ak) ∈ R
kN , b = (b1, . . . , bk) ∈ R

kN . It is easy to see that ρ is
dependent on a, b and f . DenoteW = R

2kN × PC with the norm

‖
‖W =
k∑
i=1

|ai|+
k∑
i=1

|bi| + ‖h‖0, ∀
 = (a, b, h) ∈W, (2.10)

thenW is a Banach space.
For fixed 
 ∈W , we denote

Λ


(
ρ
)
=

k∑
i=1

ai +
∫T
0
ϕ−1

{
r, (w(r))−1

[
ρ +

∑
ri<r

bi + h(r)

]}
dr, where 
 = (a, b, h). (2.11)
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Lemma 2.2. The function Λ
(·) has the following properties.

(i) For any fixed 
 ∈W , the equation

Λ


(
ρ
)
= 0 (2.12)

has a unique solution ρ̃(
) ∈ R
N .

(ii) The function ρ̃ : W → R
N , defined in (i), is continuous and sends bounded sets to

bounded sets. Moreover |ρ̃(
)| ≤ 3N[(((E + 1)/E)
∑k

i=1 |ai|)p
#−1 +

∑k
i=1 |bi| + ‖h‖0],

where 
 = (a, b, h) ∈ W , E =
∫T
0 (w(r))−1/(p(r)−1)dr, the notation Mp#−1 means

Mp#−1 =
{
Mp+−1, M>1

Mp−−1, M≤1
.

Proof. (i) From Lemma 2.1, it is immediate that

〈
Λ


(
y1
) −Λ


(
y2
)
, y1 − y2

〉
> 0, for y1 /=y2, (2.13)

and hence, if (2.12) has a solution, then it is unique.
Let R0 = 3N[(((E + 1)/E)

∑k
i=1 |ai|)p

#−1 +
∑k

i=1 |bi| + ‖h‖0]. Since (w(r))−1/(p(r)−1) ∈
L1(0, T) and h ∈ PC, if |ρ| > R0, it is easy to see that there exists an j0 ∈ {1, . . . ,N} such that,
the absolute value of the j0th component ρj0 of ρ is bigger than 3[(((E + 1)/E)

∑k
i=1 |ai|)p

#−1 +∑k
i=1 |bi| + ‖h‖0]. Thus the j0th component of ρ +

∑
ri<r

bi + h(r) keeps the same sign of ρj0 on
J , namely,

(
ρj0 +

∑
ri<r

b
j0
i + hj0(r)

)
ρj0 > 2

⎡
⎣
(
E + 1
E

k∑
i=1

|ai|
)p#−1

+
k∑
i=1

|bi| + ‖h‖0

⎤
⎦

2

, for any r ∈ J,

(2.14)

then it is easy to see that the j0th component of Λ
(ρ) keep the same sign of ρj0 , thus

k∑
i=1

ai +
∫T
0
ϕ−1

{
r, (w(r))−1

[
ρ +

∑
ri<r

bi + h(r)

]}
dr /= 0. (2.15)

Let us consider the equation

λΛ


(
ρ
)
+ (1 − λ)ρ = 0, λ ∈ [0, 1]. (2.16)

According to the former discussion, all the solutions of (2.16) belong to b(R0 + 1) =
{x ∈ R

N | |x| < R0 + 1}. So, we have

dB
[
Λ


(
ρ
)
, b(R0 + 1), 0

]
= dB[I, b(R0 + 1), 0]/= 0. (2.17)

It means the existence of solutions of Λ
(ρ) = 0.
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In this way, we define a function ρ̃(
) :W → R
N , which satisfies

k∑
i=1

ai +
∫T
0
ϕ−1

{
r, (w(r))−1

[
ρ̃(
) +

∑
ri<r

bi + h(r)

]}
dr = 0. (2.18)

(ii) By the proof of (i), we also obtain ρ̃ the sends bounded set to bounded set, and

∣∣ρ̃(
)
∣∣ ≤ 3N

⎡
⎣
(
E + 1
E

k∑
i=1

|ai|
)p#−1

+

∥∥∥∥∥
∑
ri<r

bi

∥∥∥∥∥
0

+ ‖h‖0

⎤
⎦, ∀
 = (a, b, h) ∈W. (2.19)

Finally to show that the continuity of ρ̃. Let {
n = (an, bn, hn)} is a convergent
sequence inW and 
n → 
 = (a, b, h), as n → +∞. Since {ρ̃(
n)} is bounded, it contains a
convergent subsequence {ρ̃(
nj )}. Set ρ̃(
nj ) → ρ0 as j → +∞. Obviously,

k∑
i=1

ai,nj +
∫T
0
ϕ−1

{
r, (w(r))−1

[
ρ̃
(

nj

)
+
∑
ri<r

bi,nj + hnj (r)

]}
dr = 0, (2.20)

where anj = (a1,nj , . . . , ak,nj ), bnj = (b1,nj , . . . , bk,nj ). Letting j → +∞, we have

k∑
i=1

ai +
∫T
0
ϕ−1

{
r, (w(r))−1

[
ρ0 +

∑
ri<r

bi + h(r)

]}
dr = 0, (2.21)

from (i) we get ρ0 = ρ̃(
), it means that ρ̃ is continuous.
This completes the proof.

