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We propose a network model, a weighted bipartite complex dynamical network with coupling
delay, and present a scheme for identifying the weights of the network. Based on adaptive
synchronization technique, weight trackers are designed for identifying the edge weights between
nodes of the network by monitoring the dynamical evolution of the synchronous networks with
drive-response structure. The conclusion is proved theoretically by Lyapunovs stability theory
and LaSalle’s invariance principle. Compared with the similar works, taking into consideration
the structural characteristics of the network, the tracking devices designed in our paper are more
effective and more easy to implement. Finally, numerical simulations show the effectiveness of the
proposed method.

1. Introduction

Since the discoveries of the small-world (SW) [1] and scale-free (SF) [2] properties, complex
networks have been studied intensively in various disciplines, such as social, biological,
mathematical, and engineering sciences [3]. Synchronization is one of the most common
dynamical processes and a typical collective behavior in networks. In recent years, many
existing literatures devoted to the synchronization of complex dynamical networks provided
with certain topology, such as SW, SF, and ring or chain networks [4–9]. However, the
topology (or edge weight) of many realistic networks is uncertain or unknown. Study shows
that the topological structure and edge weight directly affect the synchronous ability of
networks [10]. Therefore, it is very important significance to identify the topology or estimate
the edge weight in the research of complex networks. Very recently, topology identification
of complex dynamical networks has been intensively studied [11–14]. The study in [11]
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suggested a method for estimating the adjacency matrix of networks with various oscillators.
In [12, 13], the authors have provided methods to identify the topology for general networks
and delay coupled networks, respectively. The study in [14] has further investigated the key
factor, the independent condition, for guaranteeing successful topology identification, and
it pointed out that the earlier results in [11–13] were incomplete or incorrect. The topology
identification process based on [11–13] may fail due to the lack of “independent condition”.
Now, for a special network, such as a bipartite graph network proposed below, it is worth
of further study how to design more suitable and more effective controllers to guarantee the
topology or weight identification utilizing the structural feature of the network.

Bipartite graph networks widely exist in biological, social, physical, and technological
fields. The so-called bipartite graph refers to a graph which has two types of nodes and
edges running only between nodes of unlike types [15]. Many social and biological networks
are bipartite. For example, in the research of human disease genomics, if it regards various
human diseases as a type of nodes and pathogenic genes as another, human diseases and
pathogenic genes make up a bipartite graph network [16]. Obviously, it is very important to
identify the relation of the two classes of nodes for helping people to treat diseases. So, the
research of the edge weight between nodes in a bipartite graph network has the widespread
practical significance and the application value.

Motivated by the above discussions, in this paper, we provide a weighted bipartite
complex dynamical network model and focus on the weight identifying problem. Based
on adaptive synchronization technique, we design trackers to identify the edge weights of
the network. The conclusion is proved rigorously by LaSalle’s invariance principle, and a
numerical example with the chaotic Lorenz system and the Chen system is provided to
demonstrate the effectiveness of the proposed method.

In the whole paper, ‖ · ‖ represents 2-norm of vector, (·)T denotes the transposition of
(·), ⊗ represents the Kronecker product, Im is an m-order identity matrix, and Ns

1 denotes the
set {1, 2, . . . , s}.

2. Model Description and Preliminaries

Consider a weighted bipartite graph complex dynamical network with delay linear coupling,
which consists by two different types of nodes, as described below:

ẋi(t) = f(t, xi(t)) +
r∑

j=1

pijA
(
yj(t − τ) − xi(t − τ)

)
, i ∈Ns

1 ,

ẏj(t) = g
(
t, yj(t)

)
+

s∑

i=1

pijA
(
xi(t − τ) − yj(t − τ)

)
, j ∈Nr

1 ,

(2.1)

where xi(t), yj(t) ∈ Rn are the state vectors of nodes, f, g : R+ × Rn → Rn are continuously
differentiable vector functions. The two sets of node equation are described by ẋ(t) =
f(t, x(t)) and ẏ(t) = g(t, y(t)), and s, r represent the number of two types of nodes,
respectively. τ > 0 is a constant for the coupling delay. A ∈ Rn×n is a constant matrix called
inner-coupling matrix. P = (pij)s×r represents an unknown or uncertain coupling weight
matrix, in which pij /= 0 if there is a coupling from node i to node j, and pij represents the edge
weight; otherwise, pij = 0. The topology and weight information of the network connections
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is determined by the weight matrix P . The external-coupling matrix of network (2.1) is given
by

C =
(
cij

)
=
[
D1 P
PT D2

]
∈ R(s+r)×(s+r), (2.2)

where D1 = diag(−
∑r

j=1 p1j , . . . ,−
∑r

j=1 psj) ∈ Rs×s and D2 = diag(−
∑s

i=1 pi1, . . . ,−
∑s

i=1 pir) ∈
Rr×r .