Now, we define ρ : R
N × R

N × L1 → R
N be defined by

ρ(a, b, u) = ρ̃(a, b, F(u)). (2.22)

It is clear that ρ is a continuous function which send bounded sets of R
N ×R

N ×L1 into
bounded sets of R

N , and hence it is a compact continuous mapping.
Now, we continue with our argument previous to Lemma 2.2.
Denote

Ai = Ai

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
,

Di = Di

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
.

(2.23)
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From the definition of Bi and Di, we have

Di = ϕ

(
ri, lim

r→ r−i
(w(r))1/(p(r)−1)u′(r) + Bi

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

))

− ϕ
(
ri, lim

r→ r−i
(w(r))1/(p(r)−1)u′(r)

)
.

(2.24)

Let us define

P : PC1 −→ PC1, u �−→ u(0); Q : L1 −→ L1, h �−→ 1
T

∫T
0
h(r)dr;

Θb : L1 −→ L1, h �−→ (I −Q)h − 1
T

k∑
i=1

bi;

(2.25)

and K(a,b) : L1 → PC1 as

K(a,b)(h)(r) = F

{
ϕ−1

[
r, (w(r))−1

(
ρ(a, b, h) +

∑
ri<r

bi + F(h)

)]}
(r), ∀r ∈ J. (2.26)

Lemma 2.3. The operator (K(a,b) ◦ Θb)(·) is continuous and send equi-integrable sets of L1 into
relatively compact sets of PC1.

Proof. It is easy to check that (K(a,b) ◦Θb)(h)(·) ∈ PC1. Since (w(r))−1/(p(r)−1) ∈ L1 and

(
K(a,b) ◦Θb

)
(h)′(t) = ϕ−1

{
t, (w(t))−1

[
ρ(Θb(h)) +

∑
ri<r

bi + F(Θb(h))

]}
, ∀t ∈ J, (2.27)

it is easy to check that (K(a,b) ◦Θb)(·) is a continuous operator from L1 to PC1.
Let now U be an equi-integrable set in L1, then there exist β ∈ L1, such that, for any

u ∈ L1

|u(t)| ≤ β(t) a.e. in J. (2.28)

We want to show that (K(a,b) ◦Θb)(U) ⊂ PC1 is a compact set.
Let {un} be a sequence in (K(a,b) ◦Θb)(U), then there exists a sequence {hn} ∈ U such

that un = (K(a,b) ◦Θb)(hn). For any t1,t2 ∈ J , we have that

|F(Θb(hn))(t1) − F(Θb(hn))(t2)| ≤
∣∣∣∣∣
∫ t2
t1

β(t)dt

∣∣∣∣∣ + |t1 − t2| 1
T

(∫T
0
β(t)dt +

∣∣∣∣∣
k∑
i=1

bi

∣∣∣∣∣

)
. (2.29)
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Hence the sequence {F(Θb(hn))} is uniformly bounded and equicontinuous. By
Ascoli-Arzela theorem, there exists a subsequence of {F(Θb(hn))} (which we rename the
same) is convergent in PC. According to the bounded continuity of the operator ρ, we can
choose a subsequence of {ρ(Θb(hn)) + F(Θb(hn))} (which we still denote by {ρ(Θb(hn)) +
F(Θb(hn))}) is convergent in PC, then

w(t)ϕ
(
t, (K ◦Θb)(hn)

′(t)
)
= ρ(Θb(hn)) +

∑
ri<t

bi + F(Θb(hn)) (2.30)

is convergent according to the norm of PC. Since

(
K(a,b) ◦Θb

)
(hn)(t) = F

{
ϕ−1

[
t, (w(r))−1(ρ(Θb(hn)) +

∑
ri<t

bi + F(Θb(hn))

]}
(t), ∀t ∈ J,

(2.31)

according to the continuous of ϕ−1 and the integrability of (w(t))−1/(p(t)−1) in L1, we can see
that (K(a,b) ◦ Θb)(hn) is convergent in PC. Thus {un} convergent in PC1. This completes the
proof.

We denoteNf(u) : PC1 × J → L1 the Nemytski operator associated to f defined by

Nf(u)(r) = f
(
r, u(r), (w(r))1/(p(r)−1)u′(r), S(u)

)
, a.e. on J. (2.32)

Denote A = (A1, . . . , Ak), D = (D1, . . . , Dk) and

Θf(u) = (I −Q)Nf(u) − 1
T

k∑
i=1

Di, (2.33)

ρ(u) = ρ
(
A,D,Θf

)
(u),

K(u)(r) = F

{
ϕ−1

[
r, (w(r))−1(ρ(u) +

∑
ri<r

Di + F
(
Θf(u)

)]}
(r), ∀r ∈ J.

(2.34)

Lemma 2.4. u is a solution of (1.1), (1.2), (1.8) and (1.4), if and only if u is a solution of the following
abstract equation:

u = Pu +
∑
ri<r

Ai +
1
T

k∑
i=1

Di +QNf(u) +K(u). (2.35)

Proof. If u is a solution of (1.1), (1.2), (1.8) and (1.4), it is clear that u is a solution of (2.35).
Conversely, if u is a solution of (2.35), then (1.2) is satisfied and

1
T

k∑
i=1

Di +QNf(u) = 0. (2.36)

Thus Θf(u) =Nf(u).
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By the condition of the mapping ρ, we have

k∑
i=1

Ai + F

{
ϕ−1

[
r,w−1(r)(ρ(u) +

∑
ri<r

Di + F
(
Θf(u)

)]}
(T) = 0, (2.37)

then u(0) = u(T). From (2.35) and (2.36), we also have

w(r)ϕ
(
r, u′

)
= ρ(u) +

∑
ri<r

Di + F
(
Θf(u)

)
(r), r ∈ (0, T), r /= ri, (2.38)

(
w(r)ϕ

(
r, u′

))′ =Nf(u)(r), r ∈ (0, T), r /= ri. (2.39)

From (2.38), we get that (1.8) is satisfied. Since
∑k

i=1Di + F(Θf(u))(T) = 0, we have

w(0)ϕ
(
0, u′(0)

)
= w(T)ϕ

(
T, u′(T)

)
. (2.40)

Hence u is a solutions of (1.1), (1.2), (1.8) and (1.4). This completes the proof.

3. Main Results and Proofs

In this section, we will apply Leray-Schauder’s degree to deal with the existence of solutions
for (1.1) with impulsive periodic-like boundary value conditions (1.2), (1.8) (or (1.3)) and
(1.4).

Theorem 3.1. Assume that Ω is an open bounded set in PC1 such that the following conditions hold.

(10) For each λ ∈ (0, 1) the problem

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λf
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
, r ∈ (0, T), r /= ri,

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = λAi

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
, i = 1, . . . , k,

lim
r→ r+i

w(r)
∣∣u′∣∣p(r)−2u′(r) − lim

r→ r−i
w(r)

∣∣u′∣∣p(r)−2u′(r)

= λDi

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
, i = 1, . . . , k, u(0)

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),

(3.1)

has no solution on ∂Ω.
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(20) The equation

ω(l) :=
1
T

∫T
0
f(r, l, 0, S(l))dr +

1
T

k∑
i=1

Di(l, 0) = 0, (3.2)

has no solution on ∂Ω ∩ R
N .

(30) The Brouwer degree dB[ω,Ω ∩ R
N, 0]/= 0.

Then (1.1) with (1.2), (1.8) and (1.4) has a solution on Ω.

Proof. Let us consider the following impulsive equation:

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λNf(u) + (1 − λ)
[
QNf(u) +

1
T

k∑
i=1

Di

]
, r ∈ (0, T), r /= ri,

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = λAi, i = 1, . . . , k,

lim
r→ r+i

w(r)
∣∣u′∣∣p(r)−2u′(r) − lim

r→ r−i
w(r)

∣∣u′∣∣p(r)−2u′(r) = λDi, i = 1, . . . , k,

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),

(3.3)

where A = (A1, . . . , Ak) and D = (D1, . . . , Dk) are defined in (2.23).
For any λ ∈ (0, 1], if u is a solution to (3.1) or u is a solution to (3.3), we have necessarily

QNf(u) +
1
T

k∑
i=1

Di = 0. (3.4)

It means that (3.1) and (3.3) has the same solutions for λ ∈ (0, 1].
We denoteN(·, ·) : PC1 × [0, 1] → L1 defined by

N(u, λ) = λNf(u) + (1 − λ)
[
QNf(u) +

1
T

k∑
i=1

Di

]
, (3.5)

whereNf(u) is defined by (2.32). Denote

Θλ : L1 −→ L1, u �−→ (I −Q)N(u, λ) − λ

T

k∑
i=1

Di;

ρλ(u) = ρ(λA, λB,Θλ),

(3.6)

Kλ(u)(t) = F

{
ϕ−1

[
r,

(
w(r))−1(ρλ(u) + λ

∑
ri<r

Di + F(Θλ(u))

)]}
(t), ∀t ∈ 0, T ]. (3.7)
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Let

Φf(u, λ) = Pu + λ
∑
ri<r

Ai + λ
1
T

k∑
i=1

Di +QN(u, λ) +Kλ(u)

= Pu + λ
∑
ri<r

Ai +
1
T

k∑
i=1

Di +QNf(u) +Kλ(u),

(3.8)

the fixed point of Φf(u, 1) is a solution for (1.1)with (1.2), (1.8) and (1.4). Also problem (3.3)
can be written in the equivalent form

u = Φf(u, λ). (3.9)