Obviously, matrix C is a diffusive coupling matrix which has zero-row sums; that is,
cii = −

∑s+r
k=1 cik, i ∈Ns+r

1 .
Our objective is to design weight trackers to identify the weights of the network (2.1),

that is, to estimate the elements of the unknown or uncertain weight matrix P = (pij)s×r . For
this purpose, here we introduce a useful assumption and lemma.

Assumption 1 (A1). Suppose that there exist positive constants δf and δg such that

∥∥f(t, x(t)) − f
(
t, y(t)

)∥∥ ≤ δf
∥∥x(t) − y(t)

∥∥,
∥∥g(t, x(t)) − g

(
t, y(t)

)∥∥ ≤ δg
∥∥x(t) − y(t)

∥∥,
(2.3)

where x(t), y(t) are time-varying vectors.

Lemma 2.1. For any vectors x, y ∈ Rn, one has 2xTy ≤ xTx + yTy.

3. Main Result

Taking the network (2.1) as the drive network, a controlled response network can be designed
as

˙̂xi(t) = f(t, x̂i(t)) +
r∑

j=1

p̂ijA
(
ŷj(t − τ) − x̂i(t − τ)

)
+ ui, i ∈Ns

1 ,

˙̂yj(t) = g
(
t, ŷj(t)

)
+

s∑

i=1

p̂ijA
(
x̂i(t − τ) − ŷj(t − τ)

)
+ us+j , j ∈Nr

1 ,

(3.1)

where x̂i(t), ŷj(t) ∈ Rn are the response state vectors, ui and us+j are the control inputs to be
designed, and p̂ij is the estimation of the weight pij . The synchronous error between systems
(2.1) and (3.1) is defined as ei(t) = x̂i(t) − xi(t) and es+j(t) = ŷj(t) − yj(t), i ∈Ns

1 , j ∈N
r
1 .
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Denote that e(t) = (eT1 (t), . . . , e
T
s (t), e

T
s+1(t), . . . , e

T
s+r(t))

T , and p̃ij = p̂ij − pij . Then the
error system can be written as follows:

ėi(t) = f(t, x̂i(t)) − f(t, xi(t)) +
r∑

j=1

p̃ijA
(
yj(t − τ) − xi(t − τ)

)

+
r∑

j=1

p̂ijA
(
es+j(t − τ) − ei(t − τ)

)
+ ui, i ∈Ns

1 ,

ės+j(t) = g
(
t, ŷj(t)

)
− g

(
t, yj(t)

)
+

s∑

i=1

p̃ijA
(
xi(t − τ) − yj(t − τ)

)

+
s∑

i=1

p̂ijA
(
ei(t − τ) − es+j(t − τ)

)
+ us+j , j ∈Nr

1 ,

(3.2)

or

ėi(t) = f(t, x̂i(t)) − f(t, xi(t)) +
r∑

j=1

p̃ijA
(
ŷj(t − τ) − x̂i(t − τ)

)

+
r∑

j=1

pijA
(
es+j(t − τ) − ei(t − τ)

)
+ ui, i ∈Ns

1 ,

ės+j(t) = g
(
t, ŷj(t)

)
− g

(
t, yj(t)

)
+

s∑

i=1

p̃ijA
(
x̂i(t − τ)i − ŷj(t − τ)

)

+
s∑

i=1

pijA
(
ei(t − τ) − es+j(t − τ)

)
+ us+j , j ∈Nr

1 ,

(3.3)

where (3.2) and (3.3) are equivalent.

Theorem 3.1. Suppose that A1 holds. Take the controller and adaptive laws as follows

ui = −kiei(t), k̇i = eTi (t)ei(t), i ∈Ns+r
1 , (3.4)

˙̂pij(t) =
(
es+j(t) − ei(t)

)T
A
(
ŷj(t − τ) − x̂i(t − τ)

)
, i ∈Ns

1 , j ∈N
r
1 , (3.5)

Then one has e(t) → 0 (t → +∞); that is, the systems (2.1) and (3.1) achieve synchronization.
Furthermore, if vectors y1(t) − xi(t), y2(t) − xi(t), . . . , and yr(t) − xi(t) (i ∈ Ns

1) or vectors x1(t) −
yj(t), x2(t) − yj(t), . . . , and xs(t) − yj(t) (j ∈ Nr

1) are linear independence, then one has p̃ij → 0,
that is, p̂ij → pij as t → +∞.