Since f is Caratheodory, it is easy to see thatN(·, ·) is continuous and sends bounded
sets into equi-integrable sets. According to Lemma 2.3 we can conclude thatΦf is continuous
and compact for any λ ∈ [0, 1]. We assume that for λ = 1, (3.9) does not have a solution on
∂Ω, otherwise we complete the proof. Now from hypothesis (10) it follows that (3.9) has no
solutions for (u, λ) ∈ ∂Ω× (0, 1]. For λ = 0, (3.3) is equivalent to the following usual problem:

−
(
w(r)

∣∣u′∣∣p(r)−2u′
)′
=QNf(u)+

1
T

k∑
i=1

Di

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
, r ∈ (0, T),

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r).
(3.10)

If u is a solution to this problem, we must have

∫T
0
f
(
r, u(r), (w(r))1/(p(r)−1)u′(r), S(u)

)
dr+

k∑
i=1

Di

(
lim
r→ r−i

u(r), lim
r→ r−i

(w(r))1/(p(r)−1)u′(r)

)
= 0.

(3.11)

When λ = 0, the problem is a usual differential equation. Hence

w(r)
∣∣u′∣∣p(r)−2u′ ≡ c, (3.12)

where c ∈ R
N is a constant. Since u(0) = u(T), there exist ti0 ∈ (0,T), such that (ui)′(ti0) = 0,

hence (ui)′ ≡ 0, it holds u ≡ l, a constant. Thus, by (3.11) we have

∫T
0
f(r, l, 0, S(l))dr+

k∑
i=1

Di(l, 0) = 0, (3.13)

which together with hypothesis (20), implies that u = l /∈ ∂Ω. Thus, we have proved that (3.9)
has no solution (u,λ) on ∂Ω × [0, 1], then we get that the Leray-Schauder’s degree dLS[I −
Φf(·, λ),Ω, 0] is well defined for λ ∈ [0, 1], and from the homotopy invariant property of that
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degree, we have

dLS
[
I −Φf(·, 1),Ω, 0

]
= dLS

[
I −Φf(·, 0),Ω, 0

]
. (3.14)

Now it is clear that the problem

u = Φf(u, 1) (3.15)

is equivalent to problem (1.1)with (1.2), (1.8) and (1.4), and (3.14) tell us that problem (3.15)
will have a solution if we can show that

dLS
[
I −Φf(·, 0),Ω, 0

]
/= 0. (3.16)

Since K0(·) ≡ 0, we have

Φf(u, 0) = Pu +
1
T

k∑
i=1

Di +QNf(u) +K0(u) = Pu +
1
T

k∑
i=1

Di +QNf(u), (3.17)

and then

u −Φf(u, 0) = u − Pu − 1
T

k∑
i=1

Di −QNf(u) = − 1
T

k∑
i=1

Di −QNf(u), on Ω. (3.18)

By the properties of the Leray-Schauder degree, we have

dLS
[
I −Φf(·, 0),Ω, 0

]
= (−1)NdB

[
ω,Ω ∩ R

N, 0
]
, (3.19)

where the function ω is defined in (3.2) and dB denotes the Brouwer degree. Since by
hypothesis (30), this last degree is different from zero. This completes the proof.

Our next theorem is a consequence of Theorem 3.1. As an application of Theorem 3.1,
let us consider the system

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= g
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)

+ e
(
r, u(r), (w(r))1/(p(r)−1)u′(r), S(u)

)
, r ∈ J ′,

(3.20)

with (1.2), (1.8) and (1.4), where e : J×R
N×R

N×R
N → R

N is Caratheodory, g = (g1, . . . , gN) :
J × R

N × R
N × R

N → R
N is continuous, and for any fixed y0 ∈ R

N , gi(r, y0, 0, S(y0))/= 0 if
yi0 /= 0, ∀r ∈ J, i = 1, . . . ,N. Denote

z− = min
r∈J

z(r), z+ = max
r∈J

z(r), for z ∈ C(J,R). (3.21)



14 Journal of Inequalities and Applications

Theorem 3.2. Assume that the following conditions hold:

(10) g(r, kx, ky, kz) = kq(r)−1g(r, x, y, z) for all k > 0 and all (r, x, y, z) ∈ J ×R
N ×R

N ×R
N ,

where q(r) ∈ C(J,R), and 1 < q− ≤ q+ < p−;
(20) lim|u|+|v|→+∞(e(r, u, v, S(u))/(|u| + |v|)q(r)−1) = 0, for r ∈ J uniformly;

(30)
∑k

i=1 |Ai(u, v)| ≤ C(1 + |u| + |v|)θ, ∀(u, v) ∈ R
N × R

N , where 0 < θ < (p− − 1)/(p+ − 1);

(40)
∑k

i=1 |Di(u, v)| ≤ C(1 + |u| + |v|)β−1, ∀(u, v) ∈ R
N × R

N , where 1 ≤ β < q+;
(50) For large enough R0 > 0, the equation

ωg(l) :=
1
T

∫T
0
g(r, l, 0, S(l))dr +

1
T

k∑
i=1

Di(l, 0) = 0, (3.22)

has no solution on ∂B(R0) ∩ R
N , where B(R0) = {u ∈ PC1 | ‖u‖1 < R0};

(60) dB[ωg, b(R0), 0]/= 0 for large enough R0 > 0, where b(R0) = {x ∈ R
N | |x| < R0}.

Then problem (3.20) with (1.2), (1.8) and (1.4) has at least one solution.

Proof. For any u ∈ PC1, λ ∈ [0, 1], we denote

Nfλ(u) = g
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
+ λe

(
r, u(r), (w(r))1/(p(r)−1)u′(r), S(u)

)
. (3.23)

At first, we consider the following problem:

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

=Nfλ(u), r ∈ (0, T), r /= ri,

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = Ai, i = 1, . . . , k,

lim
r→ r+i

w(r)
∣∣u′∣∣p(r)−2u′(r) − lim

r→ r−i
w(r)

∣∣u′∣∣p(r)−2u′(r) = Di, i = 1, . . . , k,

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),

(3.24)

where Ai and Di are defined in (2.23).
According to the proof of Theorem 3.1, we know that (3.24) has the same solutions of

u = Φf(u, λ) = Pu +
∑
ri<r

Ai +
1
T

k∑
i=1

Di +QNfλ(u) +K
(
Θfλ(u)

)
, (3.25)

where Θfλ is defined in (2.33).
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We claim that all the solutions of (3.24) are bounded for each λ ∈ [0, 1]. In fact, if
it is false, we can find a sequence (un, λn) of solutions for (3.24) such that ‖un‖1 > 1 and
‖un‖1 → +∞when n → +∞. Since (un, λn) are solutions of (3.24), we have

w(r)ϕ
(
r, u′n(r)

)
= ρ(un) +

∑
ri<r

Di + F
(
Nfλn (un)

)
(r), (3.26)

un(r)=un(0)+
∑
ri<r

Ai + F

{
ϕ−1

[
r, (w(r))−1

(
ρ(un) +

∑
ri<r

Di + F
(
Nfλn (un)

)
(r)

)]}
(r). (3.27)

Since un(0) = un(T), we have

k∑
i=1

Ai + F

{
ϕ−1

[
r, (w(r))−1

(
ρ(un) +

∑
ri<r

Di + F
(
Nfλn (un)

)
(r)

)]}
(T) = 0. (3.28)

From Lemma 2.2, we have

∣∣ρ(un)
∣∣ ≤ 3NC

(
1 +

(
E + 1
E

)(p+−1)
‖un‖θ(p

+−1)
1 + ‖un‖q

+−1
1

)
. (3.29)

From (30), (40), (3.26) and (3.29), we can see that

∥∥∥(w(r))1/(p(r)−1)u′n
∥∥∥
0
≤ o(1)‖un‖1. (3.30)

From (3.30), we have

lim
n→+∞

‖un‖0
‖un‖1

= 1. (3.31)

Denote δn = (|u1n|0/‖un‖0, |u2n|0/‖un‖0, . . . , |uNn |0/‖un‖0), then δn ∈ R
N and |δn| = 1

(n = 1, 2, . . .). Since {δn} possesses a convergent subsequence (which still denoted by δn),
there exists a vector δ0 = (δ10 , δ

2
0 , . . . , δ

N
0 ) ∈ R

N such that

|δ0| = 1, lim
n→+∞

δn = δ0. (3.32)

With out loss of generality, we assume that δ10 > 0. Since un ∈ PC1, there exist ηin ∈ J
such that

∣∣∣uin
(
ηin

)∣∣∣ ≥
(
1 − 1

n

)∣∣∣uin
∣∣∣
0
, i = 1, 2, . . . ,N, n = 1, 2, . . . . (3.33)
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Obviously

0 ≤
∣∣∣u1n(r) − u1n

(
η1n

)∣∣∣ =
∣∣∣∣∣∣

∫ r
η1n

(
u1n

)′
(t)dt +

∑
η1n<ri<r

A1
i

∣∣∣∣∣∣
≤ o(1)‖un‖1

∫T
0
(w(t))−1/(p(t)−1)dt+

k∑
i=1

∣∣∣A1
i

∣∣∣.

(3.34)

Since ‖un‖1 → +∞ (as n → +∞) and δ10 > 0, according to (3.31), (3.33) and (30), we
have

lim
n→+∞

1∣∣u1n
(
η1n
)∣∣

{
o(1)‖un‖1

∫T
0
(w(t))−1/(p(t)−1)dt+

k∑
i=1

∣∣∣A1
i

∣∣∣
}

= 0. (3.35)

From (3.31), (3.34) and (3.35) we have

lim
n→+∞

u1n(r)
u1n
(
η1n
) = 1, for r ∈ J uniformly. (3.36)

So we get

lim
n→+∞

un(r)
‖un‖1

= δ∗, lim
n→+∞

(w(r))1/(p(r)−1)u′n(r)
‖un‖1

= 0, for r ∈ J uniformly, (3.37)

where δ∗ ∈ R
N with |δi∗| = δi0, i = 1, . . . ,N.