Proof. Choose the Lyapunov candidate as

V (t) =
1
2

s+r∑

i=1

eTi (t)ei(t) +
1
2

s∑

i=1

r∑

j=1

p̃2
ij +

1
2

s+r∑

i=1

(ki − k)2 +
1
2

∫ t

t−τ

s+r∑

i=1

eTi (ζ)ei(ζ)dζ, (3.6)

where k is a positive constant to be determined.
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The derivative of V (t) along the trajectories of (3.3), (3.4), and (3.5) is given by

V̇ (t) =
s∑

i=1

eTi (t)ėi(t) +
r∑

j=1

eTs+j(t)ės+j(t) +
s∑

i=1

r∑

j=1

p̃ij ˙̂pij +
s+r∑

i=1

(ki − k)k̇i

+
1
2

s+r∑

i=1

eTi (t)ei(t) −
1
2

s+r∑

i=1

eTi (t − τ)ei(t − τ)

=
s∑

i=1

eTi (t)
[
f(t, x̂i(t)) − f(t, xi(t))

]
+

s∑

i=1

r∑

j=1

eTi (t)p̃ijA
(
ŷj(t − τ) − x̂i(t − τ)

)

+
s∑

i=1

r∑

j=1

eTi (t)pijA
(
es+j(t − τ) − ei(t − τ)

)
+

s∑

i=1

eTi ui +
r∑

j=1

eTs+j(t)
[
g
(
t, ŷj(t)

)
− g

(
t, yj(t)

)]

+
s∑

i=1

r∑

j=1

eTs+j(t)p̃ijA
(
x̂i(t − τ) − ŷj(t − τ)

)
+

s∑

i=1

r∑

j=1

eTs+j(t)pijA
(
ei(t − τ) − es+j(t − τ)

)

+
r∑

j=1

eTs+j(t)us+j +
s∑

i=1

r∑

j=1

p̃ij ˙̂pij +
s+r∑

i=1

(ki − k)k̇i +
1
2

s+r∑

i=1

eTi (t)ei(t) −
1
2

s+r∑

i=1

eTi (t − τ)ei(t − τ)

≤ δf
s∑

i=1

‖ei‖2 +
s∑

i=1

r∑

j=1

pij
[
eTi (t)A

(
es+j(t − τ) − ei(t − τ)

)
+ eTs+j(t)A

(
ei(t − τ) − es+j(t − τ)

)]

+ δg
r∑

j=1

∥∥es+j
∥∥2 +

s∑

i=1

r∑

j=1

p̃ij
[
eTi (t)A

(
ŷj(t − τ) − x̂i(t − τ)

)

+eTs+j(t)A
(
x̂i(t − τ) − ŷj(t − τ)

)
+ ˙̂pij

]

+
s+r∑

i=1

eTi (t)ui +
s+r∑

i=1

(ki − k)eTi (t)ei(t) +
1
2
eT (t)e(t) − 1

2
eT(t − τ)e(t − τ)

= δf
s∑

i=1

eTi (t)ei(t) + δg
r∑

j=1

eTs+j(t)es+j(t)

+
s∑

i=1

r∑

j=1

pij
[
eTi (t)A

(
es+j(t − τ) − ei(t − τ)

)
+ eTs+j(t)A

(
ei(t − τ) − es+j(t − τ)

)]

− keT (t)e(t) + 1
2
eT (t)e(t) − 1

2
eT (t − τ)e(t − τ).

(3.7)

because

s∑

i=1

r∑

j=1

pij
[
eTi (t)A

(
es+j(t − τ) − ei(t − τ)

)
+ eTs+j(t)A

(
ei(t − τ) − es+j(t − τ)

)]

=
s∑

i=1

r∑

j=1

eTi (t)pijAes+j(t − τ) +
s∑

i=1

r∑

j=1

eTs+r(t)pijAei(t − τ)

+
s∑

i=1

eTi (t)ciiAei(t − τ) +
r∑

j=1

eTs+j(t)cs+j,s+jAes+j(t − τ)

= eT (t)(C ⊗ A)e(t − τ) � eT (t)Ge(t − τ),

(3.8)
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where G = C ⊗A. By Lemma 2.1, one has

eT (t)Ge(t − τ) ≤ 1
2
eT (t)GGTe(t) +

1
2
eT(t − τ)e(t − τ). (3.9)

Therefore,

V̇ (t) ≤ δf
s∑

i=1

eTi (t)ei(t) + δg
r∑

j=1

eTs+j(t)es+j(t) − ke
T (t)e(t) +

1
2
eT (t)GGTe(t) +

1
2
eT (t)e(t)

≤
(
λmax

(
Q +

1
2
GGT

)
+

1
2
− k

)
eT (t)e(t)

(3.10)

in which Q = diag{δfIsn, δgIrn}. Taking k = λmax(Q + (1/2)GGT ) + 3/2, then one has V̇ (t) ≤
−eT(t)e(t).