From (1.4), we have

k∑
i=1

Di +
∫T
0

{
g
(
r, un, (w(r))1/(p(r)−1)u′n, S(un)

)
+

+e
(
r, un(r), (w(r))1/(p(r)−1)u′n(r)

)
, S(un)

}
dr = 0.

(3.38)

Since g1(t, δ0, 0, S(δ0))/= 0, according to (3.37), (40) and the continuity of g, we have

k∑
i=1

Di +
∫T
0
‖un‖q(t)−11

{
g[t, δ0 + o(1), o(1), S(δ0)] + o(1)

}
dt /= 0, (3.39)

it is a contradiction to (3.38). This implies that there is a large enough R0 > 0 such that all the
solutions of (3.24) belong to B(R0), then we have

dLS
[
I −Φf(·, 1), B(R0), 0

]
= dLS

[
I −Φf(·, 0), B(R0), 0

]
. (3.40)

If we prove that dLS[I −Φf(·, 0), B(R0), 0]/= 0, then we obtain the existence of solutions
(3.20)with (1.2), (1.8) and (1.4).
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Now we consider the following equation:

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λNg(u) + (1 − λ)
[
QNg(u) +

1
T

k∑
i=1

Di

]
, r ∈ J ′,

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = λAi, i = 1, . . . , k,

lim
r→ r+i

w(r)
∣∣u′∣∣p(r)−2u′(r) − lim

r→ r−i
w(r)

∣∣u′∣∣p(r)−2u′(r) = Di, i = 1, . . . , k,

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),

(3.41)

whereNg(u) = g(r, u, (w(r))1/(p(r)−1)u′, S(u)), Ai and Di are defined in (2.23).
Similar to the above discussions, for any λ ∈ (0, 1], all the solutions of (3.41) are

uniformly bounded.
If u is a solution of the following usual equation with (1.4):

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= QNg(u) +
1
T

k∑
i=1

Di, r ∈ (0, T), (3.42)

then we have

QNg(u) +
1
T

k∑
i=1

Di = 0, w(r)
∣∣u′∣∣p(r)−2u′ ≡ c. (3.43)

Since u(0) = u(T),we have w(r)|u′|p(r)−2u′ ≡ 0, it means that u is a solution of

ωg(l) =
1
T

∫T2
T1

g(r, l, 0, S(l))dr +
1
T

k∑
i=1

Di(l, 0) = 0, (3.44)

according to hypothesis (50), (3.41) has no solution on [0, 1] × ∂B(R0), from Theorem 3.1 we
obtain that (3.20) with (1.2), (1.8) and (1.4) has at least one solution. This completes the
proof.

Corollary 3.3. If e : J × R
N × R

N × R
N → R

N is Caratheodory, conditions (20), (30) and (40)
of Theorem 3.2 are satisfied, g(r, u, v, S(u)) = ψ(r)(|u|q(r)−2u + |v|q(r)−2v + |S(u)|q(r)−2S(u)), where
ψ(·), q(·) ∈ C(J,R) are positive functions, and satisfies 1 < q− ≤ q+ < p−; then (3.20) with (1.2),
(1.8) and (1.4) has at least one solution.

Proof. Denote

H(l, λ) =
1
T

∫T
0
g(r, l, 0, S(l))dr +

1
T

k∑
i=1

λDi(l, 0). (3.45)
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From condition (40), we have

|Di(l, 0)| ≤ C(1 + |l|)β−1, 1 ≤ β < q+. (3.46)

Since φ is nonnegative, from the above inequality, we can see that all the solutions
of H(l, λ) = 0 are uniformly bounded for λ ∈ [0, 1]. Thus the Leray-Schauder degree
dB[H(l, λ), b(R0), 0] is well defined for λ ∈ [0, 1], and we have

dB
[
ωg, b(R0), 0

]
= dB[H(l, 1), b(R0), 0] = dB[H(l, 0), b(R0), 0].

H(l, 0) =
1
T

∫T
0
g(r, l, 0, S(l))dr =

1
T

∫T
0
ψ(r)

(
|l|q(r)−2l + S(l)

)
dr,

(3.47)

then it is easy to see thatH(l, 0) = 0 has only one solution in R
N and

dB
[
ωg, b(R0), 0

]
= dB[I, b(R0), 0]/= 0. (3.48)

According to Theorem 3.2 we get that (3.20) with (1.2), (1.8) and (1.4) has at least a
solution. This completes the proof.

Let us consider

−
(
w(r)

∣∣u′∣∣p(r)−2u′
)′

+ f
(
r, u, (w(r))1/(p(r)−1)u′, S(u), δ

)
= 0, r ∈ (0, 1), r /= ri, (3.49)

where δ is a parameter, and

f
(
r, u, (w(r))1/(p(r)−1)u′, S(u), δ

)

= g
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
+ δh

(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
,

(3.50)

where g, h : J × R
N × R

N × R
N → R

N are Caratheodory.
We have the following theorem.

Theorem 3.4. One assumes that conditions of (10) and (30)–(60) of Theorem 3.2 are satisfied, then
problem (3.49) with (1.2), (1.8) and (1.4) has at least a solution when the parameter δ is small
enough.
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Proof. Denote

fλδ
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)

= g
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
+ λδh

(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
.

(3.51)

Let us consider the existence of solutions of the following

−
(
w(r)

∣∣u′∣∣p(r)−2u′
)′

+ fλδ
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
= 0, r ∈ (0, 1), r /= ri, (3.52)

with (1.2), (1.8) and (1.4).
Denote

ρ#λ(u, δ) = ρ
(
A,D,Θfλδ

)
(u),

K#
λ(u, δ) = F

{
ϕ−1

[
r, (w(r))−1

(
ρ#λ(u, δ) +

∑
ri<r

Di + F
(
Θfλδ(u)

)
(r)

)]}
,

Ψδ(u, λ) = P(u) +
∑
ri<r

Ai +
1
T

k∑
i=1

Di +QNfλδ(u) +K
#
λ(u, δ),

(3.53)

whereNfλδ(u) is defined in (2.32), Θfλδ is defined in (2.33).
We know that (3.52)with (1.2), (1.8) and (1.4) has the same solution of

u = Ψδ(u, λ). (3.54)

Obviously, f0 = g. ThusΨδ(u, 0) = Φg(u, 1). From the proof of Theorem 3.2, we can see
that all the solutions of u = Ψδ(u, 0) are uniformly bounded, then there exists a large enough
R0 > 0 such that all the solutions of u = Ψδ(u, 0) belong to B(R0) = {u ∈ PC1 | ‖u‖1 < R0}.
Since Ψδ(·, 0) is compact continuous from PC1 to PC1, we have

inf
u∈∂B(R0)

‖u −Ψδ(u, 0)‖1 > 0. (3.55)

Since g, h are Caratheodory, we have

∥∥F(Nfλδ(u)
) − F(Nf0(u)

)∥∥
0 −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0,

∣∣∣ρ#λ(u, δ) − ρ#0(u, δ)
∣∣∣ −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0,

∥∥∥K#
λ(u, δ) −K#

0(u, δ)
∥∥∥
1
−→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0.

(3.56)

Thus

‖Ψδ(u, λ) −Ψ0(u, λ)‖1 −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0. (3.57)
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Obviously, Ψ0(u, λ) = Ψδ(u, 0) = Ψ0(u, 0). Therefore

‖Ψδ(u, λ) −Ψδ(u, 0)‖1 −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0. (3.58)

Thus, when δ is small enough, from (3.55), we can conclude

inf
(u,λ)∈∂B(R0)×[0,1]

‖u −Ψδ(u, λ)‖1

≥ inf
u∈∂B(R0)

‖u −Ψδ(u, 0)‖1 − sup
(u,λ)∈B(R0)×[0,1]

‖Ψδ(u, 0) −Ψδ(u, λ)‖1 > 0.
(3.59)

Thus u = Ψδ(u, λ) has no solution on ∂B(R0) for any λ ∈ [0, 1], when δ is small enough.
It means that the Leray-Schauder degree dLS[I − Ψδ(u, λ), B(R0), 0] is well defined for any
λ ∈ [0, 1], and

dLS[I −Ψδ(u, λ), B(R0), 0] = dLS[I −Ψδ(u, 0), B(R0), 0]. (3.60)

From the proof of Theorem 3.2, we can see that the right-hand side is nonzero, then
(3.49)with (1.2), (1.8) and (1.4) has at least a solution, when the parameter δ is small enough.

Now, let us consider the existence of solutions of (1.1) with (1.2), (1.3) and (1.4).

Theorem 3.5. One assumes that conditions of (10)–(30) and (50)-(60) of Theorem 3.2 are satisfied,
one also assumes that B satisfy

|Bi(u, v)| ≤ C(1 + |u| + |v|)αi , ∀(u, v) ∈ R
N × R

N, i = 1, . . . , k, (3.61)

where

αi <
q+ − 1
p(ri) − 1

, p(ri) − 1 < q+ − αi, i = 1, . . . , k, (3.62)

then problem (3.20) with (1.2), (1.3) and (1.4) has at least a solution.

Proof. We only need to prove that condition (40) of Theorem 3.2 is satisfied.

(a) When |v| ≤ M|Bi(u, v)|, where M is a large enough positive constant, from the
definition of D, we can see that

|Di(u, v)| ≤ C1|Bi(u, v)|p(ri)−1 ≤ C2(1 + |u| + |v|)αi(p(ri)−1). (3.63)

Since αi < (q+ − 1)/(p(ri) − 1), we have

αi
(
p(ri) − 1

)
< q+ − 1. (3.64)

Thus condition (40) of Theorem 3.2 is satisfied.
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(b) When |v| ≥M|Bi(u, v)|, we can see that

|Di(u, v)| ≤ C3|v|p(ri)−1 |Bi(u, v)||v| = C4|v|p(ri)−2|Bi(u, v)|. (3.65)