It is obvious that V̇ = 0 if and only if e(t) = 0. Let S be the set of all points where
V̇ = 0, that is, S = {V̇ = 0} = {e(t) = 0}. From (3.2), the largest invariant set of S is M =
{e(t) = 0,

∑r
j=1 p̃ijA(yj(t) − xi(t)) = 0,

∑s
i=1 p̃ijA(xi(t) − yj(t)) = 0}. According to LaSalle’s

invariance principle [17], starting with any initial values, the trajectories of systems (3.2)–
(3.5) will converge toM asymptotically, which implies that e(t) → 0 (t → +∞). By the linear
independence condition in Theorem 3.1,

∑r
j=1 p̃ijA(yj(t) − xi(t)) = 0, and

∑s
i=1 p̃ijA(xi(t) −

yj(t)) = 0}, we can get p̃ij = 0. Therefore, one has p̃ij → 0; that is, p̂ij → pij as t → +∞. Now
the proof is completed.

Remark 3.2. By p̂ij → pij , it is show that ˙̂pij = (es+j(t) − ei(t))TA(ŷj(t − τ) − x̂i(t − τ)) is just
the tracker of pij ; that is, we can get the weight of the network by monitoring the dynamical
evolution of the nodes. Here, the number of trackers is s × r which is much smaller than that
of (s + r)2 in [12, 13], so our method is more simple and easier to achieve.

Remark 3.3. It is noteworthy that the “linear independence condition” is very important in the
identification method [14]; otherwise it may lead to identification failure. For the successful
identifying, there cannot occur any synchronization between the two types of nodes in the
bipartite graph network. Fortunately, the two types of nodes in a bipartite graph network
generally have different dynamics; they are generally not synchronized under natural state.

4. A Numerical Example

To show the effectiveness of the proposed method, an illustrative example of a specific
weighted bipartite graph network with coupling delay is given as follows. In network (2.1),
we take the chaotic Lorenz system as one set of nodes dynamics, and the chaotic Chen system
as another, and s = 2, t = 3. Assume that the inner-coupling matrix is A = diag(1, 0, 0), which
implies that two sets of nodes are coupled through the first-state variable of the nodes.
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Figure 1: The evolution of the synchronous error.

The chaotic Lorenz system [18] and Chen system [19] are, respectively, described by

ẋi = f(xi) =

⎡
⎢⎢⎢⎢⎣

10(xi2 − xi1)
28xi1 − xi1xi3 − xi2

xi1xi2 −
8
3
xi3

⎤
⎥⎥⎥⎥⎦
, ẏj = g

(
yj
)
=

⎡
⎢⎢⎢⎣

35
(
yj2 − yj1

)

−7yj1 − yj1yj3 + 28yj2

yj1yj2 − 3yj3

⎤
⎥⎥⎥⎦
. (4.1)

Choose the coupling delay τ = 1 and the weight matrix

P =
[

3 0 −1
−2 2 4

]
. (4.2)

The controllers and trackers are taken as (3.4) and (3.5) in Theorem 3.1; then one can
obtain the edge weights of the network: p11 = 3, p12 = 0, p13 = −1, p21 = −2, p22 = 2, and p23 = 4.

Figures 1 and 2 are the numerical simulation results. Figure 1 shows the synchronous
errors that converge to zeros; that is, the response network (3.1) synchronized to the drive
network (2.1). Figure 2 displays that p̂ij → pij ; that is, we have obtained the exact edge
weights of network (2.1).

In the numerical simulations, the initial values are taken as follows: xi(0) = (1.5 + 0.5i,2
+ 0.5i, 0.5i)T , yj(0) = (−1.5 + 0.5j, 1 + 0.5j, 2.5 − 0.5j)T , p̂ij(0) = 1, and kl(0) = 1 (l ∈N5

1).
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Figure 2: The evolution of the weight trackers p̂ij .

5. Conclusion

In this paper, we have presented a model of weighted bipartite graph complex dynamical
network with coupling delay and designed trackers for identifying the weights of the
network. By monitoring the dynamical evolutions of the drive-response synchronous
network, we can obtain the exact weights of the network. This approach is expected to be
widely used in the study of many real bipartite graph networks, especially in the research of
the relationship between two types of things.
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