(i) If p(ri) − 1 ≥ 1, since p(ri) − 1 < q+ − αi, we have

p(ri) − 2 + αi < q+ − 1,

|Di(u, v)| ≤ C5|v|p(ri)−2|Bi(u, v)| ≤ C6(1 + |u| + |v|)p(ri)−2+αi .
(3.66)

Thus the condition (40) of Theorem 3.2 is satisfied.
(ii) If p(ri) − 1 < 1, since αi < (q+ − 1)/(p(ri) − 1), we have

αi
(
p(ri) − 1

)
< q+ − 1,

|Di(u, v)| ≤ C7|v|p(ri)−2|Bi(u, v)| ≤ C8|Bi(u, v)|p(ri)−1 ≤ C9(1 + |u| + |v|)αi(p(ri)−1).
(3.67)

Thus the condition (40) of Theorem 3.2 is satisfied.

Summarizing the discussion, we can see that condition (40) of Theorem 3.2 is satisfied.
Thus problem (3.20)with (1.2), (1.3) and (1.4) has at least a solution.

Corollary 3.6. If e : J × R
N × R

N × R
N → R

N is Caratheodory, (3.61), (3.62) and conditions (20)
and (30) of Theorem 3.2 are satisfied, g(r, u, v, S(u)) = ψ(r)(|u|q(r)−2u+|v|q(r)−2v+|S(u)|q(r)−2S(u)),
where ψ(r), q(r) ∈ C(J,R) are positive functions, and satisfies 1 < q− ≤ q+ < p−; then (3.20) with
(1.2), (1.3) and (1.4) has at least one solution.

Proof. It is easy to see that from the proof of Corollary 3.3 and Theorem 3.5. We omit it here.

4. Examples

Example 4.1. Consider the following problem:

−
(
w(t)

∣∣u′∣∣p(t)−2u′
)′

+ |u|q(t)−2u +w(t)
∣∣u′∣∣q(t)−2u′ + S(u)(t) = 0, t ∈ J ′,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = lim
t→ t−i

|u(t)|−1/2u(t) + lim
t→ t−i

∣∣∣(w(t))1/(p(t)−1)u′(t)
∣∣∣
−1/2

(w(t))1/(p(t)−1)u′(t),

lim
t→ t+i

w(t)
∣∣u′∣∣p(t)−2u′(t)− lim

t→ t−i
w(t)

∣∣u′∣∣p(t)−2u′(t)= lim
t→ t−i

|u(t)|2u(t)+ lim
t→ t−i

(w(t))3/(p(t)−1)
∣∣u′(t)∣∣2u′(t),

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),
(S1)

where p(t) = 6 + sin t, q(t) = 3 + cos t, S(u)(t) =
∫T
0 (sin st + 1)u(s)ds.
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Obviously, |u|q(t)−2u +w(t)|u′|q(t)−2u′ + S(u)(t) is Caratheodory, q(t) ≤ 4 < 5 ≤ p(t), and
the conditions of Theorem 3.2 are satisfied, then (S1) has a solution.

Example 4.2. Consider the following problem:

−
(
w(t)

∣∣u′∣∣p(t)−2u′
)′
+f

(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)

+δh
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
=0, t ∈ J ′,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = lim
t→ t−i

|u(t)|−1/3u(t) + lim
t→ t−i

∣∣∣(w(t))1/(p(t)−1)u′(t)
∣∣∣
−1/3

(w(t))1/(p(t)−1)u′(t),

lim
t→ t+i

w(t)
∣∣u′∣∣p(t)−2u′(t)− lim

t→ t−i
w(t)

∣∣u′∣∣p(t)−2u′(t)= lim
t→ t−i

|u(t)|2u(t)+ lim
t→ t−i

(w(t))3/(p(t)−1)
∣∣u′(t)∣∣2u′(t),

u(0) = u(T), lim
r→ 0+

w(r)
∣∣u′∣∣p(r)−2u′(r) = lim

r→ T−
w(r)

∣∣u′∣∣p(r)−2u′(r),
(S2)

where

f
(
r, u, (w(r))1/(p(r)−1)u′, S(u)

)
= |u|q(t)−2u +w(t)

∣∣u′∣∣q(t)−2u′ + δue|u|+
∣∣∣(w(t))1/(p(t)−1)u′

∣∣∣ + S(u)(t),

p(t) = 7 + cos 3t, q(t) = 4 + sin 2t, S(u)(t) =
∫T
0
(cos st + 1)u(s)ds.

(4.1)

Obviously, |u|q(t)−2u + w(t)|u′|q(t)−2u′ + δue|u|+
∣∣∣(w(t))1/(p(t)−1)u′

∣∣∣ + S(u)(t) is Caratheodory,
q(t) ≤ 5 < 6 ≤ p(t), and the conditions of Theorem 3.4 are satisfied, then (S2) has a solution
when δ is small enough.
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[2] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in
Mathematics, Springer, Berlin, Germany, 2000.

[3] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,”Mathematics
of the USSR-Izvestiya, vol. 29, pp. 33–66, 1987.
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